1. (7 Punkte) Überprüfen Sie, ob Folgendes gilt und beweisen Sie ihre Aussage.

$$\sum_{i=1}^{n} (4i) = 2n^2 + 2n$$

- 2. Seien $f:A\to B, g:B\to C$ Funktionen. \circ ist hierbei die Verknüpfung von Funktionen, für die gilt $g\circ f:A\to D, \ (g\circ f)(x)=g(f(x))$. Überprüfen Sie die folgende Behauptung auf Richtigkeit und beweisen Sie ihre Aussage.
 - (a) (2 Punkte) Falls $g \circ f$ injektiv ist muss g dann injektiv sein?
 - (b) (1 Punkt) Geben Sie eine Funktion von \mathbb{R} nach \mathbb{R} an, die weder injektiv noch surjektiv ist.
- 3. (a) (2 Punkte) Sei (R, +) eine Gruppe ist und sei $\circ : R \times R \to R$ mit der Eigenschaft, dass für alle $a, b, c \in R$ gilt:

$$a \circ (b+c) = a \circ b + a \circ c$$

Zeigen Sie nun, dass dann für 0 das neutrale Element von + und jedes beliebige $r \in R$ Folgendes gilt:

$$r \circ 0 = 0$$
.

gilt.

(b) (2 Punkte) Überprüfen Sie, ob es sich bei (\mathbb{Z}, \circ) um eine Gruppe handelt, wobei \circ folgendermaßen operiert

$$a \circ b := a$$

4. (6 Punkte) Kreuzen Sie den richigen Wahrheitsgehalt der folgenden Aussagen an. Eine richtige Antwort führt zu zwei Punkten, eine falsche zu keinem Punkt. Ein Ankreuzen von "42/keine Angabe" führt zu einem Punkt.

Aussage	gültig	nicht gültig	42/keine Angabe
Die leere Menge ist Teilmenge jeder Menge.	0	0	0
$(A \to B) \leftrightarrow A \lor B$	0	0	0
$f:[0,\infty)\to [0,\infty], f(x):=x^2$ ist bijektiv	0	0	0