Schriftliche Prüfung am 06, 03, 2020

- 1. Gegeben sei die reelle Folge (a_n) mit $a_n = \frac{2n^2 + 10}{n^2 + 1}$ für $n \ge 0$.
 - a) Berechnen Sie die ersten 5 Glieder der Folge.
 - b) Beweisen Sie, dass die Folge (an) streng monoton ist.
 - c) Geben Sie eine obere und eine untere Schranke der Folge (an) an.
 - d) Ist die Folge (a_n) konvergent warum bzw. warum nicht? Berechnen Sie gegebenenfalls den Grenzwert $\lim_{n\to\infty} a_n$.
- 2. Mittels Partialbruchzerlegung berechne man das bestimmte Integral

$$\int_{3}^{5} \frac{3}{x^2 - 3x + 2} \, \mathrm{d}x \, .$$

3. Man bestimme die allgemeine Lösung der inhomogenen linearen Differentialgleichung

$$y' - y \tan(x) = 1.$$

- 4. Kurvendiskussion für Funktionen in einer Variablen mit Hilfe der Differentialrechnung: Geben Sie zu den angeführten Begriffen jeweils eine Definition, notwendige und hinreichende Bedingungen sowie ein einfaches Beispiel (mit Skizze) an.
 - Monotonie
 - Extremwerte
 - Konvexität
 - Wendepunkte

5. Beantworten Sie die nachstehenden Fragen zu den Extrema der Funktion

$$f(x,y) = e^{x} (x^3 - 5x^2 + 7x + y^2 - 7)$$

(bitte ankreuzen; es können keine, genau eine oder auch mehrere Antworten zutreffend sein):

Für das Aufsuchen von lokalen Extrema von f ist die Bedingung grad f = 0	notwendig hinreichend notwendig und hinreichend
In stationären Punkten von f gilt	$f = 0$ $f_x = f_y = 0$ $f_{xx} = f_{xy} = f_{yy} = 0$
Im Punkt (0,0) liegt ein *)	lokales Minimum lokales Maximum Sattelpunkt der Funktion f. lokales Minimum lokales Maximum
Im Punkt (3,0) liegt ein *)	Sattelpunkt der Funktion f. lokales Minimum lokales Maximum
Im Punkt (-1,0) liegt ein *)	Sattelpunkt der Funktion f.
In einem lokalen Minimum von f ist	positiv definit negativ definit indefinit
Ein lokales Extremum ist immer auch ein globales Extremum:	ja nein
Ein globales Extremum liegt stets am Rand des vorgegebenen Definitions- bereichs von f:	ja nein

*) Hinweis: Die Funktion besitzt drei stationäre Punkte (0,0), (3,0), (-1,0), ferner ist $f_{yy} = 2e^x$ und die Determinante D der Hesse-Matrix beträgt $D = 2e^{2x} (x^3 + x^2 - 7x - y^2 - 3)$.

Zeit: 100 Minuten