
191.002 VU Betriebssysteme
EXERCISE 2

Last update 2023-10-23 (Version b90d72c3-dirty)

Feedback Arc Set

Implement an algorithm which removes cycles in a directed graph by removing the least edges possible.
A set of edges which must be removed to make a graph acyclic is also called a feedback arc set; and the
set with the least edges is a minimal feedback arc set.

For instance, consider the following directed graph:

0 1 2

3 4 56

This graph has some cycles, such as { 0 → 1 → 3 → 6 → 0 } or { 0 → 1 → 2 → 4 → 3 → 6 → 0 }.
All of these cycles can be broken by removing a single edge, for instance by removing the edge (0, 1).
Therefore, { (0, 1) } is a minimal feedback arc set for this graph. Note that there are other feedback arc
sets of equal length, such as { (6, 0) } or { (3, 6) }.

The problem of finding a minimal feedback arc set is NP-complete, therefore an exact solution becomes
infeasible for moderately large graph sizes. However, a randomized algorithm can be used to find a good
approximation, i.e. to find a feedback arc set which is close to minimal. 1

A simple randomized algorithm for this problem generates a feedback arc set by executing following
steps:

• Order the vertices of the graph randomly, i.e. generate a random permutation of the set of vertices.

• Select all edges (u, v) for which u > v in the ordering. These edges form a feedback arc set.
For instance, a random permutation of the vertices of the above graph might be { 3, 6, 1, 5, 0, 2, 4 }.
Consider the edge (0, 1): in the permutation, 1 comes before 0, thus 0 > 1 in the permutation and
therefore the edge is selected. Repeating this for all edges of the graph, we find that the edges for
which u > v for this permutation are { (0, 1), (1, 3), (4, 3), (4, 5) }. Therefore these edges are one
possible feedback arc set for this graph (although not a mimimal one).
Proof: The subgraph L, which is obtained by removing all edges of this feedback arc set, contains
only the edges (u, v) for which u < v in our ordering. Therefore, the permutation generated in the
first step is a topological ordering of L, and consequently L must be acyclic. 2

These steps are executed repeatedly and the smallest feedback arc set so far is retained.
1You can read more about the complexity of the feedback arc set problem and about Monte Carlo randomized algorithms

in general on Wikipedia:
https://en.wikipedia.org/wiki/Feedback_arc_set
https://en.wikipedia.org/wiki/Monte_Carlo_algorithm

2More background information on topological ordering and directed acyclic graphs can be found on Wikipedia:
https://en.wikipedia.org/wiki/Topological_sorting

https://en.wikipedia.org/wiki/Feedback_arc_set
https://en.wikipedia.org/wiki/Monte_Carlo_algorithm
https://en.wikipedia.org/wiki/Topological_sorting

Although it might seem surprising given its simplicity, this algorithm has an expected runtime which is
polynomial in the size of the graph and thus is on average much faster than an algorithm which tries to
find an exact solution.

Instructions

In order to further reduce the runtime of this algorithm, multiple processes generate the random feedback
arc sets in parallel and report their results to a supervisor process, which remembers the set with the
least edges.

Write two programs: a generator program and a supervisor program. Multiple generator pro-
cesses generate random solutions to the problem and report their solutions to one supervisor process.
The supervisor process remembers the best solution so far. The processes communicate with eachother
by means of a circular buffer, which is implemented using shared semaphores and a shared memory.

Supervisor
The supervisor sets up the shared memory and the semaphores and initializes the circular buffer required
for the communication with the generators. It then waits for the generators to write solutions to the
circular buffer.

SYNOPSIS:
supervisor [-n limit] [-w delay] [-p]

The argument limit specifies a limit (integer value) for the number of generated solutions. If limit is
omitted, it should be considered as infinite. The argument delay specifies a delay (in seconds) before
reading the first solution from the buffer. If delay is omitted, it should be considered as zero. The option
-p is only relevant for the bonus task.

Once initialization is complete, it waits for delay seconds3, and then the supervisor reads the solutions
from the circular buffer and remembers the best solution so far, i.e. the solution with the least edges.
Every time a better solution than the previous best solution is found, the supervisor writes the new
solution to stderr. If a generator writes a solution with 0 edges to the circular buffer, then the graph
is acyclic and the supervisor terminates. In this case, the supervisor prints The graph is acyclic! to
stdout.

Otherwise the supervisor keeps reading results from the circular buffer until it receives a SIGINT, a
SIGTERM signal, or the number of read solutions from the circular buffer exceeds the value limit. In this
case, the supervisor prints The graph might not be acyclic, best solution removes N edges. to
stdout (where N is replaced with the number of edges of the best found solution).

Before terminating, the supervisor notifies all generators that they should terminate as well. This can
be done by setting a variable in the shared memory, which is checked by the generator processes before
writing to the buffer. The supervisor then unlinks all shared resources and exits.

3Only for this purpose, you may use the function sleep(). This delay is intended to give enough time to start multiple
generators on the command line manually.

Generator
The generator program takes a graph as input. The program repeatedly generates a random solution
to the problem as described on the first page and writes its result to the circular buffer. It repeats this
procedure until it is notified by the supervisor to terminate.

The generator program takes as arguments the set of edges of the graph:

SYNOPSIS
generator EDGE1...

EXAMPLE
generator 0-1 1-2 1-3 1-4 2-4 3-6 4-3 4-5 6-0

Each positional argument is one edge; at least one edge must be given. An edge is specified by a string,
with the indices of the two nodes it connects separated by a -. Since the graph is directed, the edge
starts at the first node and leads to the second node. Note that the number of nodes of the graph is
implicitly provided through the indices in the edges. The generator must not make any assumptions as
to the number of edges that may be specified and programmatically accept a graph of any size (as well
in the number edges as in the number of nodes) 4. In the example above the generator program is called
with the graph shown on the first page.

The generator uses the algorithm described on the first page to generate random feedback arc sets for the
given graph. It writes these feedback arc sets to the circular buffer, one at a time; therefore a feedback
arc set is a single element of the circular buffer. The generator may produce debug output, describing
the feedback arc sets which it writes to the circular buffer (only if the compile flag -DDEBUG is set).

4Practically, the number of edges which can be specified is limited by the system constant ARG MAX. However, your
program must not make any assumptions based on this (or other) limits.

Circular Buffer

The generators report their solutions to the supervisor by means of a circular buffer. The generators
write their solutions to the write end of the circular buffer and the supervisor reads them from the read
end.

A circular buffer is a common data structure which uses a single fixed-size buffer to implement a queue
(i.e. a FIFO buffer). A circular buffer is essentially an array of the elements you want to pass through.
Elements are written successively to the array and once the end of the array is reached, writing restarts
from the beginning. Similarly, elements are also read successively from the array, restarting from the
beginning upon reaching the end, thus reading the elements in the exact same order they have been
written. 5

Implement your circular buffer such that reading and writing to the buffer can happen simultaneous-
ly. Some synchronization is required in order to avoid overwriting data which has not been read yet and
also to avoid trying to read from locations which have not been written yet. This is achieved using two
semaphores: one semaphore tracking the free space in the circular buffer and one semaphore
tracking the used space. The value of the free space semaphore corresponds to the amount of free
space in the buffer array; it is initialized to the size of the buffer, since initially the circular buffer is
empty. The value of the used space semaphore corresponds to the amount of used space in the buffer
array; it is initialized to 0.

Upon writing to the circular buffer, the free space semaphore is decremented; if the buffer is currently
full and there is no free space to write to, this intentionally blocks the write until space becomes available.
After the write is complete, the used space semaphore is incremented, since the buffer now holds one
more element which can be read.

Upon reading from the circular buffer, the used space semaphore is decremented; if the buffer is
currently empty and there is no data to be read, this intentionally blocks the read until data becomes
available. After the read is complete, the free space semaphore is incremented, since the position occupied
by the element which has been read just has been freed up.

Since multiple generators write to the circular buffer, an additional semaphore will be required to gua-
rantee a mutually exclusive access to the write end of the circular buffer.

Hints

• Store the graph in a way which is suitable for the implementation of the randomized algorithm.

• If you need inspiration for generating random permutations of the graph’s vertices, you might want
to have a look at the Fisher-Yates shuffle algorithm. 6

• Think of a suitable structure to store a feedback arc set in the circular buffer. Choose a limit on
the maximum number of edges which it can contain. Since we are looking for small solutions, the
generator can discard any solutions which contain too much edges instead of writing them to the
circular buffer. You may choose a limit as low as 8 edges.

• Select a reasonable size for the circular buffer. If the size is too small, then the generators will
spend a lot of time waiting for free space to become available. If the size is too large, the circular
buffer is wasting resources. The size of the shared memory should not exceed 4 KiB.

5Visualizations of circular buffers can be found on Wikipedia:
https://en.wikipedia.org/wiki/Circular_buffer

6A description of this algorithm along with a pseudocode example can be found on Wikipedia:
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
If you want to read more about algorithms to generate random permutations, have a look at:
https://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations

Examples

Simple cyclic graph

0

1 2

The minimal feedback arc set of this
graph contains 1 edge; in fact there
are 3 minimal feedback arc sets:

{ (0, 1) }, { (1, 2) } and { (2, 0) }

Invocation of the supervisor:
$./supervisor -n 3000
Solution with 2 edges: 1-2 2-0
Solution with 1 edges: 2-0
The graph might not be acyclic,

best solution removes 1 edges.

Invocation of one generator:
$./generator 0-1 1-2 2-0

Invocation of 10 generators in parallel:
$ for i in {1..10}; do (./generator 0-1 1-2 2-0 &); done

Graph from the first page

0 1 2

3 4 56

This graph has again 3 minimal
feedback arc sets, each with one edge:

{ (0, 1) }, { (3, 6) } and { (6, 0) }

Invocation of the supervisor:

$./supervisor -n 3000
Solution with 5 edges: 1-2 1-3 1-4 2-4 6-0
Solution with 4 edges: 0-1 2-4 4-3 6-0
Solution with 3 edges: 0-1 1-4 2-4
Solution with 1 edges: 0-1
The graph might not be acyclic,

best solution removes 1 edges.

Invocation of the generator:

$./generator 0-1 1-2 1-3 1-4 2-4 3-6 4-3 4-5 6-0

Acyclic graph

0

12

3 4

56

This graph is already acyclic.

Invocation of the supervisor:
$./supervisor
Solution with 5 edges: 1-4 1-5 2-6 3-4 3-6
Solution with 2 edges: 3-6 4-5
Solution with 1 edges: 6-0
The graph is acyclic!

Invocation of the generator:
$./generator 1-4 1-5 2-6 3-4 3-6 4-5 6-0 6-5

If you want to test your implementation with a challenging graph, try this one:

0-2 0-9 0-11 1-4 3-2 3-6 4-2 4-9 5-2 5-11 6-2 6-4 7-2 7-4 7-5 7-8 7-16 7-17 8-9 8-12
8-17 10-2 10-9 11-2 12-1 12-6 12-10 13-5 13-6 13-8 14-4 14-12 15-8 15-11 15-13 16-1
16-6 16-17 17-6 17-10 17-11 18-7 18-8 18-11

Note: This graph is acyclic, therefore one of your generators should eventually come up with a solution
with 0 edges.

Bonus exercise, 5 points

If the option -p is set, print the graph using ASCII-art visualization to stdout.

You may limit the printing to planar graphs 7. For this you might first need to determine if the graph
is planar. You might further limit the pritning to graphs with a maximum number of nodes. Remember
to properly justify this maximum (e.g. if it is 2, you might not get any bonus points).

Example

(0)
/ \

/ \
/ \

(1)---(2)

Example of another graph

+---------------+
/ /

(0)---(3) /
/ \ / /

/ \ / /
/ \ / /

(1)---(2)---(4)

Mandatory testcases

Input shown in blue color. Output to stdout (and stderr) shown in black. (Note that in the following
output sections EXIT SUCCESS equals 0, and EXIT FAILURE equals 1. Refer to stdlib.h for further
details.) ˆC indicates CTRL+C, ˆD indicates CTRL+D. The placeholder <usage message> must be replaced
by a proper usage message (printed to stdout), <error message> must be replaced by a meaningful error
message (which is printed to stderr).

Testcase 01: simple-1

Start your supervisor first.
1 $>./supervisor
2 The graph is acyclic!
3 $> echo $?
4 0

Then start the generator.

1 $>./generator 0-1 0-2 2-1
2 $>echo $?
3 0

7Information on planar graphs on Wikipedia: https://en.wikipedia.org/wiki/Planar_graph

https://en.wikipedia.org/wiki/Planar_graph

Testcase 02: simple-2

Start your supervisor first.
1 $>./supervisor -n 500
2 The graph might not be acyclic, best solution \

removes 1 edges.
3 $> echo $?
4 0

Then start the generator.
1 $>./generator 0-1 1-2 2-0
2 $>echo $?
3 0

Testcase 03: multi-1

Start your supervisor first.
1 $>./supervisor -n 100000 -w 2
2 The graph might not be acyclic, best solution \

removes 1 edges.
3 $> echo $?
4 0

Then start the generators.
1 $> for i in `seq 0 2`; do (./generator 0-1 1-2 \

1-3 1-4 2-4 3-6 4-3 4-5 6-0 ; echo \
"generator returned $?") & done;

2 generator returned 0
3 generator returned 0
4 generator returned 0

Testcase 04: multi-2

Start your supervisor first.
1 $>./supervisor -n 100000 -w 2
2 The graph is acyclic!
3 $> echo $?
4 0

Then start the generators.
1 $> for i in `seq 0 2`; do (./generator 1-4 1-5 \

2-6 3-4 3-6 4-5 6-0 6-5 ; echo "generator \
returned $?") & done;

2 generator returned 0
3 generator returned 0
4 generator returned 0

Testcase 05: multi-3

Start your supervisor first.
1 $>./supervisor -n 100000 -w 2
2 The graph is acyclic!
3 $> echo $?
4 0

Then start the generators.
1 $> for i in `seq 0 2`; do (./generator 0-8 0-9 \

0-15 1-7 1-10 1-15 2-5 2-13 2-15 3-6 3-14 \
3-15 4-11 4-12 4-15 5-6 5-12 6-11 7-8 7-13 \
8-14 ; echo "generator returned $?") & done;

2 generator returned 0
3 generator returned 0
4 generator returned 0

Testcase 06: multi-4

Start your supervisor first.
1 $>./supervisor -n 100000 -w 2
2 The graph is acyclic!
3 $> echo $?
4 0

Then start the generators.
1 $> for i in `seq 0 2`; do (./generator 0-1 0-2 \

1-13 1-14 1-16 2-11 2-12 2-15 3-4 3-5 3-9 \
3-10 4-6 4-7 4-8 5-6 5-11 5-12 6-13 6-14 \
7-9 7-13 7-16 8-10 8-14 8-16 9-12 9-15 ; \
echo "generator returned $?") & done;

2 generator returned 0
3 generator returned 0
4 generator returned 0

Testcase 07: multi-5

Start your supervisor first.
1 $>./supervisor -n 100000 -w 2
2 The graph might not be acyclic, best solution \

removes 2 edges.
3 $> echo $?
4 0

Then start the generators.
1 $> for i in `seq 0 4`; do (./generator 0-1 1-2 \

2-3 3-4 4-5 5-0 6-7 7-8 8-6 ; echo \
"generator returned $?") & done;

2 generator returned 0
3 generator returned 0
4 generator returned 0
5 generator returned 0
6 generator returned 0

Testcase 10: no-supervisor

1 $>./generator 0-1 0-2 1-2
2 $>echo $?
3 1

Testcase 11: usage

1 $>./supervisor -x
2 $>echo $?
3 1

Coding Rules and Guidelines

Your score depends upon the compliance of your submission to the presented guidelines and rules.
Violations result in deductions of points. Hence, before submitting your solution, go through the following
list and check if your program complies.

Rules

Compliance with these rules is essential to get any points for your submission. A violation of any of the
following rules results in 0 points for your submission.

1. All source files of your program(s) must compile via
$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE

-D_POSIX_C_SOURCE=200809L -g -c filename.c
without errors and your program(s) must link without errors. The compilation flags must be used
in the Makefile. The feature test macros must not be bypassed (i.e., by undefining these macros or
adding some in the C source code).

2. The functionality of the program(s) must conform exactly to the assignment. The program(s) shall
operate according to the specification/assignment given the test cases in the respective assignment.
Additional white spaces or any other deviation from the specified input and output format may
lead to a failure of the respective test case.

General Guidelines

Violation of following guidelines leads to a deduction of points.

1. All source files of your program(s) must compile with
$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE

-D_POSIX_C_SOURCE=200809L -g -c filename.c
without warnings and info messages and your program(s) must link without warnings.

2. There must be a Makefile implementing the targets: all to build the program(s) (i.e. generate
executables) from the sources (this must be the first target in the Makefile); clean to delete all
files that can be built from your sources with the Makefile.

3. All targets of your Makefile must be idempotent. I.e. execution of make clean; make clean must
yield the same result as make clean, and must not fail with an error.

4. The program shall operate according to the specification/assignment without major issues (e.g.,
segmentation fault, memory corruption).

5. Arguments have to be parsed according to UNIX conventions (we strongly encourage the use of
getopt(3)). The program has to conform to the given synopsis/usage in the assignment. If the
synopsis is violated (e.g., unspecified options or too many arguments), the program has to terminate
with the usage message containing the program name and the correct calling syntax. Argument
handling should also be implemented for programs without arguments.

6. Correct (=normal) termination, including a cleanup of resources.

7. Upon success the program has to terminate with exit code 0, in case of errors with an exit code
greater than 0. We recommend to use the macros EXIT SUCCESS and EXIT FAILURE (defined in
stdlib.h) to enable portability of the program.

8. If a function indicates an error with its return value, it should be checked in general. If the sub-
sequent code depends on the successful execution of a function (e.g. resource allocation), then the
return value must be checked.

9. Functions that do not take any parameters have to be declared with void in the signature, e.g.,
int get_random_int(void);.

10. Procedures (i.e., functions that do not return a value) have to be declared as void.

11. Error messages shall be written to stderr and should contain the program name argv[0].

12. It is forbidden to use the functions: gets, scanf, fscanf, atoi and atol to avoid crashes due to
invalid inputs.

forbidden use instead
gets fgets
scanf fgets, sscanf
fscanf fgets, sscanf
atoi strtol
atol strtol

13. Documenation is mandatory. Format the documentation in Doxygen style (see Wiki and Doxygen’s
intro).

14. Write meaningful comments. For example, meaningful comments describe the algorithm, or why a
particular solution has been chosen, if there seems to be an easier solution at a first glance. Avoid
comments that just repeat the code itself
(e.g., i = i + 1; /* i is incremented by one */).

15. The documentation of a module must include: name of the module, name and student id of the
author (@author tag), purpose of the module (@brief, @details tags) and creation date of the
module (@date tag).
Also the Makefile has to include a header, with author and program name at least.

16. Each function shall be documented either before the declaration or the implementation. It should
include purpose (@brief, @details tags), description of parameters and return value (@param,
@return tags) and description of global variables the function uses (@details tag).
You should also document static functions (see EXTRACT STATIC in the file Doxyfile). Document
visible/exported functions in the header file and local (static) functions in the C file. Document
variables, constants and types (especially structs) too.

17. Documentation, names of variables and constants shall be in English.

18. Internal functions shall be marked with the static qualifier and are not allowed to be exported
(e.g., in a header file). Only functions that are used by other modules shall be declared in the
header file.

19. All exercises shall be solved with functions of the C standard library. If a required function is not
available in the standard library, you can use other (external) functions too. Avoid reinventing the
wheel (e.g., re-implementation of strcmp).

20. Name of constants shall be written in upper case, names of variables in lower case (maybe with fist
letter capital).

21. Use meaningful variable and constant names (e.g., also semaphores and shared memories).

22. Avoid using global variables as far as possible.

https://github.com/osue-tuwien/osue-tuwien.github.com/wiki/Doxygen-Primer
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

23. All boundaries shall be defined as constants (macros). Avoid arbitrary boundaries. If boundaries
are necessary, treat its crossing.

24. Avoid side effects with && and ||, e.g., write if(b != 0) c = a/b; instead of if(b != 0 && c = a/b).

25. Each switch block must contain a default case. If the case is not reachable, write assert(0) to
this case (defensive programming).

26. Logical values shall be treated with logical operators, numerical values with arithmetic operators
(e.g., test 2 strings for equality by strcmp(...) == 0 instead of !strcmp(...)).

27. Indent your source code consistently (there are tools for that purpose, e.g., indent).

28. Avoid tricky arithmetic statements. Programs are written once, but read more times. Your program
is not better if it is shorter!

29. For all I/O operations (read/write from/to stdin, stdout, files, sockets, pipes, etc.) use either
standard I/O functions (fdopen(3), fopen(3), fgets(3), etc.) or POSIX functions (open(2),
read(2), write(2), etc.). Remember, standard I/O functions are buffered. Mixing standard I/O
functions and POSIX functions to access a common file descriptor can lead to undefined behaviour
and is therefore forbidden.

30. If asked in the assignment, you must implement signal handling (SIGINT, SIGTERM). You must only
use async-signal-safe functions in your signal handlers.

31. Close files, free dynamically allocated memory, and remove resources after usage.

32. Don’t waste resources due to inconvenient programming. Header files shall not include implemen-
tation parts (exception: macros).

33. To comply with the given testcases, the program output must exactly match the given specification.
Therefore you are only allowed to to print any debug information if the compile flag -DDEBUG is
set.

Exercise 2 Guidelines

Violation of following guidelines leads to a deduction of points in exercise 2.

1. Correct use of named sempahores (sem open(3), sem close(3) sem unlink(3)) and POSIX shared
memory (shm overview(7)) for inter-process communication of separated programs (e.g., server
and client).
Use your matriculation number as prefix in the names of all resources.

2. “Busy waiting” is forbidden. (Busy waiting is the repeated check of a condition in a loop for
synchronization purposes.)

3. Synchronization with sleep is forbidden.

