Discrete Mathematics Exam

24.01.2025

1 Number theory [10pt]

Let p denote a prime number, k a positive integer and \mathbb{F}_{p^k} the field with p^k elements.

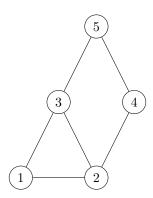
a) What is the characteristic	$\operatorname{char}(\mathbb{F}_{p^k})$?	[1pt]
-------------------------------	---	-------

- b) Prove that if p = 2 then a = -a for all $a \in \mathbb{F}_{2^k}$. Hint: a = 1 * a. [1pt]
- c) How many elements does the group of units $\mathbb{F}_{n^k}^{\times}$ have? [1pt]
- d) How many elements does the group of units $(\mathbb{Z}/< p^k>)^{\times}$ have? [3pt]
- e) How many elements does the group of units $(\mathbb{Z}/<90>)^{\times}$ have? [4pt]

2 Polynomials in finite fields [10pt]

Let \mathbb{F}_8 denote the field with 8 elements. Let $f, g \in \mathbb{F}_8[X]$ with $f = X^4 + X^3 + X + 1$ and $g = X^3 + X + 1$.

a) Determine
$$gcd(f, g)$$
. [4pt]


- b) Find $\lambda, \mu \in \mathbb{F}_8[X]$ with $\lambda f + \mu g = \gcd(f, g)$. [4pt]
- c) Is g invertible in $\mathbb{F}_8[X]/\langle f \rangle$? If yes, determine its inverse. [2pt]

3 Combinatorics [10pt]

- a) Let $A = \{1, 2, ..., 6\}$ How many ways are there to partition A into 2-element subsets? (For example, $\{\{1, 2\}, \{3, 4\}, \{5, 6\}\}\)$ is one such partition.) [5pt]
- b) Show that for any positive integer n the number of positive divisors of n^2 is always odd. (Hint: use prime factor decompositions) [5pt]

4 Graph theory [10pt]

Calculate the number of spanning trees of the following graph:

