1. (7 Punkte) Überprüfen Sie, ob Folgendes gilt und beweisen Sie ihre Aussage.

$$\sum_{i=1}^{n} (4i - 2) = 2n^2$$

2. (2 Punkte) Überprüfen Sie, ob folgende Funktion bijektiv ist und geben sie gegebenenfalls eine Umkehrfunktion an.

$$f: \mathbb{R} \setminus \{1, 2\} \to \mathbb{R} \setminus \{-2, 1\}$$
$$f(x) := \frac{x}{(x - 1)}$$

3. (a) (3 Punkte) Sei (G, \circ) eine kommutative Gruppe und e das neutrale Element. Sei für jedes $x \in G$ und $n \in \mathbb{N}_0$ Folgendes rekursiv definiert:

$$x^0 := e, \quad \forall_{n \in \mathbb{N}_0} : x^{n+1} := x \circ x^n.$$

Zeigen Sie, dass für $n \in \mathbb{N}_0$ folgendes gilt:

$$x^n \circ y^n = (x \circ y)^n.$$

(b) (2 Punkte) Überprüfen Sie, ob es sich bei (\mathbb{Z}, \circ) um eine Gruppe handelt, wobei \circ folgendermaßen operiert

$$a\circ b:=\frac{4a+4b+2}{2}$$

4. (6 Punkte) Kreuzen Sie den richigen Wahrheitsgehalt der folgenden Aussagen an. Eine richtige Antwort führt zu zwei Punkten, eine falsche zu keinem Punkt. Ein Ankreuzen von "42/keine Angabe" führt zu einem Punkt.

Aussage	gültig	nicht gültig	42/keine Angabe
$\exists x \in \mathbb{Z} : \forall y \in \mathbb{N} : x + y < 0.$	0	0	0
$A \wedge B \to B \wedge A$	0		0
$(\neg A \to B) \to (A \vee \neg B)$	0		0