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Example 11
A graph H = (V ′, E′) is an induced subgraph of G = (V,E) if V ′ ⊆ V and any edge
in G connecting two vertices a, b in V ′ is in E′.

Let G be a connected simple graph that does not have path or cycle with four vertices
as an induced subgraph. Show that G has a vertex adjacent to all other vertices.
(Hint: Consider a vertex of maximum degree u and assume u is not connected with
some vertex w. Consider the shortest path between u and w and show that there
exists a vertex in this path with a degree larger than that of u.)

Solution: In case of the complete graphs G = K1, G = K2, G = K3 all vertices are
connected to all other vertices. Consequently, any vertex can be the required vertex.
In case of the path graph on 3 vertices, the middle vertex is the required vertex.

In any other case there are at least 4 vertices u, v, w, x ∈ V (G). Any graph has at
least one vertex of maximum degree ∆(G) by definition. Let u be such a vertex and
w be an arbitrary vertex.

Proof of by contradiction. Any two vertices of any graph are either adjacent or not
adjacent. Assume u and w are not adjacent: (u,w) /∈ E(G). As G is connected,
there is some (shortest) path p between u and w. There cannot be less than 3 vertices
(including u,w) on this path, as (u,w) /∈ E(G). There cannot be more than 3 vertices
on this (or any other) path, as G does not have a path with 4 vertices as induced
subgraph. Hence, there is exactly one vertex v between u and w on p. Any other
node y ∈ V (G) must also be connected in some way to this path, as G is connected.
y cannot be adjacent to u because that would create the path (y, u, v, w) of length
4 and it cannot be adjacent to w because that would create the path (u, v, w, y) of
length 4. We still have to connect x to something. The only node that we can still
make x adjacent to is v. Then v has strictly more neighbors than u: deg(v) > deg(u).
However, this contradicts the assumption that u is a vertex of maximum degree ∆(G).
As a consequence, u and w must be adjacent. w was chosen arbitrarily. Therefore, u
is adjacent to all other vertices. This concludes the proof.
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Example 12
Let G be a connected graph with an even number of vertices. Show that G has a
spanning (but not necessarily connected) subgraph with all vertices of odd degree.
Show that this is not necessarily the case for arbitrary graphs.

Solution: We call a parity designation σ of G a function that assigns to each vertex v
of G a desired parity (odd or even) for its degree, with the only restriction that there
is an even number of vertices with odd desired parity.

We prove that given a parity designation σ of G there is a spanning subgraph of G
that satisfies that parity designation. We prove it by induction and via the use of
spanning substrees.

Base case: If G has 2 vertices and is connected then G is K2 and there are only two
possible parity designations (even, even and odd, odd). These are satisfied by the
subgraph with no edges and by K2 itself.

Inductive step. G has n + 1 vertices. Since G is connected it has a spanning subtree
T . This tree has a leaf v. Notice that when we romve v from T the remaining graph
is still connected, therefore when we remove v from G we obtain a connected graph G′

with n vertices.

Figure 1: G of example 12
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w

Figure 2: T of example 12

Figure 3: G′ of example 12

Case 1 The parity designation ϕ requires that v is an even vertex. Consider ϕ re-
stricted to G′. This is a parity designation (because v is supposed to be even, so
there is still an even number of vertices in G′ that should be odd (by handshaking
lemma)). By induction hypothesis, there is a spanning subgraph H ′ of G′ that
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Figure 4: H ′ of example 12

satisfies ϕ in G′. Notice the edge of H ′ also satisfy ϕ in G′ since they leave v
with degree 0 which is even as desired.

Case 2 The parity designation ϕ requires that v is an odd vertex. In this case let
w be the only neigbour of v in the spanning subtree T . We define ϕ′, which is
going to be a parity designation for G′. We let ϕ′ be equal to ϕ for every value
except w. In w, ϕ′ is going to be the opposite of ϕ so if it was odd we change it
to even and if it was even we change it to odd. By induction there is a subgraph
H ′ of G′ that satisifies ϕ′. If we take the edges of H ′ together with wv we obtain
a spanning subgraph of G that satisfies ϕ. It is clear that it satisfies ϕ for all
values other than u and v since ϕ′=ϕ in these values. In u it also holds because
without edge uv the degree was the opposite of what ϕ indicated, however after
adding edge uv it is the same as ϕ. w also has the desired parity since the order
of w is 1, which is odd.

Now let ϕ be the parity designation that asks for every vertex to be odd. (Notice this
is a parity designation since the order of G is even). This concludes the firts part.

The graph G = ({a, b}, {}) is an example that shows that it does not hold for arbitrary
graphs.

Example 13
Let T be a tree and let nd be the number of vertices of degree d in T . Show that the
number of leaves of T equals

2 +
∑
d≥3

(d− 2)nd

Solution: By definition, leaves are vertices degree d = 1. Therefore, the number of
leaves is n1.

It can be seen that the number of vertices of a graph is the number of leaves n1 + the
remaining nodes (internal nodes).

|V | = n1 +
∑
d≥2

nd (1)

From the handshake lemma
∑

v deg v = 2|E|, the tree property |V | = |E| + 1 and
explicitly setting two different notations for the same idea equal

∑
v deg v =

∑
d≥1(d ·
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nd) we get ∑
v

deg v =
∑
d≥1

(d · nd) = 2|E| = 2(|V | − 1) = 2|V | − 2

From which follows
− 2 =

∑
d≥1

(d · nd)− 2|V | (2)

We use equation 1 to replace |V | in the right side of equation 2∑
d≥1

(d · nd)− 2|V | =
∑
d≥1

(d · nd)− 2
∑
d≥1

nd (3)

Then we extract some elements out of each of the two sums∑
d≥1

(d · nd)− 2
∑
d≥1

nd

= 1n1 + 2n2 +
∑
d≥3

(d · nd)− 2

n1 + n2 +
∑
d≥3

nd


= 1n1 + 2n2 +

∑
d≥3

(d · nd)− 2n1 − 2n2 − 2
∑
d≥3

nd

= −n1 +
∑
d≥3

(d · nd)− 2
∑
d≥3

nd

And put them together

−n1 +
∑
d≥3

(d · nd)− 2
∑
d≥3

nd = −n1 +
∑
d≥3

(d · nd − 2nd) = −n1 +
∑
d≥3

(d− 2)nd

Note that everything was equal since equation 3, giving
∑

d≥1(d · nd)− 2|V | = −n1 +∑
d≥3(d−2)nd. We now substitute this result in equation 2 and get the final implication

−2 = −n1 +
∑
d≥3

(d− 2)nd =⇒ n1 = 2 +
∑
d≥3

(d− 2)nd

By our initial definition of n1, this concludes the proof.

Example 14
Show that the number of spanning trees of the complete graph on n vertices Kn

is nn−2, using the matrix tree theorem. Hint: To compute the determinant of the
resulting matrix, add all rows except the first one to the first row. Then add the first
row of this new matrix to the other rows.
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Solution: The matrix tree theorem says that for undirected connected graph, the
number of spanning trees is

det(D(G)−A(G))′ (4)

where ’ means deleting one row and one column of the matrix. For complete graphs
the matrices A(G), D(G) all have the same form, with n rows and n columns.

D =


0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1

. . . . . . . . . . . . . . .
1 1 1 . . . 0

A =


n− 1 0 0 . . . 0

0 n− 1 0 . . . 0
0 0 n− 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . n− 1

 (5)

And therefore also their difference always looks equal. Here the matrix for D has n
rows and n columns.

D =


n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . n− 1

 (6)

and the matrix for D′ looks equal but with n−1 rows and n−1 columns. For example,
for n = 4 we get

D =


3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 D′ =

 3 −1 −1
−1 3 −1
−1 −1 3

 (7)

If we now follow the hint about adding rows on the matrices D′ we get the following
new matrices D′′

D′′ =


1 1 1 . . . 1
0 n 0 . . . 0
0 0 n . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . n

 (8)

D′′ =

 1 1 1
0 4 0
0 0 4

 (9)

We can observe that there is exactly n− 2 times n in the main diagonal.

Theorem Suppose B = [bij ] is an n × n matrix and choose any fixed
i, j ∈ {1, 2, . . . , n}. Suppose i′ is a fixed choice of i ∈ {1, 2, . . . , n}. Then
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its determinant |B| = det(B) is given by:

det(B) = [(−1)i
′+1bi′1 det(Mi′1)] + [(−1)i

′+2bi′2 det(Mi′2)] + . . .

+ [(−1)i
′+nb1n det(Mi′n)] (10)

where det(Mij) is the minor of element Bij , i.e. the determinant of the
submatrix Mij formed by removing the ith row and the jth column of
matrix B.

For our previous example equation 9 we would calculate the following Laplace expan-
sion:

|D′′| = 1 ·
∣∣∣∣4 0
0 4

∣∣∣∣− 1 ·
∣∣∣∣0 0
0 4

∣∣∣∣+ 1 ·
∣∣∣∣0 4
0 0

∣∣∣∣
= 1 · (4 · 4− 0 · 0)− 1 · (0 · 4 + 0 · 0) + 1 · (0 · 0 + 0 · 4) = 16

This example makes visible that everything except the main diagonal becomes irrele-
vant because of 0 as factor in the multiplications.

Together with our observation from equation 8 the Laplace expansion (equation 10)
shows that the number of spanning trees of Kn is nn−2. Note that this is a special
case of Kirchhoff’s matrix tree theorem called Cayley’s formula.

Example 16
Show that all bases of a matroid M = (E,S) have the same cardinality.

Solution:

Definition 1 An independence system M = (E,S) is called matroid if the
existence of A,B ∈ S such that |B| = |A| + 1 implies that the so called
exchange property holds

∃v ∈ B \A with A ∪ {v} ∈ S (11)

Definition 2 The maximal independent sets of a matroid are called bases.

Proof by contradiction:
Let A,B be arbitrary bases of a matroid. Then by definition 2 A,B are maximal
independent sets. Assume wlog that |A| < |B|. Then, by definition 1, there exists an
element v ∈ B \ A with A ∪ {v} ∈ S. This means A ∪ {v} is an independent set. As
we added v, A is not maximal. Contradiction. Therefore, any two bases of a matroid
have equal cardinality (rank).
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Example 17
Let G = (V,E) be an undirected graph. Set Mk(G) = (E,S) where

S = {A ⊆ E : A = F ∪M,F acyclic and |M | ≤ k}

Show that Mk(G) is a matroid.

Solution:

Example: E = {ab, ad, bc, cd}, F = {ab, bc}, M0 = {}, M1 = {cd}, M2 = {ad, cd}

G = A2

d c

ba
, A0 = F ∪M0

d c

ba
, A1 = F ∪M1

d c

ba

We have two show three properties (the first two make it an independence system):

1. ∅ 6= S

2. If A ∈ S and B ⊆ A then B ∈ S. This means it is closed under inclusion.

3. The existence of A,B ∈ S such that |B| = |A| + 1 implies that the so called
exchange property holds

∃v ∈ B \A with A ∪ {v} ∈ S

We now show those three properties.

1. For any undirected graph it is possible to let M = F = A = ∅. Then the empty
set is an element in S, that means {} ∈ S or {{}} ⊆ S. Hence, S 6= ∅

2. Assume B = F ∪M ∈ S and A ⊆ B. First of all, we proof the part before the
colon :. As B ∈ S we get by the task description B ⊆ E. We assumed A ⊆ B
and by transitivity of ⊆ we get A ⊆ E.

By substitution A ⊆ (F ∪ M). It is a property of the subset operation that
A ⊆ (F ∪ M) ⇔ A ∩ (F ∪ M) = A. Since intersection distributes over union
A∩ (F ∪M) = (A∩F )∪ (A∩M) we get (A∩F )∪ (A∩M) = A. This is exactly
the required form for the equation in the task description.

F is acyclic by assumption and clearly |A∩F | ≤ |F |. However, a graph can only
get cyclic by adding edges. Therefore, A∩F must be acyclic aswell. Furthermore,
|M | ≤ k by assumption and clearly |A ∩M | ≤ |M |, and by transitivity of ≤ we
get |A ∩M | ≤ k.

This proves that Mk(G) is closed under inclusion.

3. Assume there exist A = FA ∪MA, B = FB ∪MB ∈ S such that |B| = |A| + 1.
By the equation in the task description there are then two possible cases:
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a) |MA| < |MB |. Then we can take an arbitrary element v ∈ B \ A and let
M ′

A = MA ∪ {v}. Additionally, let A′ = FA ∪ M ′
A. As |M ′

A| − |MA| = 1
we get |M ′

A| ≤ |MB | ≤ k. Furthermore, FA did not change and remains
acyclic. As a consequence, A′ ∈ S.

b) |MA| ≥ |MB |. By assumption we have |FA| + |MA| = |FB | + |MB | + 1.
By the equation that defines this case and addition & substraction we get
|FB | − |FA| − 1 = |MA| − |MB | ≥ 0. Therefore, |FB | − |FA| ≥ 1.

A forest is an undirected graph without cycles. Consequently, Fa, Fb are
forests. We know that in a forest with n vertices and m edges the number
of connected components is n −m. Therefore, the number of components
of FA is CA = |V | − |FA| and the number of components of FB is CB =
|V | − |FB |. Hence, we can first see CA + |FA| = CB + |FB | and then
CA −CB = |FB | − |FA| ≥ 1 that FA has more connected components than
FB .

Therefore, there is a connected component C in FB with vertices of at
least two connected components of FA. That means that there is an edge
e ∈ C that connects two distinct connected components of FA. Then F ′

A =
FA∪{e} is still a forest, or rather acyclic. Furthermore, MA did not change
and its cardinality remains equal. As a consequence, A′ = F ′

A ∪MA ∈ S.

In either case, we have shown that ∃v ∈ B \A with A∪{v} ∈ S. This concludes
the proof of the exchange property.

As all properties are fulfilled, we have proven that Mk(G) is a matroid.

Example 19
Let J be the set of jobs {0, 1, 2, 3, 4} and W be the set of workers {04, 0, 0123, 12}.
Suppose that a job can be done if its number appears in the name of the worker.

List all maximal sets of jobs that can be done simultaneously, i.e., the bases of the
matroid considered in the lecture. Then use the greedy algorithm to find an optimal
job assignment, where the priority of a job is given by its number.

Solution: There are 4 workers so at most 4 parallel jobs are possible. This means
sets of jobs are maximal if they are of cardinality 4. There are

(
5
4

)
= 5 such possible

assignments. 3 assignments are valid assignments (showing workers):

{0(0), 1(12), 2(0123), 4(04)}, {0(0), 1(12), 3(0123), 4(04)}, {0(0), 2(12), 3(0123), 4(04)}

In both invalid assignments {0, 1, 2, 3}, {1, 2, 3, 4}, it is necessary, that 3 is done by
0123, but then 12 would have to do 1 and 2 simultaneously.

With input set E, independence system S, weight function w and output element F ,
applying GREEDY (E,S,w, F ):
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a) Order the elements of E according to their weight: (e1 = 4, e2 = 3, e3 = 2, e4 =
1, e5 = 0)

b) F := ∅

c) f o r k=1 to m do
i f F ∪ {ek} ∈ S then F := F ∪ {ek}

end

1. F = {4}

2. F = {4, 3}

3. F = {4, 3, 2}

4. F = {4, 3, 2} e4 = 1 cannot be done simultaneously with 2

5. F = {4, 3, 2, 0}
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