191.002 VU Betriebssysteme
EXERCISE 1A

Last update 2023-10-16

Assignment A — myexpand

Implement a variation of the Unix-command expand. Write a C-program myexpand, which reads in
several files and replaces tabs with spaces.

SYNOPSIS:
myexpand [-t tabstop] [-o outfile] [file...]

The program shall read each file given as positional argument (or stdin if there are no positional argu-
ments) line by line and search for tab characters (\t).

Your program must accept lines of any length. The program must be able to process data with the
following characters [0-9] [A-Z] [a-z] ., :-!=7% and whitespace. Terminate the program with exit status
EXIT_SUCCESS.

Each of these tabs is replaced with a number of space characters, such that the next character is placed
at the next multiple of the tabstop distance within the line. This position can be calculated as follows:

p = tabstop * ((x / tabstop) + 1)

where x is the position of the tab character (after expanding any previous tabs on that line) and / is the
standard integer division (retaining only the quotient).

The tabstop distance is 8 by default, but this can be overridden with an strictly positive integer (smaller
or equal to 64) using the option -t.

If the option -o is given, the output is written to the specified file (outfile). Otherwise, the output is
written to stdout.



Testing

Test your program with various inputs, such as a file t1.txt with following content (where — represents
the ASCII tab character, entered by hitting the tabulator key):

1234567890
123567890
——90

Executing your program should give an output similar to the following:

$ ./myexpand tl.txt
1234567890
123 567890

90

$ ./myexpand -t 4 -o out.txt tl.txt
$ cat out.txt
1234567890
123 567890
90



Mandatory testcases

Input shown in blue color. Output to stdout (and stderr) shown in black. (Note that in the following
output sections EXIT_SUCCESS equals 0, and EXIT_FAILURE equals 1. Refer to stdlib.h for further
details.) ~C indicates CTRL+C, "D indicates CTRL+D. The placeholder <usage message> must be replaced
by a proper usage message (printed to stdout), <error message> must be replaced by a meaningful error
message (which is printed to stderr).

A-Testcase 01: usage-1

$>./myexpand -x
<usage message>
$>echo $7

1

A-Testcase 02: usage-2

$>./myexpand -t
<usage message>
$>echo $7

1

A-Testcase 03: usage-3

$>./myexpand -t 7 -t 7
<usage message>

$>echo $7

1

A-Testcase 04: usage-4

$>./myexpand -o
<usage message>
$>echo $7

1

A-Testcase 05: usage-5

$>./myexpand -o file -o file
<usage message>

$>echo $7

1

A-Testcase 06: usage-6

Note: This testcase was removed. (It was ./myexpand foo bar before.)




A-Testcase 07: usage-7

$>./myexpand -t 0
<usage message>
$>echo $7

1

A-Testcase 08: usage-8

$>./myexpand -t 1000
<usage message>
$>echo $7

1

A-Testcase 09: usage-9

$>./myexpand -t foo
<usage message>
$>echo $7

1

A-Testcase 10: usage-10

$>./myexpand -t 7.1
<usage message>
$>echo $7

1

A-Testcase 11: easy-1

$>echo -e "1234567890\n123\t567890abcdefg\n\t\t90" | ./myexpand
1234567890
123 567890abcdefg
90
$>echo $7
0

A-Testcase 12: easy-2

$>echo -e "1234567890\n123\t567890\n\t\t90" | ./myexpand -t 4 -o outfile
$>echo $7
0
$>cat outfile
1234567890
123 567890
90




A-Testcase 13: file-1

$>echo "some old content" > outfile.txt

$>echo -e "a\tb\tc\td\te\tf\t\t." > infile.txt
$>./myexpand -t 2 -o outfile.txt infile.txt
$>echo $7

0

$>cat outfile.txt

abcdef

A-Testcase 14: file-2

$>echo -e 'please\n\tre-arrange\nthis\t/n%%\n.,:-!=?\t/\t where???' > infile
$>./myexpand -t 3 -o outfile infile

$>echo $7

0

$>cat outfile

please

re-arrange
this %nik
.,:=1=7 % where???

A-Testcase 15: long-line

$>( echo -ne "X\tx"; printf -- "-%.0s" {1..8000}; echo "Z" ) > longline
$>./myexpand -t 4 longline > longexp

$>echo $7

0

$>cat longexp | tr -d "-"

X xZ

A-Testcase 16: file-error-1

$>rm -rf nonExistingTestfile
$>./myexpand nonExistingTestfile
<error message>

$>echo $7

1

A-Testcase 17: file-error-2

$>touch existingTestfile

$>chmod 0000 existingTestfile

$>echo "test" > existingTestfile

bash: existingTestfile: Permission denied
$>echo "test" | ./myexpand -o existingTestfile
<error message>

$>echo $7

1




Coding Rules and Guidelines

Your score depends upon the compliance of your submission to the presented guidelines and rules.
Violations result in deductions of points. Hence, before submitting your solution, go through the following
list and check if your program complies.

Rules

Compliance with these rules is essential to get any points for your submission. A violation of any of the
following rules results in 0 points for your submission.

1. All source files of your program(s) must compile via

$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L -g -c filename.c

without errors and your program(s) must link without errors. The compilation flags must be used

in the Makefile. The feature test macros must not be bypassed (i.e., by undefining these macros or
adding some in the C source code).

2. The functionality of the program(s) must conform exactly to the assignment. The program(s) shall
operate according to the specification/assignment given the test cases in the respective assignment.
Additional white spaces or any other deviation from the specified input and output format may
lead to a failure of the respective test case.

General Guidelines

Violation of following guidelines leads to a deduction of points.

1. All source files of your program(s) must compile with

$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L -g -c filename.c

without warnings and info messages and your program(s) must link without warnings.

2. There must be a Makefile implementing the targets: all to build the program(s) (i.e. generate
executables) from the sources (this must be the first target in the Makefile); clean to delete all
files that can be built from your sources with the Makefile.

3. All targets of your Makefile must be idempotent. L.e. execution of make clean; make clean must
yield the same result as make clean, and must not fail with an error.

4. The program shall operate according to the specification/assignment without major issues (e.g.,
segmentation fault, memory corruption).

5. Arguments have to be parsed according to UNIX conventions (we strongly encourage the use of
getopt (3)). The program has to conform to the given synopsis/usage in the assignment. If the
synopsis is violated (e.g., unspecified options or too many arguments), the program has to terminate
with the usage message containing the program name and the correct calling syntax. Argument
handling should also be implemented for programs without arguments.

6. Correct (=normal) termination, including a cleanup of resources.

7. Upon success the program has to terminate with exit code 0, in case of errors with an exit code
greater than 0. We recommend to use the macros EXIT_SUCCESS and EXIT_FAILURE (defined in
stdlib.h) to enable portability of the program.



10.
11.
12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

If a function indicates an error with its return value, it should be checked in general. If the sub-
sequent code depends on the successful execution of a function (e.g. resource allocation), then the
return value must be checked.

Functions that do not take any parameters have to be declared with void in the signature, e.g.,
int get_random_int (void) ;.

Procedures (i.e., functions that do not return a value) have to be declared as void.
Error messages shall be written to stderr and should contain the program name argv[0].

It is forbidden to use the functions: gets, scanf, fscanf, atoi and atol to avoid crashes due to
invalid inputs.

FORBIDDEN  USE INSTEAD

gets fgets

scanf fgets, sscanf
fscanf fgets, sscanf
atoi strtol

atol strtol

Documenation is mandatory. Format the documentation in Doxygen style (see Wiki and Doxygen’s
intro)).

Write meaningful comments. For example, meaningful comments describe the algorithm, or why a
particular solution has been chosen, if there seems to be an easier solution at a first glance. Avoid
comments that just repeat the code itself

(e.g.,i =1 + 1; /* i is incremented by one */).

The documentation of a module must include: name of the module, name and student id of the
author (@author tag), purpose of the module (@brief, @details tags) and creation date of the
module (@date tag).

Also the Makefile has to include a header, with author and program name at least.
Each function shall be documented either before the declaration or the implementation. It should

include purpose (@brief, @details tags), description of parameters and return value (@param,
@return tags) and description of global variables the function uses (@details tag).

You should also document static functions (see EXTRACT_STATIC in the file Doxyfile). Document
visible/exported functions in the header file and local (static) functions in the C file. Document
variables, constants and types (especially structs) too.

Documentation, names of variables and constants shall be in English.

Internal functions shall be marked with the static qualifier and are not allowed to be exported
(e.g., in a header file). Only functions that are used by other modules shall be declared in the
header file.

All exercises shall be solved with functions of the C standard library. If a required function is not
available in the standard library, you can use other (external) functions too. Avoid reinventing the
wheel (e.g., re-implementation of strcmp).

Name of constants shall be written in upper case, names of variables in lower case (maybe with fist
letter capital).

Use meaningful variable and constant names (e.g., also semaphores and shared memories).

Avoid using global variables as far as possible.


https://github.com/osue-tuwien/osue-tuwien.github.com/wiki/Doxygen-Primer
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

23.

24.

25.

26.

27.
28.

29.

30.

31.
32.

33.

All boundaries shall be defined as constants (macros). Avoid arbitrary boundaries. If boundaries
are necessary, treat its crossing.

Avoid side effects with && and | |, e.g., write if (b != 0) ¢ = a/b; insteadof if(b !'= 0 && c = a/b).

Each switch block must contain a default case. If the case is not reachable, write assert (0) to
this case (defensive programming).

Logical values shall be treated with logical operators, numerical values with arithmetic operators
(e.g., test 2 strings for equality by strcmp(...) == 0 instead of !strcmp(...)).

Indent your source code consistently (there are tools for that purpose, e.g., indent).

Avoid tricky arithmetic statements. Programs are written once, but read more times. Your program
is not better if it is shorter!

For all I/O operations (read/write from/to stdin, stdout, files, sockets, pipes, etc.) use either
standard I/O functions (fdopen(3), fopen(3), fgets(3), etc.) or POSIX functions (open(2),
read(2), write(2), etc.). Remember, standard I/O functions are buffered. Mixing standard I/0O
functions and POSIX functions to access a common file descriptor can lead to undefined behaviour
and is therefore forbidden.

If asked in the assignment, you must implement signal handling (SIGINT, SIGTERM). You must only
use async-signal-safe functions in your signal handlers.

Close files, free dynamically allocated memory, and remove resources after usage.

Don’t waste resources due to inconvenient programming. Header files shall not include implemen-
tation parts (exception: macros).

To comply with the given testcases, the program output must exactly match the given specification.
Therefore you are only allowed to to print any debug information if the compile flag ~DDEBUG is
set.



