
Test Automation

183.290 Software Testing

INSO - Industrial Software
Institut für Information Systems Engineering | Fakultät für Informatik | Technische Universität Wien

WS 2020

Christina Zoffi

peso@inso.tuwien.ac.at

https://peso.inso.tuwien.ac.at

Software Testing 2

Content

Test AutomationA

Automated Test ExecutionB

Automated UI TestsC

Behaviour Driven Development (BDD)D

Live Demo – Lab/Group Project SampleE

Excursion: Page Object MaintenanceF

Software Testing

Test Automation

3

Software Testing

Test Automation

• Definition

• The use of software to perform or support test activities, e.g.,

test management, test design, test execution and results

checking.

• Aims to:

• Reduce recurring and repetitive manual tasks (regression tests)

• Repeatedly execute a high number of tests within reasonable

time/effort

• Automate activities that require significant resources

• Automate activities that cannot be done manually

• Improve efficiency of testing

4

Software Testing

Test Automation

• Tool support does not automatically guarantee

success/improvement

• Not every project benefits from test automation

• Decision for test automation is mostly driven

economically, depending on:

• Planned duration/scope of the project

• Planned number of releases (e.g. required test cycles)

• Current project phase (begin, mid, end)

• Type of project (greenfield, maintenance, legacy)

• Knowledge/Experience of test team

5

Software Testing

Test Automation Effort – As It Should Be

6

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13

E
ff

o
rt

 (
d

a
y
s
)

Release

manual automated

Software Testing

Test Automation Effort – As It Should Not Be

7

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13

E
ff

o
rt

 (
d

a
y
s
)

Release

manual automated

Software Testing 9

Content

Test AutomationA

Automated Test ExecutionB

Automated UI TestsC

Behaviour Driven Development (BDD)D

Live Demo – BDD UI Testing SampleE

Excursion: Page Object MaintenanceF

Software Testing

Automated Test Execution

• Execution of tests on all test levels can be automated

• How to invest into automation efforts? → test automation pyramid

• Execution frequency varies

• Unit Tests

• Constant regression tests on all components

• Most frequent execution

• Candidates for continuous integration

• e.g. every build

• Integration Tests

• Frequent execution

• e.g. nigthly build

• System Test

• Rare execution

• At least once per release

10

Manual and

exploratory

testing

Software Testing

Automated Test Execution – Benefits

• Less manpower required for test execution

• Shorter duration of test execution

• More reliable regression tests

• Enable test activities that cannot be performed manually

(e.g. load/stress testing)

• Reusability of test scripts

• More transparency

• More detailed test reports

• Faster feedback

• Continuous Integration

• Execution can be triggered automatically

11

Software Testing

Automated Test Execution – Drawbacks

• High initial costs

• License

• Training

• Setup/Configuration

• High effort required for initial creation of test scripts

• Higher maintenance costs

• Test scripts need to be adapted when software changes

• Test scripts contain more details/logic

• Potential loss of knowledge in testing team

• „A tool can‘t think“

• Tools can support, but not replace human testers

12

Software Testing

Automated Test Execution

• Automated tests only

add value if they are

stable and trustworthy

• Workflow when creating

automated test scripts

• Create first draft

• Sample execution to check

if the test works

• Improvement until the

script is stable

• Frequent execution

13

Software Testing

Test Execution Approaches

• Different approaches for test execution, depending on:

• Project scope

• Project duration

• Available staff

• Test level

• Common test approaches are

• Manual Testing

• Script-Based Testing

• Capture/Replay Testing

• Model-Based Testing

14

Software Testing

Test Execution Approaches – Manual Execution

• The following activities are done manually

• Test execution

• Comparision between actual/expected result

• Documentation of results in test report

• No automation at all (manual end-to-end test)

• Can only be applied for system/acceptance testing

• Drawbacks

• Time intensive

• Repetitive

• Provides no information on general test coverage

• No continuous status

15

Software Testing

Test Execution Approaches – Script-Based

• Automated execution using test scripts

• Heavily used for regression testing on unit/integration

level

16

SystemGUI

Test Script

creates tests

Software

Unit

Integrated

Component

Software Testing

Test Execution Approaches – Script-Based

• Benefits

• Fast execution

• Automated result comparison

• Gather information on general test coverage

• Drawbacks

• Additional effort/time required for creation of scripts

• Additional costs for maintenance

• Knowledge of scripting/programming language is

required

17

Software Testing

Test Execution Approaches – Script-Based

• Usually implemented using a test framework

• Provides the testing environment

• Handles the execution of the scripts

• Provides assertion mechanisms

• Supports definition of test suites/execution groups

• Unit/Integration test scripts are usually maintained as

part of the development project

• Examples – Java

• JUnit

• TestNG

18

Software Testing

Test Execution Approaches – Capture/Replay

• Approach for automated UI system tests (automated end-

to-end test)

• Capture Phase

• Test case is executed manually

• Triggered actions/events are captured and exported to test script

• Replay Phase

• Recorded actions/events are replayed automatically

19

SystemGUI Test Script

Capture

Replay
interacts

Tester

Software Testing

Test Execution Approaches – Capture/Replay

• Challenges

• High maintenance costs

• Error-prone since scripts lack of abstraction

• Code duplication

• Missing modularity

• Missing separation of input data

• Quality/Robustness of scripts depends on quality of capturing

tool and features of underlying scripting language

• Format of exported scripts may be proprietary

• Tool Examples

• Marathon

• Abbot

• Selenium IDE (currently no export)

20

Software Testing

Test Execution Approaches – Model-Based

• Testing based on models

• Creation of an abstract model of the SUT

• Model describes requirements/desired behavior of a

system

• Model serves as decoupling layer between productive

system and test code

21

System Tests

System Model Tests

Usual Testing
System Model Tests

Model-BasedTesting

Software Testing 22

Content

Test AutomationA

Automated Test ExecutionB

Automated UI TestsC

Behaviour Driven Development (BDD)D

Live Demo – BDD UI Testing SampleE

Excursion: Page Object MaintenanceF

Software Testing

Automated UI Tests

• Definition

• Testing performed by interacting with the SUT via the graphical

user interface.

• Systemtest – Simulating interactions of real users

• Challenges

• Addressing different platforms

• Browsers

• Devices (web vs. mobile)

• Displays / Resolution

• Robust test scripts are hard to achieve

• Isolation of functionality from layout

• Identification of UI elements

• High complexity (event driven interaction)

• Fragile against changes

23

Software Testing

Software Volatility

• Definition

• „Software volatility is defined as the propensity for software to

change over time in response to evolving requirements.“

• Software volatility describes the changeable nature of software.

• Changing requirements

• Changing technologies

• UI is more fragile/volatile than server-side / backend code

• Changes in UI break test cases more easily

• Worst Case Scenario:

• Layout changes require complete rewrite of test cases

24

Software Testing

Challenges – UI Element Identification

How to automatically identify

and interact with an UI element?

25

Software Testing

Challenges – UI Element Identification

• Element characteristics

• By id

• Very strong (unique, stable)

• Often not defined for all elements by developers

• Sometimes dynamically generated (by some UI frameworks)

• By CSS class

• By visible text

• Language dependent

• Prone to change over time

• By xPath query

• Use query language to describe path to element

• Robustness depends on query

• By position

• Not robust/reliable

• …

26

Software Testing

Challenges – UI Element Identification

• Absolute Position (Coordinates)

• click(3200, 422);

• Not reliable, strongly depends on

• Resolution

• Hardware components (display, device)

• Browser window size

• Not robust against changes

• e.g. swap/movement of UI elements

• might lead to unexpected behavior

• → do not depend on absolute position of elements

27

Software Testing

Challenges – UI Element Identification

• XML Path Language (XPath)

• Query language for selecting nodes from an XML document.

• e.g. DOM tree

• Relative and absolute statements

• //button/span[text()= 'Start']

• //select[@name = 'year']

• //a[text()='Masterstudien']

• Use element characteristics that

are less volatile

• Avoid depending on absolute paths

• /html/body/div[5]/div/div[3]/ul/li[9]/a

• /table[@id="postinglist"]/div[6]/div[1]/div/div[2]/div

28

Software Testing

Selenium

• Selenium is a portable software-testing framework for

web applications.

• Selenium automates browsers

• Automating web applications for testing purposes

• Automating web-based administration tasks

• Selenium WebDriver API

• create robust, browser-based regression automation suites and

tests

• Selenium IDE

• Chrome extension (capture/replay)

• http://www.seleniumhq.org/

30

Software Testing

Selenium

• Support for various browsers

• ChromeDriver, FirefoxDriver, InternetExplorerDriver, EdgeDriver

SafariDriver, OperaDriver, …

• Create more detailed reports of executed test cases

• Screenshots

• Videos

• Headless execution (CI Integration)

• Chrome headless mode

• PhantomJS

• Integrates well with test frameworks, e.g. JUnit

31

Software Testing

Selenium Mobile Testing

• Mobile applications (native, hybrid and web) test

automation framework

• Based on Selenium Web Driver

• Android

• Selendroid framework

• Can be used on emulators and real devices.

• http://selendroid.io/

• iOS

• ios-driver

• https://ios-driver.github.io/ios-driver/

32

http://selendroid.io/
https://ios-driver.github.io/ios-driver/

Software Testing

Selenium Grid

• Parallel / distributed test execution on remote browser

instances

• Run your tests on different machines against

• Multiple browsers

• Multiple versions of browser

• Browsers running on different operating systems

• Docker support

• automate test execution

• automate test environment

configuration

33

Software Testing

UI Tests – Page Object Pattern

• Object-oriented approach

• Abstract model of the UI

• Serves as decoupling layer between test code and web

• A page object wraps a single HTML page of a web application

and encapsulates the interaction with that page

• Advantages

• Reduces code duplication

• Better modularization

• Improves readability and robustness of tests

• Improves the maintainability of tests

34

Software Testing

UI Tests – Page Object Pattern

35

Web Page 1 Web Page 2 Web Page 3

Page Object Page Object

Test Script

Page Object

Test Script

Software Testing

UI Tests – Page Object Pattern

• Best Practices:

• Page objects should not have any assertions

• Assertion logic should happen in the test classes

• Methods represent actions on the page

• Navigation methods should return the page object of the

subsequent page

• Page objects should only include elements relevant for testing

36

Software Testing 37

Content

Test AutomationA

Automated Test ExecutionB

Automated UI TestsC

Behavior Driven Development (BDD)D

Live Demo – BDD UI Testing SampleE

Excursion: Page Object MaintenanceF

Software Testing

Behavior Driven Development (BDD)

• Extension of Test Driven Development (TDD)

• Test first approach

• Test scenarios define the expected behavior of the

application from a user’s perspective

• Acceptance criteria are specified in a simple domain

specific language (DSL)

• DSL allows to

• Express the behavior

• Define the expected outcome

• Use examples to clarify requirements

38

Software Testing

Cucumber Framework

• Framework for automated BDD acceptance tests

• Support several software platforms (e.g. Java, Ruby, …)

• Every implementation provides the same overall functionality

• Expected software behavior is written in Gherkin

• Given – When – Then Syntax

• Stored in Feature files

• Online Reference

• https://docs.cucumber.io

40

https://docs.cucumber.io/

Software Testing

Cucumber Framework

41

Feature <Description of the use case>

Scenario: <Description of one scenario of that feature>

Given <some precondition>

And <another precondition>

...

When <an action taken by the user>

And <another action taken by the user>

...

Then <expected result>

And <another expected result>

Scenario: <Description of another scenario of that feature>

...

Feature As a user I want to login to the application

Scenario: Successful login

Given I am on the login page

When I enter username “user” and password “abc”

And I click the login button

Then I am logged in at the application

Scenario: Invalid login

Given I am on the login page

When I enter invalid username “u” and password “wrong”

And I click the login button

Then I stay on the login page and an error message is shown

Software Testing

Cucumber Framework

• Data Driven

• Cucumber supports a data driven approach within feature files

42

Feature As a user I want to login to the application

Scenario Outline: Successful login

Given I am on the login page

When I enter username “<user>” and password “<password>”

And I click the login button

Then I am logged in at the application

Examples:

| user | password |

| admin | abc |

| customer21 | mypass |

| maxmuster12 | maxm |

Software Testing

Cucumber Framework

• Step Definitions

• Map each step in the feature file to code (Glue Code)

• Define the actions that should be performed

43

Scenario: Successful login

Given I am on the login page

When I enter username “user” and password “abc”

And I click the login button

Then I am logged in at the application

Given("I am on the login page", () -> {...});

When("I enter username {string} and password {string}",

(String user, String password) -> {...});

When("I click the login button", () -> {...});

Then("I am logged in at the application", () -> {...});

Cucumber Expressions

(Parameter Types,

Regular Expressions…)

Can be adapted manually

Software Testing

Cucumber Framework

• JUnit Integration

• Cucumber provides a JUnit Runner

• Searches for feature files located in the defined path

• Searches for step definitions located in the specified packages

44

@RunWith(Cucumber.class)

@CucumberOptions(

glue = {“at.ac.tuwien.inso.swtesten.sample2”}

features = {“src/test/resources/sample”},

)

public class CucumberJUnitTest {}

Software Testing

References

• T. Grechenig et al; Softwaretechnik Mit Fallbeispielen aus

realen Entwicklungsprojekten, 2010

• ISTQB Foundation Level Syllabus

• A. Spillner and T. Linz; Basiswissen Softwaretest. 5. Aufl.

dpunkt Verlag, 2012.

• D. Graham et al; Foundations of Software Testing: ISTQB

Certification. Cengage Learning EMEA, 2008.

• IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of

Software Engineering Terminology IEEE, 1990.

• A. Spillner et al; Praxiswissen Softwaretest –

Testmanagement: Aus- und Weiterbildung zum Certified

Tester, 2014

45

Software Testing

References

• M. Pezzé, M. Young, "Software testen und analysieren:

Prozesse, Prinzipien und Techniken", Oldenbourg Verlag

München, 2009

• T. Roßner u.a., „Basiswissen modellbasierter Test“,

dpunkt Verlag, 2010

46

