
Test Design Techniques

183.290 Software Testing

INSO - Industrial Software

Institut für Information Systems Engineering | Fakultät für Informatik | Technische Universität Wien

WS 2020

Markus Zoffi

peso@inso.tuwien.ac.at

https://peso.inso.tuwien.ac.at

Software Testing 2

Content

Test Design Techniques I

White Box – Methods 2

Black Box – Methods 1

Experience Based Testing 3

Software Testing

Test Design Techniques

• The purpose of test techniques is to help in identifying

test conditions, test cases, and test data

• Some techniques are more applicable to certain

situations and test levels - others are applicable to all test

levels

• When creating test cases in general a combination of test

techniques is used to achieve the best results

• The choice of test techniques depends on:

• Complexity of the System under Test (SUT)

• Time and budget

• Customer or contractual requirements

• Risk levels / Types

• Available documentation

• Tester experience, knowledge and skills, …
3

Software Testing

ISTQB Fundamental Test Process

4

Test Design is …

• Designing and prioritizing high level

test cases

• Identifying necessary test data to

support the definition of test cases

… using Test Design Techniques

Software Testing

Quality Assurance Methods

• Static Methods

• Identifies errors while the SUT

is NOT executed

• Dynamic Methods

• Test during execution of the SUT

5

Coverage methods
• statement
• branch
• decision
• condition

Experience based testing

Equivalence partitioning
Boundary value analysis
Decision tables
State-based testing
Use case based

w
h

it
e

 b
o

x

b
la

ck
 b

o
x

Reviews
data analysis
…

180.764 Software Qualitätssicherung

not part of this lecture, but part of

ISTQB Foundation Level

Software Testing

Black Box Tests
• Based on specification

• No knowledge on internal

structure available

• Data driven

• Coverage of specification can

be determined

White Box Tests
• Based on internal structure

(source code, modules, …)

• Knowledge on internal

structure required

• Logic driven

• Coverage can be measured

(statement, branch, path,

condition)

6

Testing Techniques

Software Testing

Testing Techniques

Experience based test design techniques
• Derive test cases from knowledge and experience

• Usage of knowledge and experience about the test objects and test

environment

• This knowledge and experience includes

• expected use of the software

• defects

• distribution of those defects

• Can be combined with black- and white box tests

7

Software Testing 8

Content

Test Design Techniques I

White Box – Methods 2

Black Box – Methods 1

Experience Based Testing 3

Equivalence Partitioning

Boundary Value Analysis

Decision Table Testing

State Transition Testing

Use Case Testing

Software Testing

Black Box Tests

• Based on Specification

• No knowledge on internal structure available

• Data driven

• Variation of input parameters

• Comparing output to expecting results

• Black Box testing methods

• Equivalence partitioning

• Boundary value analysis

• Decision tables

• State based testing

• Use case Testing

9

Software Testing

Equivalence Partitioning

• Dividing possible input values into partitions

(equivalence classes)

• All the members of a given partition lead to the same

expected outcome

• Equivalence partitions for both valid and invalid values

• Each value must belong to one and only one equivalence

partition

• Sufficient to select one representative value per partition

• Usage in combination with boundary value analysis

10

Software Testing

Example: Car Insurance

• The price of a car insurance is calculated by the age of the

driver and the car’s HP amount

• Drivers up to the age of 30 receive a 10% mark up

• An additional 10% mark up is added for vehicles over 150 HP

• Drivers have to be at least 18 years old to conclude the insurance

 Equivalence Partitioning Example

11

Software Testing

Example: Car Insurance
• Class 1: Drivers Age

•A1: Age 0 - 17

•A2: Age 18 - 30

•A3: Age 30+

• Class 2: HP

•B1: HP <= 150

•B2: HP >150

• Expected Result

•Possible Testcases

•T1: Age 18(A2), HP 149(B1) – expected mark up: 10%

•T2: Age 30(A3), HP 149(B1) – expected mark up : 10%

•T3: Age 31(A3), HP 150(B2) – expected mark up : 0%

•T4: Age 17(A1), HP 149(B1) – expected discount: none / invalid

•…

 Equivalence Partitioning Example

12

Software Testing

Boundary Value Analysis

• Extension of equivalence partitioning

• The minimum and maximum values of a partition are its

boundary values

• Boundary Values: [17] [18, 30] [31]

Two (or more) Value Boundary Analysis: [16, 17] [18, 30] [31, 32]

• Behavior at the boundaries of equivalence partitions is more

likely to be incorrect than behavior within the partitions

 14

Software Testing

Decision Testing

• Decision Testing

• Good way to record complex business rules

• Dependencies between input values are not considered in

boundary value analysis or equivalence classes

• Complete testing is not possible

decision tables should help to reduce the amount of all possible

combinations to a subset of combinations

• Cause Effect Diagram

• A graphical representation used to display interrelationships of

possible root causes of a problem

• Decision Table

• A table used to show sets of conditions (often inputs) and the

actions (often outputs) resulting from them

 15

Software Testing

Decision Making – Cause Effect Diagram

• Cause – effect diagram

• Elements of a cause effect diagram

• identity

• If cause A then effect (E)

• negation

• If not cause A then effect

• or

• If cause A or cause B then effect

• and

• If cause A and cause B then effect

16

A E

A E ~

A

E

B

V

A

E

B

^

Software Testing

Decision Making – Cause Effect Diagram

17

Ticket lost

Security Code valid

No entry

Allow entry

Call Security

ᴧ ~

~

~

People get access to a conference if they have a ticket with

a valid security code. If the security code is invalid the event

security has to be called. If someone has no ticket, no entry

is allowed

ᴧ

Software Testing

Decision Table

18

1 2 3

Ticket „lost“ N N Y

Security code valid Y N -

Allow Entry Y

Security Y

No Entry Y

Software Testing 19

Exercise: Decision Table

• Book publisher offers the following discount :

• Customer „Bookstore“: If ordering 6 or more books, grant 25%

discount. Otherwise no discount.

• Customer „Library“: Discount with order size

• 6-19  5%

• 20-49  10%

• 50+  15%

• Define the decision table

• Reduce the decision table, if possible

Software Testing 20

Exercise: Decision Table

 test case 1 2 3 4 5 6

Conditions Customer Type Bookstore Bookstore Library Library Library Library

Order 5 6 5 19 49 51

Actions Discount 0% 25% 0% 5% 10% 15%

 test case 1 2 3 4 5 6

Conditions Customer Type Bookstore Bookstore Library Library Library Library

 Order >5 N Y N Y Y Y

 Order >= 20 N N Y Y

 Order >= 50 N N N Y

Actions No Discount Y Y

 5% Discount Y

 10% Discount Y

 15% Discount Y

 25% Discount Y

Software Testing 21

Exercise: Decision Table

Which test cases are reducible?

Test case 1 and 3 have equal actions  reducible

It does not matter if the the customer is a bookstore or a
library when ordering less than 5 books!

 tetst case 1 2 3 4 5 6

Conditions Bookstore Y Y N N N N

 Order > 5 N Y

 Library N N Y Y Y Y

 Order >5 N Y N N

 Order >= 20 N N Y N

 Order >= 50 N N N Y

Actions No Discount Y Y

 5% Discount Y

 10% Discount Y

 15% Discount Y

 25% Discount Y

Software Testing 22

State Transition Testing

• Representation of a system’s behavior as states

• Often modeled as UML state transition diagram

• Usually shows only valid transitions

• Used for:

• Menu-based Applications

• Process flows (e.g. BPMN)

• Different levels of tests

• 0-Switch-Coverage
• From one state to another state

• 1-Switch-Coverage
• From one state to another with an intermediate state

(the intermediate is the one that is counted)

Software Testing

State Transition Testing

23

BPMN Diagram

State Transition Diagram

Software Testing

State Transition Testing

0-Switch

24

 T1 T2 T3 T4 T5 T6

Start state S1 S1 S2 S3 S3 S4

event Change change display accept change display change accept

impact Change Time Display date display time display time change date display date

end state S2 S3 S1 S1 S4 S3

Software Testing

State Transition Testing

1-Switch

25

Testcase start state switching state endstate

A S1 S2 S1

B S1 S3 S1

C S1 S3 S4

D S2 S1 S2

E S2 S1 S3

F S3 S1 S3

G S3 S1 S2

H S3 S4 S3

I S4 S3 S1

J S4 S3 S4

Software Testing

Use Case Testing

Derive Test Cases from a UML – Use Case Diagram

• Every use case describes a task, which interacts with the system

• Use cases includes:

• Preconditions

• Expected results

• Postconditions

• Every use case can be

transformed to a test case

• Tests are designed to

exercise the defined behaviors

• Coverage

UC tested / total number of UC

26

Bank customer
bank machine

withdraw

check balance

deposit

multiple actions

Software Testing

• Combinatorial Testing Techniques

• Graphical visualization of combinations which should be

tested

• Used when there are more combinations than are

feasible to test in the time allowed

• Identifies a suitable subset of combinations to achieve a

predetermined level of coverage

27

Classification Tree Method

Classification

Class Class Class

Software Testing

CTM – Class Coverage

• Full combination (*)

• Every class is combined with all classes from other

classifications

• Minimal combination (+)

• Every class is used at least once

• Pairwise combination

• Two classifications are fully combined. Further classes are

combined minimally.

• n-wise combination

• Same as pairwise but full combination with n classifications

28

Software Testing

Classification Tree Method – Example

How many combinations with full combination?

 3 x 4 x 3 = 36 test cases

Pairwise with flight distance and flight class

and minimal passenger group?

 3 x 4 = 12 minimal combined with passenger group

  12 test cases

29

Software Testing

Classification Tree Method – Example

Pairwise flight distance with flight class

and minimal passenger group?

30

Every age from 18 to 60 is

a seperate class

 43 classes

3 x 4 = 12 minimal combined with 43

  43 test cases necessary

Software Testing

Classification Tree Method – Example

31

3-wise combination:

18 middle Business adult
19 middle Economy baby
20 middle Economy child
21 middle Economy adult
22 middle Suite Class baby
23 middle Suite Class child
24 middle Suite Class adult
25 long First Class baby
26 long First Class child
27 long First Class adult
28 long Business baby
29 long Business child
30 long Business adult
31 long Economy baby
32 long Economy child
33 long Economy adult
34 long Suite Class baby
35 long Suite Class child
36 long Suite Class adult

 Distance Class Passanger Group
1 short First Class baby
2 short First Class child
3 short First Class adult
4 short Business baby
5 short Business child
6 short Business adult
7 short Economy baby
8 short Economy child
9 short Economy adult

10 short Suite Class baby
11 short Suite Class child
12 short Suite Class adult
13 middle First Class baby
14 middle First Class child
15 middle First Class adult
16 middle Business baby
17 middle Business child

Software Testing

Classification Tree Method – Example

• Constraint

 First and Suite Class - only available at long haul flights

• Eliminate non-valid combinations

 2 Flight Classes

x 2 Flight Distances

x 3 Passenger Groups

 = 12 invalid combinations

• 36 – 12 = 24 valid test cases

32

 Distance Class Passenger Group
1 short Business baby
2 short Business child
3 short Business adult
4 short Economy baby
5 short Economy child
6 short Economy adult
7 middle Business baby
8 middle Business child
9 middle Business adult

10 middle Economy baby
11 middle Economy child
12 middle Economy adult
13 long First Class baby
14 long First Class child
15 long First Class adult
16 long Business baby
17 long Business child
18 long Business adult
19 long Economy baby
20 long Economy child
21 long Economy adult
22 long Suite Class baby
23 long Suite Class child
24 long Suite Class adult

Software Testing

• Usage mostly in automated tests

• It is not guaranteed that maximum combination brings full

path coverage

• In some cases it is too complicated to generate a

classification tree (and the respective classes)

• Tools usually are used to find the minimum set of

combinations

33

Classification Tree Method – Example

Software Testing 34

Content

Test Design Techniques I

White Box – Methods 2

Black Box – Methods 1

Experience Based Testing 3

Coverage Methods

Software Testing

White Box Tests

• Based on internal structure (Sourcecode, modules, …)

• Knowledge on internal structure required

• Coverage can be measured as percentage

• Applicable for all test levels – mostly used at component

test level

• White box testing methods

• Coverage based testing methods

• Statement Coverage (C0)

• Branch Coverage (C1)

• Path Coverage (C2)

• Condition Coverage (C3)

35

Software Testing

Coverage Based Testing Methods

• Based on control-flow diagram

36

Software Testing

Statement Coverage

• Goal: every statement has to be executed at least once

• Complete statement coverage is achieved, when every

statement was executed at least once

• Used to identify „dead code“

• Statement that is never reached

• Very weak criterion for reliable test execution

37

Software Testing

Statement Coverage

• Example

• Statement Coverage

• Each statement should be executed at

least once

• 1 test case

38

Software Testing

Branch Coverage

• Includes complete statement coverage

• Goal: every edge has to be executed at least once

• Identifies non executable branches

• Supports optimization of frequent branches

• Every condition must evaluate to true and false

• Disadvantages

• Inadequate method for loops

• Complex logic in condition statements is not considered

39

Software Testing

Branch Coverage

• Example

• Branch Coverage

• Each edge should be executed at least once

• 2 test cases

40

Software Testing

Path Coverage

• Goal: every path has to executed at least once

• Not feasible for complex modules

• Infinite number of possible paths

• Multiple possible paths for loops

41

Software Testing

Path Coverage

• Example

• Path Coverage

• Each path should be executed at least once

• 4 test cases

Software Testing

Loop Coverage

 Many loops have entry and/or exit criteria

 Test cases should cover

No execution of the loop

One execution of the loop

More than one execution of the loop

43

Software Testing

Condition Coverage

• Validation of aggregated conditions

• Goal: Every single condition is required to be executed as

true and false

• Condition Coverage

• Every condition has to be true and false once

• Multiple Condition Coverage

• Also combinations of conditions will be covered

• Condition Determination Coverage

• Combinations will be reduced. Conditions which do not influence

the result of a combination will be deleted

44

Software Testing

Condition Coverage

• Condition: (((a == 0) || (b < 5)) && ((x < 6) || (y == 0)))

• Or in general: ((A || B) && (C || D))

• If a, b, x and y are self-contained – A, B, C and D can

independently become true and false

• Example

• Condition Coverage

• TC1: A = false, B = false, C = false, D = false

• TC2: A = true, B = true, C = true, D = true

45

Software Testing

Condition Coverage

• Condition: (((a == 0) || (b < 5)) && ((x < 6) || (y == 0)))

• Or in general: ((A || B) && (C || D))

• If a, b, x and y are self-contained – A, B, C and D can

independently become true and false

• Example

• Multiple Condition Coverage

• 16 test cases

• 16 combinations (24)

46

Software Testing

Condition Coverage

• Example

• Condition Coverage

• Every condition has to be true and false once

• 2 test cases

Software Testing

Condition Coverage

• Example

• Multiple Condition Coverage

• Combinations of conditions

• 4 test cases

Software Testing

Coverage Based Testing Methods

• How much coverage is sufficent?

80 %

82 %

82,3 %

• Question is about Quality

• Measurements are quantitative

49

Software Testing 50

Content

Test Design Techniques I

White Box – Methods 2

Black Box – Methods 1

Experience Based Testing 3

Software Testing

Experience Based Testing

Also known as Explorative Testing

usually on top of other test techniques

• Test cases are derived from the testers intuition and their

experience

• Where might be a defect

• Where were defects in past (or similar projects)

• Which components were created with less quality assurance

• …

• Experience based tests needs to be documented

51

Software Testing

Experience Based Testing

52

Software Testing

References

• T. Grechenig et al; Softwaretechnik Mit Fallbeispielen aus realen

Entwicklungsprojekten, 2010

• ISTQB Foundation Level Syllabus

• A. Spillner and T. Linz; Basiswissen Softwaretest. 5. Aufl. dpunkt Verlag,

2012.

• D. Graham et al; Foundations of Software Testing: ISTQB Certification.

Cengage Learning EMEA, 2008.

• IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software

Engineering Terminology IEEE, 1990.

• A. Spillner et al; Praxiswissen Softwaretest – Testmanagement: Aus- und

Weiterbildung zum Certified Tester, 2014

• House of Test – Ilari Henrik Aegerter

53

