
191.002 VU Betriebssysteme
EXERCISE 3

Last update 2024-01-08 (Version 84af0bb4)

HTTP is a text-based request-response application layer protocol, which is used to transfer files between
a client and a server. Typically a client sends a request for a file located on the server. The server then
responds and transmits the requested file.

HTTP requests start with a line which contains the request method (for instance GET), the location of
the desired resource and the protocol version. This line is followed by an arbitrary number of header
fields. Each header field is a line with a keyword and a value, separated by a colon (:). The request
header ends with an empty line, which may be followed by a request body if the client wishes to transmit
a resource to the server.

GET /index.html HTTP/1.1
Host: www.myhost.at

Example of a HTTP request: Request method GET is used to request the file index.html
using HTTP version 1.1. The request header contains only one header field, the Host field,
which specifies the hostname of the server. An empty line ends the header and since there is
no body this is also the end of the request message.

The response starts with a line containing the protocol version, a status code and a textual description of
the status code. As in the request, this line is followed by an arbitrary number of header fields and again
the header ends with an empty line. The header is followed by the response body, which is typically the
content of the requested file.

HTTP/1.1 200 OK
Date: Sun, 11 Nov 18 22:55:00 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 146
Last-Modified: Mon, 01 Oct 18 12:15:00 GMT
Connection: close

<!DOCTYPE html>
<html>

<head>
<title>My website</title>

</head>
<body>

<h1>Hi!</h1>
<p>This is my website.</p>

</body>
</html>

Example of a HTTP response: The server responds to the above request with status code
200, which indicates that the request was successful. The header contains several fields with
information about the content, such as the file format, the file length or the last time it was
modified. The header ends with an empty line, which is followed by the file content.

The HTTP specification requires that each line ending in the header consists of two characters, a carriage
return followed by a linefeed character1, instead of the linefeed only which is standard on UNIX systems.
In a C-string this sequence can be encoded as "\r\n". Note that this does not apply to the content in
the response body, which is transmitted as it is read from the file without modifications.

1RFC 2616, Section 6: Response, https://www.rfc-editor.org/rfc/rfc2616#section-6

https://www.rfc-editor.org/rfc/rfc2616#section-6

Assignment A – HTTP Client (10)

Write a client program which partially implement version 1.1 of the HTTP. The client takes an URL as
input, connects to the corresponding server and requests the file specified in the URL. The transmitted
content of that file is written to stdout or to a file.

SYNOPSIS
client [-p PORT] [-o FILE | -d DIR] URL

EXAMPLE
client http://www.example.com/

The client may be called with a number of options:

• Option -p can be used to specify the port on which the client shall attempt to connect to the
server. If this option is not used the port defaults to 80, which is the standard port for HTTP.

• Either option -o or -d can be used to write the requested content to a file. Option -o is used to
specify a file to which the transmitted content is written. Option -d is used to specify a directory
in which a file of the same name (without the directory part, i.e. only the part after the last /) as
the requested file is created and filled with the transmitted content. If the URL ends with / (thus
requesting a directory) the filename is assumed to be index.html. If none of these options is given,
the transmitted content is written to stdout.

The client creates a TCP/IP socket and connects to the hostname specified in the URL. For the purpose
of this exercise we only consider URLs which start with the scheme identifier http://, immediatly
followed by a hostname. For simplicity you may therefore assume that the hostname is the part after the
initial http:// and before any of the following characters:

; / ? : @ = &

Once the connection is established, the client sends a request for the file specified in the URL (the filepath
is the part starting at and including the first / after the initial http://) using the HTTP method GET.
The request header must start with the request line and must contain the Host field, which gives the
hostname as specified in the URL. Also, the header field Connection with the value close should be
added to the header (which tells the server that the connection should be closed after transmitting one
file). For instance, the request header for the URL http://www.example.com/ is:

GET / HTTP/1.1
Host: www.example.com
Connection: close

After transmitting its request, the client waits for a response from the server. Your client must correctly
parse the status code in the first line of the response.

If the response header is invalid, the client prints the message "Protocol error!" to stderr and ter-
minates with exit code 2. You can consider the response header to be invalid if the first line does not
start with HTTP/1.1 or if this is not followed by a number which can be parsed with strtol(3).

If the response status in the first line of the response header is not 200, the client prints a message with
the response status (status code and the textual description after it) to stderr and terminates with exit
code 3.

The client may ignore any header fields and directly skip ahead to the content in the response body by
looking for the empty line which ends the header. The remainder of the response is the content of the
requested file and is eiter written to stdout or to a file, according to the options listed above. The client
must not rely on the response header field Content-Length in order to determine the amount of data
transfered, but instead read from the socket until the server closes the connection.

http://www.example.com/

Assignment B – HTTP Server (10)

Write a server program which partially implement version 1.1 of the HTTP. The server waits for connec-
tions from clients and transmits the requested files.

SYNOPSIS
server [-p PORT] [-i INDEX] DOC_ROOT

EXAMPLE
server -p 1280 -i index.html ˜/Documents/my_website/

The server may be called with following options:

• Option -p can be used to specify the port on which the server shall listen for incoming connections.
If this option is not used the port defaults to 8080 (port 80 requires root privileges).

• Option -i is used to specify the index filename, i.e. the file which the server shall attempt to
transmit if the request path is a directory. The default index filename is index.html.

The argument DOC_ROOT is the path of the document root directory, which contains the files that can be
requested from the server.

The server listens for connections on the specified port and upon accepting a connection from a client,
it reads the request message from the connection socket. Your server must be able to correctly identify
the request method and the path of the requested resource.

If the request header is invalid, the server sends a response header with status code 400 (Bad Request)
and closes the connection. You can consider the request header to be invalid if the first line does not
consist of 3 values separated by whitespaces: first the request method, second the path of the requested
file and third the protocol and version identifier HTTP/1.1.

The server must support the request method GET. If a different request method is sent by a client, the
server sends a response header with status code 501 (Not implemented) and closes the connection.

If the first line of the request message is valid, the server may ignore all the rest of the request message
and directly proceed to transmitting the requested file. The server prepends the document root path
DOC_ROOT to the requested path2. If the path of the requested resource ends with a /, the default index
filename (see options above) is appended to it. If the server cannot open the resulting filepath, it sends
a response header with status code 404 (Not Found) and closes the connection.

If the file was successfully opened, the server first sends a response header with status code 200 (OK)
and at minimum the fields Date, which contains the current date and time expressed in UTC (often also
referred to as GMT) and encoded as specified in RFC 8223, Content-Length, which gives the size of
the requested file in bytes, and Connection, which should contain the value close. Your server may for
instance transmit a response header as follows:

2For the purpose of this exercise you may simply concatenate the root path and the request path, for instance by using
strncat(3). Your server is not required to check whether the resulting path effectively lies within the document directory.

3RFC 822, Section 5: Date and Time Specification, https://tools.ietf.org/html/rfc822#section-5

https://tools.ietf.org/html/rfc822#section-5

HTTP/1.1 200 OK
Date: Sun, 11 Nov 18 22:55:00 GMT
Content-Length: 146
Connection: close

Once the header is transmitted, the server proceeds with the transmission of the requested file, by reading
the content of the file and writing it to the connection as is without any modifications. When the server
is done with the transmission it closes the connection and waits for the next connection.

The response header transmitted in case of an invalid request, unsupported request method or missing
file must contain the header field Connection with the value close, but all other header fields can be
omitted and no content is transmitted.

The server is not required to accept more than one connection at once. Therefore, you may simply accept
the next connection after the previous connection has been closed.

The server must handle the signals SIGINT and SIGTERM. If any of these signals is received, the server
completes an ongoing request and then terminates with exit code 0. If there are no open connections to
clients when receiving the signal, the server terminates immediately with exit code 0.

Hints (for both assignments)

• When parsing the URL in order to extract the hostname and the filepath, the functions strchr(3),
strpbrk(3) or strsep(3) will be helpful to locate the first occurence of a character in a string.

• Since HTTP is a text-based protocol, you might want to use the functions of the stream API.
This has the advantage that you can process the message headers line by line by using for instance
fgets(3) or getline(3).

• The first line of both the request and the response headers of the HTTP consists of 3 values
separated by whitespaces. You might find it helpful to separate these using strtok(3).

• You might want to use strftime(3) to format date and time as required for the response header.
Take a close look at the ‘Example’ section of the man page for advice on date formatting in
compliance with various standards.

• Be aware that the server must the read the entire request from the connection socket before writing
anything to that socket. This is also true if your server is responding with an error status.

Testing
In order to test the functionality and correct implementation of the protocol, you should first test your
programs in following ways and then execute the testcases which are specified in the subsequent sections.

Assignment A – Your client requests files from servers on the internet
Using a web browser (e.g. Firefox), download a file which is publicly available on the internet, such as for
instance http://www.example.com/ and save it locally (e.g. under ˜/Downloads/test.html). Instead
of a browser you can also use the command-line utility wget:

$ wget http://www.example.com/

Request the same file using your client and verify that the content of both files is identical using the
utility diff.

$./client http://www.example.com/ > index.html
$ diff ˜/Downloads/test.html index.html
$ mkdir dir
$./client -d dir http://www.example.com/index.html
$ diff ˜/Downloads/test.html dir/index.html

Most websites recently refuse to transmit files via HTTP and instead require HTTPS, the encrypted
version of HTTP. However, websites which still accept HTTP are for instance http://neverssl.com/
or http://www.example.com/.

Assignment B – Your server processes requests from a web browser
Start your server and request files from it using a web browser (for instance using Firefox, which is the
default browser in the lab). Again make sure that this works for various filetypes.

$ ls ./my_website
index.html
$./server ./my_website

When you type 127.0.0.1:8080 in the address bar of the browser (127.0.0.1 is the IP address for
localhost and :8080 is used to specify the port), then your browser should request and display the file
index.html. A browser will also request any requisites of a HTML document, such as images or scripts.

If you are working remotely via SSH you can also use wget instead of a browser with GUI:

$ wget -p -nd http://127.0.0.1:8080/

Assignment A and B – Your client requests files from your server
If you have implemented both, the server and the client, you may also test both programs together. Create
a directory and populate it with one or more example files. Verify that requested files are transmitted
correctly using the utility diff.

$ ls ./my_website
test.html
$./server -i test.html ./my_website &
$./client -o received.html -p 8080 http://localhost/
$ diff ./my_website/test.html received.html

Note that your implementation is not required to be able to transmit binary files (such as images). This
is instead a bonus task (see next page).

http://www.example.com/
http://neverssl.com/
http://www.example.com/

Mandatory testcases

Input shown in blue color. Output to stdout (and stderr) shown in black. (Note that in the following
output sections EXIT SUCCESS equals 0, and EXIT FAILURE equals 1. Refer to stdlib.h for further
details.) ˆC indicates CTRL+C, ˆD indicates CTRL+D. The placeholder <usage message> must be replaced
by a proper usage message (printed to stdout), <error message> must be replaced by a meaningful error
message (which is printed to stderr). When testing at the lab infrastructure, you might need to change
port 9999 to another value, if this port is already in use by another student.

A – HTTP Client

Some of these testcases use the built-in web server of PHP 4, which is very easy to use and available on
the lab infrastructure.

A-Testcase 01: usage

1 $>./client
2 <usage message>
3 $>echo $?
4 1

A-Testcase 02: invalid-port-1

1 $>./client -p abc > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 03: invalid-port-2

1 $>./client -p 80x http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 04: invalid-options-1

1 $>./client -p 80 -p 81 http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 05: invalid-options-2

1 $>./client -a http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

4PHP built-in web server: https://www.php.net/manual/en/features.commandline.webserver.php

https://www.php.net/manual/en/features.commandline.webserver.php

A-Testcase 06: simple-1

Start HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Hello world." > docroot/hello.html
3 $>php -S 0.0.0.0:9999 -t docroot
4 PHP 5.4.16 Development Server started at ...
5 Listening on http://0.0.0.0:9999
6 Document root is /home/user/docroot
7 Press Ctrl-C to quit.
8 [...] ::1:45974 [200]: /hello.html
9

10

11 ˆC

Then run your HTTP Client.
1

2

3

4

5

6

7

8 $>./client -p 9999 http://localhost/hello.html
9 Hello world.

10 $>echo $?
11 0

A-Testcase 07: save-to-file-1

Start HTTP Server first.
1

2

3 $>mkdir -p docroot
4 $>echo "Index." > docroot/index.html
5 $>php -S 0.0.0.0:9999 -t docroot
6 PHP 5.4.16 Development Server started at ...
7 Listening on http://0.0.0.0:9999
8 Document root is /home/user/docroot
9 Press Ctrl-C to quit.

10 [...] ::1:45974 [200]: /
11

12

13 ˆC

Then run your HTTP Client.
1 $>mkdir -p test1
2 $>rm -rf test1/*
3

4

5

6

7

8

9

10 $>./client -p 9999 -d test1 http://localhost/
11 $>echo $?
12 0
13 $>cat test1/index.html
14 Index.

A-Testcase 08: save-to-file-2

Start HTTP Server first.
1

2 $>mkdir -p docroot
3 $>echo "This is the content." > docroot/t
4 $>php -S 0.0.0.0:9999 -t docroot
5 PHP 5.4.16 Development Server started at ...
6 Listening on http://0.0.0.0:9999
7 Document root is /home/user/docroot
8 Press Ctrl-C to quit.
9 [...] ::1:45974 [200]: /t

10

11

12 ˆC

Then run your HTTP Client.
1 $>rm -rf f.2
2

3

4

5

6

7

8

9 $>./client -p 9999 -o f.2 http://localhost/t
10 $>echo $?
11 0
12 $>cat f.2
13 This is the content.

A-Testcase 09: cannot-write-1

Start HTTP Server first.
1

2

3 $>mkdir -p docroot
4 $>echo "This is the content." > docroot/t
5 $>php -S 0.0.0.0:9999 -t docroot
6 PHP 5.4.16 Development Server started at ...
7 Listening on http://0.0.0.0:9999
8 Document root is /home/user/docroot
9 Press Ctrl-C to quit.

10 [...] ::1:45974 [200]: /t
11

12

13 ˆC

Then run your HTTP Client.
1 $>touch f.3
2 $>chmod 000 f.3
3

4

5

6

7

8

9

10 $>./client -p 9999 -o f.3 http://localhost/t > \
/dev/null

11 <error message>
12 $>echo $?
13 1

A-Testcase 10: cannot-write-2

Start HTTP Server first.
1

2 $>mkdir -p docroot
3 $>echo "This is the content." > docroot/t
4 $>php -S 0.0.0.0:9999 -t docroot
5 PHP 5.4.16 Development Server started at ...
6 Listening on http://0.0.0.0:9999
7 Document root is /home/user/docroot
8 Press Ctrl-C to quit.
9 [...] ::1:45974 [200]: /t

10

11

12 ˆC

Then run your HTTP Client.
1 $>rm -rf test.dir
2

3

4

5

6

7

8

9 $>./client -p 9999 -d test.dir \
http://localhost/t > /dev/null

10 <error message>
11 $>echo $?
12 1

A-Testcase 11: save-to-file-3

Start HTTP Server first.
1

2

3 $>mkdir -p docroot
4 $>echo "<?php echo 2*\$_GET[\"a\"] . \"\n\"; ?>" \

> docroot/m.php
5 $>cat docroot/m.php
6 <?php echo 2*$_GET["a"] . "\n"; ?>
7 $>php -S 0.0.0.0:9999 -t docroot
8 PHP 5.4.16 Development Server started at ...
9 Listening on http://0.0.0.0:9999

10 Document root is /home/user/docroot
11 Press Ctrl-C to quit.
12 [...] ::1:45974 [200]: /m.php?a=3
13

14

15 ˆC

Then run your HTTP Client.
1 $>mkdir -p test2
2 $>rm -rf test2/*
3

4

5

6

7

8

9

10

11

12 $>./client -p 9999 -d test2 \
http://localhost/m.php?a=3

13 $>echo $?
14 0
15 $>cat test2/m.php
16 6

Note: It would be preferred if you save the file as m.php, but since this bevaiour was not specified initially
it is also ok, if you save it as m.php?a=3. In the latter case line 15 may be changed to $>cat test2/m.php*

A-Testcase 12: save-to-file-4

Start HTTP Server first.
1

2

3 $>mkdir -p docroot; rm docroot/*
4 $>echo "<?php print_r(\$_GET); ?>" > \

docroot/index.php
5 $>cat docroot/index.php
6 <?php print_r($_GET); ?>
7 $>php -S 0.0.0.0:9999 -t docroot
8 PHP 5.4.16 Development Server started at ...
9 Listening on http://0.0.0.0:9999

10 Document root is /home/user/docroot
11 Press Ctrl-C to quit.
12 [...] ::1:45974 [200]: /?welcome=here
13

14

15 ˆC

Then run your HTTP Client.
1 $>mkdir -p test3
2 $>rm -rf test3/*
3

4

5

6

7

8

9 $>./client -p 9999 -d test3 \
http://localhost?welcome=here

10 $>echo $?
11 0
12 $>cat test3/index.html
13 Array
14 (
15 [welcome] => here
16)

Note: As the request in this case must contain /?welcome=here, but there is no slash after the host in
the executed command (line 9), you may either add / in your client if needed, or change line 9 to
$>./client -p 9999 -d test3 http://localhost/?welcome=here
Same note as for A-Testcase 11: save-to-file-3 also applies here.

A-Testcase 13: invalid-protocol

1 $>./client -p 9999 foo://localhost > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 14: invalid-hostname-1

1 $>./client -p 9999 http:// > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 15: invalid-hostname-2

1 $>./client -p 9999 http://?getparam > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 16: protocol-1

Start netcat first.
1 $>nc -l -p 9999 -c "echo -e \"HTTP/1.1 200 \

OK\r\n\r\nNetcat.\""

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/
3 Netcat.
4 $>echo $?
5 0

A-Testcase 17: protocol-2

Start netcat first.
1 $>nc -l 9999 --crlf
2 GET / HTTP/1.1
3 Host: localhost
4 Connection: close
5

6 test
7

8 ˆD

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/ > /dev/null
3 Protocol error!
4 $>echo $?
5 2

A-Testcase 18: protocol-3

Start netcat first.
1 $>nc -l 9999 --crlf
2 GET / HTTP/1.1
3 Host: localhost
4 Connection: close
5

6 HTTP/1.1
7

8 ˆD

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/ > /dev/null
3 Protocol error!
4 $>echo $?
5 2

A-Testcase 19: protocol-4

Start netcat first.
1 $>nc -l 9999 --crlf
2 GET / HTTP/1.1
3 Host: localhost
4 Connection: close
5

6 HTTP/1.1 foobar
7

8 ˆD

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/ > /dev/null
3 Protocol error!
4 $>echo $?
5 2

A-Testcase 20: protocol-5

Start netcat first.
1 $>nc -l 9999 --crlf
2 GET / HTTP/1.1
3 Host: localhost
4 Connection: close
5

6 HTTP/1.1 200 OK
7

8 Hello.
9 ˆD

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/
3 Hello.
4 $>echo $?
5 0

A-Testcase 21: no-server

Do not start HTTP Server. Only run your HTTP Client.
1 $>./client -p 9999 http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 22: status-code-1

Start HTTP Server first.
1 $>mkdir -p docroot; rm docroot/*
2 $>php -S 0.0.0.0:9999 -t docroot
3 PHP 5.4.16 Development Server started at ...
4 Listening on http://0.0.0.0:9999
5 Document root is /home/user/docroot
6 Press Ctrl-C to quit.
7 [...] ::1:45974 [404]: /hello.html - No such \

file or directory
8 ˆC

Then run your HTTP Client.
1

2

3

4

5

6

7 $>./client -p 9999 http://localhost/hello.html > \
/dev/null

8 404 Not Found
9 $>echo $?

10 3

A-Testcase 23: status-code-2

Start netcat first.
1 $>nc -l -p 9999 -c "echo -e \"HTTP/1.1 418 Tea \

cold\r\n\r\nNetcat.\""

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/ > /dev/null
3 418 Tea cold
4 $>echo $?
5 3

A-Testcase 24: simple-2

Start HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Hello user." > docroot/hello.html
3 $>php -S 0.0.0.0:9999 -t docroot
4 PHP 5.4.16 Development Server started at ...
5 Listening on http://0.0.0.0:9999
6 Document root is /home/user/docroot
7 Press Ctrl-C to quit.
8 [...] ::1:45974 [200]: /hello.html
9

10

11 ˆC

Then run your HTTP Client.
1

2

3

4

5

6

7

8 $>./client -p 9999 http://127.0.0.1/hello.html
9 Hello user.

10 $>echo $?
11 0

A-Testcase 25: lines-1

Start HTTP Server first.
1 $>mkdir -p docroot
2 $>(for i in `seq 1 10`; do echo "ABC$i" | \

sha1sum | cut -d " " -f1 | tr -d \\n; printf \
-- "-%.0s" {1..8000}; echo "__end$i."; done; \
) > docroot/longlines.html

3 $>sha1sum docroot/longlines.html
4 c1d5737e1fdb7fab94c30a3ab0fe44aa775c2bb3 \

longlines.html
5 $>php -S 0.0.0.0:9999 -t docroot
6 PHP 5.4.16 Development Server started at ...
7 Listening on http://0.0.0.0:9999
8 Document root is /home/user/docroot
9 Press Ctrl-C to quit.

10 [...] ::1:45974 [200]: /longlines.html
11

12

13 ˆC

Then run your HTTP Client.

1

2

3

4

5

6

7

8

9

10 $>./client -p 9999 -o lines1.html \
http://127.0.0.1/longlines.html

11 $>echo $?
12 0
13 $>sha1sum lines1.html
14 c1d5737e1fdb7fab94c30a3ab0fe44aa775c2bb3 \

lines1.html

A-Testcase 26: lines-2

Start HTTP Server first.
1 $>mkdir -p docroot
2 $>echo -n "01234567890abcdefghijklmnopqr" > chars
3 $>echo -n "stuvwxyz01234567890abcdefghij" >> chars
4 $>echo -n "klmnopqrstuvwxyz.,:-!=?% ABCD" >> chars
5 $>echo -n "EFGHIJKLMNOPQRSTUVWXYZABCDEFG" >> chars
6 $>echo -n "HIJKLMNOPQRSTUVWXYZ" >> chars
7 $>(for i in `cat chars | sed "s/./\0\n/g"`; do \

echo $i | sha1sum | tr -d "\n"; echo -n "x"; \
cat chars | sed "s/./\0$i/g"; echo ""; done; \
) > docroot/mixed.html

8 $>sha1sum docroot/mixed.html
9 966debac96d8b1b40715666c93328bd08e6ecc5d \

mixed.html
10 $>php -S 0.0.0.0:9999 -t docroot
11 PHP 5.4.16 Development Server started at ...
12 Listening on http://0.0.0.0:9999
13 Document root is /home/user/docroot
14 Press Ctrl-C to quit.
15 [...] ::1:45974 [200]: /mixed.html
16

17

18 ˆC

Then run your HTTP Client.
1

2

3

4

5

6

7

8

9

10

11

12

13

14 $>./client -p 9999 -o lines2.html \
http://127.0.0.1/mixed.html

15 $>echo $?
16 0
17 $>sha1sum lines2.html
18 966debac96d8b1b40715666c93328bd08e6ecc5d \

lines2.html

A-Testcase 27: protocol-5

Start netcat first.
1 $>nc -l -p 9999 -c "echo \

\"0iZRefnSwfL62th125FKNVvlKuY=\" | base64 -d"

Then run your HTTP Client.
1

2 $>./client -p 9999 http://localhost/
3 Protocol error!
4 $>echo $?
5 2

A-Testcase 28: invalid-port-3

1 $>./client -p -2 http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

A-Testcase 29: invalid-port-4

1 $>./client -p 65599 http://localhost/ > /dev/null
2 <error message>
3 $>echo $?
4 1

B – HTTP Server

B-Testcase 01: usage

1 $>./server
2 <usage message>
3 $>echo $?
4 1

B-Testcase 02: invalid-port-1

1 $>./server -p abc . > /dev/null
2 <error message>
3 $>echo $?
4 1

B-Testcase 03: invalid-port-2

1 $>./server -p 80z . > /dev/null
2 <error message>
3 $>echo $?
4 1

B-Testcase 04: invalid-options-1

1 $>./server -p 80 -p 81 . > /dev/null
2 <error message>
3 $>echo $?
4 1

B-Testcase 05: invalid-options-2

1 $>./server -a . > /dev/null
2 <error message>
3 $>echo $?
4 1

B-Testcase 06: simple-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Hello world." > docroot/hello.html
3 $>./server -p 9999 docroot
4

5

6

7 ˆC
8 $>echo $?
9 0

Then run the HTTP Client.

1

2

3

4 $>wget http://localhost:9999/hello.html -O - \
2>/dev/null

5 Hello world.
6 $>echo $?
7 0

B-Testcase 07: simple-2

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Index." > docroot/index.html
3 $>./server -p 9999 docroot
4

5

6

7 ˆC
8 $>echo $?
9 0

Then run the HTTP Client.
1

2

3

4 $>wget http://localhost:9999 -O - 2>/dev/null
5 Index.
6 $>echo $?
7 0

B-Testcase 08: simple-3

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Main." > docroot/main.file
3 $>./server -p 9999 -i main.file docroot
4

5

6

7 ˆC
8 $>echo $?
9 0

Then run the HTTP Client.
1

2

3

4 $>wget http://localhost:9999 -O - 2>/dev/null
5 Main.
6 $>echo $?
7 0

B-Testcase 09: protocol-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "12345" > docroot/123
3 $>./server -p 9999 docroot
4

5

6

7 ˆC
8 $>echo $?
9 0

Then send the request.
1

2

3

4 $>echo -ne "GET /123 HTTP/1.1\r\n\r\n" | nc \
localhost 9999

5 HTTP/1.1 200 OK
6 Date: Thu, 1 Dec 20 12:00:00
7 Content-Length: 6
8 Connection: close
9

10 12345

B-Testcase 10: not-found-1

Start your HTTP Server first.
1 $>mkdir -p docroot; rm docroot/*
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>echo -ne "GET /file HTTP/1.1\r\n\r\n" | nc \
localhost 9999

4 HTTP/1.1 404 (Not Found)
5 Connection: close

B-Testcase 11: not-found-2

Start your HTTP Server first.
1 $>mkdir -p docroot; rm docroot/*
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>wget http://localhost:9999/test
4 ...
5 HTTP request sent, awaiting response... 404 (Not \

Found)
6 ...
7 $>echo $?
8 8

B-Testcase 12: invalid-protocol-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>echo -ne "TRACE /file HTTP/1.1\r\n\r\n" | nc \
localhost 9999

4 HTTP/1.1 501 (Not Implemented)
5 Connection: close

B-Testcase 13: invalid-protocol-2

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>wget http://localhost:9999/test --post-data=
4 ...
5 HTTP request sent, awaiting response... 501 (Not \

Implemented)
6 ...
7 $>echo $?
8 8

Note: This testcase was updated to match the submission server.
(Before it indicated: wget http://localhost:9999/test --post-data=test).

B-Testcase 14: invalid-protocol-3

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>echo -ne "test\r\n\r\n" | nc localhost 9999
4 HTTP/1.1 400 (Bad Request)
5 Connection: close

B-Testcase 15: invalid-protocol-4

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>echo -ne "GET path HTTP/9.9\r\n\r\n" | nc \
localhost 9999

4 HTTP/1.1 400 (Bad Request)
5 Connection: close

B-Testcase 16: invalid-protocol-5

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>echo -ne "a b c d e f\r\n\r\n" | nc localhost \
9999

4 HTTP/1.1 400 (Bad Request)
5 Connection: close

B-Testcase 17: invalid-protocol-6

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>./server -p 9999 docroot
3

4

5

6 ˆC
7 $>echo $?
8 0

Then send the request.
1

2

3 $>(echo "BkMqIN91b9DZhr5b50bfmYkfUwA=" | base64 \
-d; echo -ne "\r\n\r\n") | nc localhost 9999

4 HTTP/1.1 400 (Bad Request)
5 Connection: close

Note: This testcase was updated to match the submission server (added: echo -ne "\r\n\r\n").

B-Testcase 18: multi-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Hello world." > docroot/hello.html
3 $>./server -p 9999 docroot
4

5

6

7

8

9

10

11

12 ˆC
13 $>echo $?
14 0

Then run the HTTP Client.
1

2

3

4 $>wget http://localhost:9999/hello.html -O - \
2>/dev/null

5 Hello world.
6 $>wget http://localhost:9999/hello.html -O - \

2>/dev/null
7 Hello world.
8 $>wget http://localhost:9999/hello.html -O - \

2>/dev/null
9 Hello world.

B-Testcase 19: signal-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "12345" > docroot/123
3 $>./server -p 9999 docroot
4

5 ˆC
6

7

8

9

10

11

12

13 $>echo $?
14 0

Then send the request.
1

2

3

4 $>nc localhost 9999 --crlf
5 GET /123 HTTP/1.1
6

7 HTTP/1.1 200 OK
8 Date: Thu, 1 Dec 20 12:00:00
9 Content-Length: 6

10 Connection: close
11

12 12345

Order of commands/interaction: First start the server (line 3 left). Then start netcat (line 4 right) without
sending any data yet. Then send SIGINT (using ˆC, line 5 left). Note: The server does not terminate, as
there is still a request ongoing. Then send data (line 5 right).

B-Testcase 20: lines-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>(for i in `seq 1 10`; do echo "ABC$i" | \

sha1sum | cut -d " " -f1 | tr -d \\n; printf \
-- "-%.0s" {1..8000}; echo "__end$i."; done; \
) > docroot/longlines.html

3 $>sha1sum docroot/longlines.html
4 c1d5737e1fdb7fab94c30a3ab0fe44aa775c2bb3 \

longlines.html
5 $>./server -p 9999 docroot
6

7

8

9 ˆC

Then run HTTP Client.
1

2

3

4

5

6

7

8

9 $>wget http://localhost:9999/longlines.html -O \
lines1 2>/dev/null

10 $>echo $?
11 0
12 $>sha1sum lines1
13 c1d5737e1fdb7fab94c30a3ab0fe44aa775c2bb3 lines1

B-Testcase 21: lines-2

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo -n "01234567890abcdefghijklmnopqr" > chars
3 $>echo -n "stuvwxyz01234567890abcdefghij" >> chars
4 $>echo -n "klmnopqrstuvwxyz.,:-!=?% ABCD" >> chars
5 $>echo -n "EFGHIJKLMNOPQRSTUVWXYZABCDEFG" >> chars
6 $>echo -n "HIJKLMNOPQRSTUVWXYZ" >> chars
7 $>(for i in `cat chars | sed "s/./\0\n/g"`; do \

echo $i | sha1sum | tr -d "\n"; echo -n "x"; \
cat chars | sed "s/./\0$i/g"; echo ""; done; \
) > docroot/mixed.html

8 $>sha1sum docroot/mixed.html
9 966debac96d8b1b40715666c93328bd08e6ecc5d \

mixed.html
10 $>./server -p 9999 docroot
11

12 ˆC

Then run HTTP Client.
1

2

3

4

5

6

7

8

9

10

11

12

13

14 $>wget http://localhost:9999/mixed.html -O \
lines2 2>/dev/null

15 $>sha1sum lines2
16 966debac96d8b1b40715666c93328bd08e6ecc5d lines2

B-Testcase 22: invalid-port-3

1 $>./server -p -2 docroot > /dev/null
2 <error message>
3 $>echo $?
4 1

B-Testcase 23: invalid-port-4

1 $>./server -p 65599 docroot > /dev/null
2 <error message>
3 $>echo $?
4 1

Optional testcases

A – HTTP Client

A-Testcase 51: binary-1

Start HTTP Server first.
1 $>mkdir -p docroot
2 $>rm docroot/bin; for i in {0..255}; do printf \

"0x%02X\n" $i | xxd -r >> docroot/bin; done;
3 $>sha1sum docroot/bin
4 4916d6bdb7f78e6803698cab32d1586ea457dfc8 \

docroot/bin
5 $>php -S 0.0.0.0:9999 -t docroot
6 PHP 5.4.16 Development Server started at ...
7 Listening on http://0.0.0.0:9999
8 Document root is /home/user/docroot
9 Press Ctrl-C to quit.

10 [...] ::1:45974 [200]: /bin
11

12

13 ˆC

Then run your HTTP Client.
1

2

3

4

5

6

7

8 $>./client -p 9999 -o binout http://localhost/bin
9 $>echo $?

10 0
11 $>sha1sum binout
12 4916d6bdb7f78e6803698cab32d1586ea457dfc8 binout

B – HTTP Server

B-Testcase 51: binary-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>rm docroot/bin; for i in {0..255}; do printf \

"0x%02X\n" $i | xxd -r >> docroot/bin; done;
3 $>sha1sum docroot/bin
4 4916d6bdb7f78e6803698cab32d1586ea457dfc8 \

docroot/bin
5 $>./server -p 9999 docroot
6

7

8

9 ˆC
10 $>echo $?
11 0

Then run the HTTP Client.
1

2

3

4

5 $>wget http://localhost:9999/bin -O bincl
6 $>sha1sum bincl
7 4916d6bdb7f78e6803698cab32d1586ea457dfc8 bincl

B-Testcase 52: content-type-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "content of index.html." > \

docroot/index.html
3 $>echo "content of test.htm." > docroot/test.htm
4 $>echo "content of style.css." > docroot/style.css
5 $>echo "content of lib.js." > docroot/lib.js
6 $>echo "content of other.file." > \

docroot/other.file
7 $>./server -p 9999 docroot
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 ˆC
41 $>echo $?
42 0

Then run the HTTP Client.
1

2

3

4

5 $>wget http://localhost:9999/ -q -S -O -
6 HTTP/1.1 200 OK
7 Date: Thu, 1 Dec 20 12:00:00
8 Content-Length: 23
9 Connection: close

10 Content-Type: text/html
11 content of index.html.
12 $>wget http://localhost:9999/index.html -q -S -O -
13 HTTP/1.1 200 OK
14 Date: Thu, 1 Dec 20 12:00:00
15 Content-Length: 23
16 Connection: close
17 Content-Type: text/html
18 content of index.html.
19 $>wget http://localhost:9999/test.htm -q -S -O -
20 HTTP/1.1 200 OK
21 Date: Thu, 1 Dec 20 12:00:00
22 Content-Length: 21
23 Connection: close
24 Content-Type: text/html
25 content of test.htm.
26 $>wget http://localhost:9999/style.css -q -S -O -
27 HTTP/1.1 200 OK
28 Date: Thu, 1 Dec 20 12:00:00
29 Content-Length: 22
30 Connection: close
31 Content-Type: text/css
32 content of style.css.
33 $>wget http://localhost:9999/lib.js -q -S -O -
34 HTTP/1.1 200 OK
35 Date: Thu, 1 Dec 20 12:00:00
36 Content-Length: 19
37 Connection: close
38 Content-Type: application/javascript
39 content of lib.js.
40 $>wget http://localhost:9999/other.file -q -S -O -
41 HTTP/1.1 200 OK
42 Date: Thu, 1 Dec 20 12:00:00
43 Content-Length: 23
44 Connection: close
45 content of other.file.

Additional testcases

These testcases are not executed by the automatic submission evaluation system, but might be helpful
for manual testing.

B – HTTP Server

B-Testcase: response-detail-1

Start your HTTP Server first.
1 $>mkdir -p docroot
2 $>echo "Index." > docroot/index.html
3 $>./server -p 9999 docroot
4

5

6

7

8 ˆC
9 $>echo $?

10 0

Then send the request.
1

2

3

4 $>echo -e "GET / HTTP/1.1\r\n\r\n" | nc \
localhost 9999 | grep "HTTP/1.1" | xxd -c 10

5 0000000: 4854 5450 2f31 2e31 2032 HTTP/1.1 2
6 000000a: 3030 204f 4b0d 0a 00 OK..

Note: This testcase was updated to include the proper end for the request header (\r\n\r\n).

Bonus Points
Bonus points are only awarded if both assignments, A (the client) and B (the server), have
been implemented, are FULLY FUNCTIONAL and COMPLY WITH ALL INSTRUCTI-
ONS! When adding features for bonus tasks, check that the basic requirements are still
fulfilled, otherwise you risk loosing more points than you might gain!

• Header field Content-Type (2): Add support for the header field Content-Type to your server.
This field is used to inform the client about the MIME-type5 of the transmitted content. Your
server should recognize following file types, based on the file name extension:

File extension MIME type
.html, .htm text/html

.css text/css
.js application/javascript

2 bonus point are awarded if your server’s response header contains the field Content-Type with
the corresponding MIME type value if the requested file has any of the above extensions. If the file
extension is none of those listed in the table, the field Content-Type should not be used.

• Binary data (3):
HTTP is a text-based protocol, but it can also transmit binary data. If so far your client is reading
the message body received from the server with fgets(3) or getline(3) and your server writes the
message body with functions such as fputs(3), then replace these with functions such as fread(3)
and fwrite(3), which are able to handle text and binary content alike. You should keep line-based
functions for reading and writing the headers though.
3 bonus points are awarded if your server is able to serve and your client is able to receive binary
files, such as images.

• Compression (5): Implement compression of the transferred content in the gzip format. Make
use of the zlib compression library6 for compressing and decompressing the data. You can use it
by including the zlib.h header:
#include <zlib.h>

Also, you will have to link the zlib library by adding -lz to your linker options. Make sure to test
this in the lab in order to avoid linker warnings or errors.
5 bonus points are awarded if your server is able to compress data into the gzip format and your
client is able to decompress such data.
Your server must recognize clients which accept data encoded in gzip format (by searching for the
field Accept-Encoding in the request header and checking whether it contains the value gzip),
and respond to requests from these clients with the line
Content-Encoding: gzip

in the response header and correctly compress the content in the body into that format. Test your
server by requesting files from your server using a web browser which supports gzip, for instance
Firefox!
Your client must advertise his decompression capability with the line
Accept-Encoding: gzip

in the request header and be able to correctly decompress content sent with that encoding. Test your
client by requesting files from a web server which supports gzip, such as http://www.example.com/.

5Media type, a two-part identifier for file formats, see https://en.wikipedia.org/wiki/Media_type
6http://zlib.net/

http://www.example.com/
https://en.wikipedia.org/wiki/Media_type
http://zlib.net/

Coding Rules and Guidelines

Your score depends upon the compliance of your submission to the presented guidelines and rules.
Violations result in deductions of points. Hence, before submitting your solution, go through the following
list and check if your program complies.

Rules

Compliance with these rules is essential to get any points for your submission. A violation of any of the
following rules results in 0 points for your submission.

1. All source files of your program(s) must compile via
$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE

-D_POSIX_C_SOURCE=200809L -g -c filename.c
without errors and your program(s) must link without errors. The compilation flags must be used
in the Makefile. The feature test macros must not be bypassed (i.e., by undefining these macros or
adding some in the C source code).

2. The functionality of the program(s) must conform exactly to the assignment. The program(s) shall
operate according to the specification/assignment given the test cases in the respective assignment.
Additional white spaces or any other deviation from the specified input and output format may
lead to a failure of the respective test case.

General Guidelines

Violation of following guidelines leads to a deduction of points.

1. All source files of your program(s) must compile with
$ gcc -std=c99 -pedantic -Wall -D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE

-D_POSIX_C_SOURCE=200809L -g -c filename.c
without warnings and info messages and your program(s) must link without warnings.

2. There must be a Makefile implementing the targets: all to build the program(s) (i.e. generate
executables) from the sources (this must be the first target in the Makefile); clean to delete all
files that can be built from your sources with the Makefile.

3. All targets of your Makefile must be idempotent. I.e. execution of make clean; make clean must
yield the same result as make clean, and must not fail with an error.

4. The program shall operate according to the specification/assignment without major issues (e.g.,
segmentation fault, memory corruption).

5. Arguments have to be parsed according to UNIX conventions (we strongly encourage the use of
getopt(3)). The program has to conform to the given synopsis/usage in the assignment. If the
synopsis is violated (e.g., unspecified options or too many arguments), the program has to terminate
with the usage message containing the program name and the correct calling syntax. Argument
handling should also be implemented for programs without arguments.

6. Correct (=normal) termination, including a cleanup of resources.

7. Upon success the program has to terminate with exit code 0, in case of errors with an exit code
greater than 0. We recommend to use the macros EXIT SUCCESS and EXIT FAILURE (defined in
stdlib.h) to enable portability of the program.

8. If a function indicates an error with its return value, it should be checked in general. If the sub-
sequent code depends on the successful execution of a function (e.g. resource allocation), then the
return value must be checked.

9. Functions that do not take any parameters have to be declared with void in the signature, e.g.,
int get_random_int(void);.

10. Procedures (i.e., functions that do not return a value) have to be declared as void.

11. Error messages shall be written to stderr and should contain the program name argv[0].

12. It is forbidden to use the functions: gets, scanf, fscanf, atoi and atol to avoid crashes due to
invalid inputs.

forbidden use instead
gets fgets
scanf fgets, sscanf
fscanf fgets, sscanf
atoi strtol
atol strtol

13. Documenation is mandatory. Format the documentation in Doxygen style (see Wiki and Doxygen’s
intro).

14. Write meaningful comments. For example, meaningful comments describe the algorithm, or why a
particular solution has been chosen, if there seems to be an easier solution at a first glance. Avoid
comments that just repeat the code itself
(e.g., i = i + 1; /* i is incremented by one */).

15. The documentation of a module must include: name of the module, name and student id of the
author (@author tag), purpose of the module (@brief, @details tags) and creation date of the
module (@date tag).
Also the Makefile has to include a header, with author and program name at least.

16. Each function shall be documented either before the declaration or the implementation. It should
include purpose (@brief, @details tags), description of parameters and return value (@param,
@return tags) and description of global variables the function uses (@details tag).
You should also document static functions (see EXTRACT STATIC in the file Doxyfile). Document
visible/exported functions in the header file and local (static) functions in the C file. Document
variables, constants and types (especially structs) too.

17. Documentation, names of variables and constants shall be in English.

18. Internal functions shall be marked with the static qualifier and are not allowed to be exported
(e.g., in a header file). Only functions that are used by other modules shall be declared in the
header file.

19. All exercises shall be solved with functions of the C standard library. If a required function is not
available in the standard library, you can use other (external) functions too. Avoid reinventing the
wheel (e.g., re-implementation of strcmp).

20. Name of constants shall be written in upper case, names of variables in lower case (maybe with fist
letter capital).

21. Use meaningful variable and constant names (e.g., also semaphores and shared memories).

22. Avoid using global variables as far as possible.

https://github.com/osue-tuwien/osue-tuwien.github.com/wiki/Doxygen-Primer
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

23. All boundaries shall be defined as constants (macros). Avoid arbitrary boundaries. If boundaries
are necessary, treat its crossing.

24. Avoid side effects with && and ||, e.g., write if(b != 0) c = a/b; instead of if(b != 0 && c = a/b).

25. Each switch block must contain a default case. If the case is not reachable, write assert(0) to
this case (defensive programming).

26. Logical values shall be treated with logical operators, numerical values with arithmetic operators
(e.g., test 2 strings for equality by strcmp(...) == 0 instead of !strcmp(...)).

27. Indent your source code consistently (there are tools for that purpose, e.g., indent).

28. Avoid tricky arithmetic statements. Programs are written once, but read more times. Your program
is not better if it is shorter!

29. For all I/O operations (read/write from/to stdin, stdout, files, sockets, pipes, etc.) use either
standard I/O functions (fdopen(3), fopen(3), fgets(3), etc.) or POSIX functions (open(2),
read(2), write(2), etc.). Remember, standard I/O functions are buffered. Mixing standard I/O
functions and POSIX functions to access a common file descriptor can lead to undefined behaviour
and is therefore forbidden.

30. If asked in the assignment, you must implement signal handling (SIGINT, SIGTERM). You must only
use async-signal-safe functions in your signal handlers.

31. Close files, free dynamically allocated memory, and remove resources after usage.

32. Don’t waste resources due to inconvenient programming. Header files shall not include implemen-
tation parts (exception: macros).

33. To comply with the given testcases, the program output must exactly match the given specification.
Therefore you are only allowed to to print any debug information if the compile flag -DDEBUG is
set.

Exercise 3 Guidelines

Violation of following guidelines leads to a deduction of points in exercise 3.

1. It is forbidden to use the deprecated functions gethostbyname, gethostbyaddr, gethostbyname2,
gethostbyname r, gethostbyname2 r or any other function of that family documented on the man
page gethostbyname(3). Use getaddrinfo(3) instead.

