
Testing in the Software Lifecycle

183.290 Software Testing

INSO - Industrial Software

Institut für Information Systems Engineering | Fakultät für Informatik | Technische Universität Wien

WS 2020

Christina Zoffi

peso@inso.tuwien.ac.at

https://peso.inso.tuwien.ac.at

Software Testing 2

Content

Testing in the Software LifecycleA

Test Types2

Maintenance Testing3

Test Levels1

Test Case SpecificationB

Defect Workflow/Life CycleC

Software Testing

Testing in the Software Lifecycle

• Testing is not an isolated task

• Testing is an on-going activity throughout the software

development lifecycle

• Each development activity has a corresponding testing

activity

• Test design takes place parallel to the corresponding

development activity

• Testers help refining requirements and design and are

involved in reviewing work products

3

Software Testing

Testing in the Software Lifecycle

4

• Assurance that a component or system
conforms to the specification

• Are we building the product right?

Verification

• Assurance that a system satisfies the
user‘s needs or expectations and
fulfills its intended use

• Are we building the right product?

Validation

The button

should

be blue.

The button

should

be green.

Save

Software Testing

Test Levels

5

Unit Testing

(Component Testing)

Integration Testing

System Testing

Acceptance Testing

Software Testing

Test Levels

• Test levels are groups of test activities that are managed and

organized together

• Test levels can be applied sequentially or iteratively

depending on the development model

• Test levels need to be tailored to the project/product

environment and development lifecycle

6

Software Testing

Test Levels – Unit Testing

• Definition

• Testing of individual hardware or software units or groups of

related units. (IEEE 610.12-90)

• Also known as component/module testing

• Detect defects and verify the functioning of individual units

(modules, objects or classes) of a system

• May be done in isolation from the rest of the system

• Requires access to the code base and development

environment (e.g. unit test framework)

• Usually done by developers

• Mostely automated using unit testing frameworks

7

Software Testing

Test Levels – Integration Testing

• Definition

• Testing in which software components, hardware components,

or both are combined and tested to evaluate the interaction

between them. (IEEE 610.12-90)

• Expose defects in the interfaces and interactions between

integrated units

• Focus on integration, not functioning of individual units

• Difficulty of isolating defects increases with integration

scope → incremental/big bang integration

8

Software Testing

Test Levels – Unit vs. Integration Testing

Why not skip integration testing

when unit tests worked perfectly fine?

9

Software Testing

Test Levels – System Testing

• Definition

• Testing conducted on a complete, integrated system to evaluate

the system‘s compliance with its specified requirements. (IEEE

610.12-90)

• Concerned with the behavior of a whole system/product

(end-to-end)

• Test environment should mirror the production environment to

minimize risk of missing environment-specific errors

• Often conducted by independent test team

• Often basis for release decisions

10

Software Testing

Test Levels – Acceptance Testing

• Definition

• Formal testing conducted to determine whether or not a system

satisfies its acceptance criteria and to enable the user, customer

or other authorized entity to determine whether or not to accept

a system. (IEEE 610.12-90)

• Establish confidence in the functional or non-functional

characteristics of a system

• Evaluate the system‘s readyness for delivery

• Involves stakeholders such as users or customers of a system

• Uncovering defects is not the main purpose

11

Software Testing

Test Levels

12

Test Level Test Basis Test Objects

UNIT TESTING

Requirements

Detailed design

Code

Components

Data migration programs

Database modules

INTEGRATION TESTING

Software/System design

Architecture

Workflows

Use Cases

Subsystems

Infrastructure

Interfaces

System configuration

SYSTEM TESTING

System requirements

Use cases

Functional specification

Risk analysis reports

System

User and operation manuals

System configuration

ACCEPTANCE TESTING

User requirements

System requirements

Use cases

Business processes

Risk analysis reports

Fully integrated system

Operational and maintenance

processes

User procedures

Business processes

Configuration data

What are

we testing?

What is the base

for test specification?

Software Testing

Mutation Testing

• How good are my tests?

• Modify small pieces in the source code in order to seal

artificial defects

• Analyse if existing unit tests are able to identify the defects

• If not, regression testing would not be able to identify newly

introduced problems

• Indicates the quality of the tests

13

Software Testing

Mutation Testing

14

1. MUTATE THE CODE

• Mutate Logical Operators

• if(a && b) → if(a || b)

• Mutate Boundaries

• if(a > 10) → if(a > 11)

• Mutate Conditional Boundaries

• if(a > b) → if(a >= b)

• if(a < b) → if(a <= b)

• Negate Conditionals

• if(a == b) → if (a != b)

• Mutate Math Operators

• a + b → a * b

• …

2. RUN EXISTING TESTS

Test(s) fail = mutants killed

• High code coverage

• High test quality

• Good assertions

Test(s) still green = mutants lived

• Mutated code is poorly/not

covered by tests

• → increase test coverage

• Quality of existing tests/test

data needs to be improved

Software Testing

Mutation Testing – Example

15

Software Testing

Extreme Mutation Testing

• Approach Extreme Mutation

• Duration of mutation test execution increases dramatically

• In Extreme Mutation testing, the whole logic of a method under

test is eliminated

• Result:

• pseudo-tested methods (e.g. tests without assertions) are located

16

Software Testing 17

Content

Testing in the Software Development LifecycleI

Test Types2

Maintenance Testing3

Test Levels1

Defect Management and Defect LifecycleI I Test Case SpecificationB

Defect Workflow/Life CycleC

Software Testing

Test Types

• Focus on a particular objective

• Can be applied on multiple test levels

• Address specific characteristics of a system

• Classified into:

1. Functional Testing

2. Non-Functional Testing

3. Structural Testing

4. Change-Related Testing

a. Confirmation Testing (Re-Testing)

b. Regression Testing

18

Software Testing

Test Types – 1. Functional Testing

• Functionality

• The capability of the software product to provide functions which

meet stated and implied needs when the software is used under

specified conditions (ISO/IEC 25000)

• Functional tests are based on the functions and features of

a system or component (ISTQB)

• Functional tests evaluate that a system or component

complies with its functional requirements

• Rely on the external (input/output) behavior of the system →

Black–Box design techniques → Lecture 3

• Focus: WHAT does the system do?

19

Software Testing

Test Types – 2. Non-Functional Testing

• Concerned with testing quality attributes of a system or

software unit that do not relate to functionality

• Focus on characteristics of a system that can be quantified

on a varying scale (ISTQB)

• Non-Functional Testing includes:

• Performance Testing (e.g. response time)

• Load Testing

• Stress Testing

• Usability Testing

• …

• Late discovery of non-functional defects → major project risk

• Focus: HOW WELL does the system work?

20

Software Testing

Test Types – 2.1 Performance Testing

• Performance

• Degree to which a system accomplishes functions within given

constraints regarding processing time and throughput rate.
(ISTQB)

• Performance requirements examples:

• The system must respond within 2 seconds for 90% of the time

• The system must manage up to 1000 concurrent users

• Performance Testing

• Testing the ability of a system or software unit to respond to

inputs within a specified time and under specified conditions.

21

Software Testing

Test Types – 2.2 Load/Stress Testing

22

L
O

A
D

T
E

S
T

IN
G

• Evaluate the behavior of a system or component with

increasing load, e.g.

• # of concurrent users

• # of concurrent transactions

• Test the ability of the system to handle increasing levels of

anticipated realistic load

S
T

R
E

S
S

T
E

S
T

IN
G • Evaluate the behavior of a system or component

• at or beyond the limits of its anticipated or specified load

• or with reduced availability of resources (memory, server)

• Test the ability of the system to handle peak loads

Software Testing

Test Types – 2.2 Load/Stress Testing

• Example:

A web system is – according to its specification –

designed to handle 100 concurrent users at a time

• Load Testing:

• Analyse how the system handles increasing levels of a realistic

number of concurrent users, e.g. 20, 50, 75 users

• Stress Testing:

• Analyse how the system handles 150 or 300 concurrent users

23

Software Testing

Test Types – 2.3 Usability Testing

• Evaluate the degree to which a system can be used with

effectiveness, efficiency and satisfaction within a specified

context of use

• Test the capability of the software to be understood,

learned, used by and it‘s attractiveness to the user

• Types

• Exploratory Testing

• Early in the development life cycle

• Often with help of prototypes

• Validate basic expectations and allow refinement

• Validation Testing

• Assessment of fully developed system

24

Software Testing

Test Types – 3. Structural Testing

• Based on the internal structure, mechanism and

architecture of a system or component

• Also referred to as white-box-testing or glass-box-testing

• Focus on what happens inside the application

• Highly tool supported

• Includes assessing the extent to which a structure has been

tested (coverage)

• Can be applied at all test levels

• Design techniques for structural testing

• → Lecture 3

25

Software Testing

Test Types – 4. Change-Related Testing

26

1. Fixing one defect might introduce another defect

3. Changing an existing part of a system might have unexpected side effects

2. Fixing one defect might uncover another already present defect

Software Testing

Test Types – 4. Change-Related Testing

27

R
E

G
R

E
S

S
IO

N

T
E

S
T

IN
G

• Repeated testing of a software after modification

• Ensure that modifications to the software did not introduce

any new defects/side effects to already existing features

• Performed when software or its environment changed

• Strong indication for automation

• Applied in all test levels and for all test types

C
O

N
F

IR
M

A
T

IO
N

T
E

S
T

IN
G

• Also referred to as re-testing

• Confirm that a previously found defect was successfully

fixed

• Execute test cases that have failed in the previous test run

Software Testing

Test Types – 4. Change-Related Testing

• Regression Testing

• Every change to a software can have unexpected side effects

• Changes include:

• Fixing defects

• Implementing features

• Technical changes

e.g. refactorings,

library upgrades, …

• Scope of regression testing is

determined risk-based

depending on changes

28

Software Testing 29

Content

Testing in the Software Development LifecycleI

Test Types2

Maintenance Testing3

Test Levels1

Defect Management and Defect LifecycleI I Test Case SpecificationB

Defect Workflow/Life CycleC

Software Testing

Maintenance Testing

• Maintenance

• The process of modifying a software, system or component to

correct faults, improve performance or other attributes or adapt

to a changed environment. (IEEE 610.12-90)

• Maintenance Testing

• Testing an existing operational system after

• Modification

• Migration

• Retirement

30

Software Testing

Maintenance Testing

• Required for

• Enhancement changes (i.e. planned release)

• Corrective/emergency changes (i.e. hotfix release)

• Environmental changes (OS/DB upgrades, …)

• Migrations (between platforms, between data formats, …)

• Regression testing is an important part of maintenance

testing

• Challenges

• Outdated/missing specification

• Missing domain knowledge

31

Software Testing 32

Content

Testing in the Software Development LifecycleA

Test Types2

Maintenance Testing3

Test Levels1

Test Case SpecificationB

Defect Workflow/Life CycleC

Software Testing

Testcase

• Definition

• A test case is a set of input values, pre-conditions, expected

results and post-conditions, developed for a particular objective,

such as to exercise a particular program path or to verify

compliance with a specific requirement. (ISTQB)

• Each test case covers a single use case

• Each test case defines a step-by-step procedure

• Test cases need to be formally specified

• Test cases consist of specific attributes

33

Software Testing

Testcase Attributes

34

1. Test Case Specification Identifier (ID)

2. Test Case Description

3. Test Items

4. Test Procedure

5. Input Specification

6. Output Specification

7. Environmental Needs (opt)

8. Intercase Dependencies (opt)

9. Other Attributes (opt)

Software Testing

Testcase Attributes

1. Test Case Specification Identifier (ID)

• Specify a unique generated number to identify this test case

• Should follow a naming convention

• Examples:

• „TC_Login_001“

• „TC_1003“

35

Software Testing

Testcase Attributes

2. Test Case Description

• Specify a quick summary (the goal) of this test case

• Examples:

• „Test login with a wrong password“

• „Test login with missing username“

36

Software Testing

Testcase Attributes

3. Test Items

• Identify and briefly describe the items/features that should be

covered by this test case

• Reference the source documents (Traceability)

• Requirements specification

• Design documents

• …

• Example

• „1512_Login Mask“

37

Software Testing

Testcase Attributes

4. Test Procedure

• Describe the steps that are performed during test case

execution

38

Software Testing

Testcase Attributes

5. Input Specification

• Declare input values required to execute this test case

• Specify all required relationships beween inputs

• Values, messages, constants, human actions, files, …

39

Software Testing

Testcase Attributes

6. Output Specification

• Identify the expected outputs to verify this test case

• Define the expected changes of the system state

• Provide the exact value for each output

• Values, messages, files, response times, duration, …

40

Software Testing

Testcase Attributes

7. Environmental Needs (optional)

• Specify the characteristics and configurations of the hardware

and software required to execute this test case

• Define pre-conditions of the test items

• Define special hardware installation (e.g. scanner/printer)

41

Software Testing

Testcase Attributes

9. Other Attributes (optional)

• Type (Manual/Automated)

• Status (e.g. in work, reviewed, approved, deprecated)

42

Software Testing 43

Content

Testing in the Software Development LifecycleA

Test Types2

Maintenance Testing3

Test Levels1

Test Case SpecificationB

Defect Workflow/Life CycleC

Software Testing

Defect Workflow

• Defect

• Discrepancy between expected and actual result

• Defect Workflow

• Defines the life cycle of a defect from its creation to its closure

• Gathers defect information and status

• Allows to monitor and control release contents

• Usually tool supported (e.g. JIRA, HPQC, Mantis, Redmine,

Gitlab …)

44

Software Testing

Defect Workflow

• Why do we need a defect management tool with a

defined workflow?

• What is the overall state of a system?

• How many defects are in a certain version?

• What is the state of those defects?

• Which developer is working on a defect?

• Which tester has found that defect?

• Was a problem already reported?

• In which version has something been found/fixed?

• Can we go live to production?

45

Software Testing

Defect Workflow – Sample Workflow

46

• Defect workflow

can be adopted

to the software

project and may

vary in naming

• Defect

management is a

cross-functional

team task (test,

development,

project/product

management)

Software Testing

Defect Report

• Gathers information on a detected defect

• Needs to be complete, precise, objective and cannot be

replaced by informal communication

• Includes the following information

• Person who discovered the defect

• Current owner (person currently working on the defect)

• Defect summary

• Detailed defect description

• Steps to reproduce the failure (including screenshots/logs/…)

• Actual/Expected results

• Severity / Priority

• Environment

• Reference to other work products (test case/requirement id)

47

Software Testing

Defect Report – Severity

• Defect severity is the degree of impact that a defect has on the

development/operation of a system

• Financial damage, harm, user satisfaction, reputation

• Frequent classification

• Critical – core feature, critical data affected, no workaround, severe failure

• Major – important feature affected, complex workaround exists

• Medium – minor functionality affected, simple workaround exists

• Minor – functionality not/slightly affected, inconveniece, styling/spelling issue

• Terminology depends on project, organization or tool

48

Software Testing

Defect Report – Priority

• Defect priority is the level of (business) importance

• Corresponds to the urgency a defect must be addressed

• Highly relevant for scheduling and release planning

• Frequent classification

• High – important core use case, highly frequented by users, blocks users from

proceeding their work

→ immediate fix required

• Medium – important, still regularly used feature, but not ultimately blocking

→ fix in next release cycle

• Low – less important use case, feature with small user base

→ fix can be deferred

49

Software Testing

Defect Report – Severity vs. Priority

50

4 2

3 1

Scheduling

1. Important, critical impact

2. Important, minor impact

3. High impact, less important

4. Less impact, less important

Fallacy in practice:

Rank 3. as most important

Software Testing

Defect Report – Severity vs. Priority Examples

Example 1:

„The wrong company logo was

embedded in the application header“

• Priority: high

• Negative impact on company image and reputation

• Severity: minor

• Functionality is not affected

• System does not crash

51

Software Testing

Defect Report – Severity vs. Priority Examples

Example 2:

„The feature annual statistics report export

for application administrators crashes with a NPE“

• Priority: low

• Affects a very small user group

• Feature is not highly important for core business

• Severity: major

• Functionality is affected, system might be in a wrong state

• There exists no workaround (but feature is not ultimately critical)

52

Software Testing

Defect Report – Severity

53

Software Testing

Defect Report – Example

54

Software Testing

Defect Report – Best Practices

• Defects should be considered atomic

• One defect should only cover one problem

• Raise another defect in case you identified additional problems

• Defects should be self-contained

• By reading the defect, it should be possible to understand and

reproduce the problem

• Reproduce the bug before reporting a defect

• Create links (references) between defects that are connected

• Include screenshots, but do not reduce bug reports to just

adding pictures

• Update the status to enhance efficiency and clean reporting

• Use comments to make decisions/updates transparent

55

Software Testing

References

• T. Grechenig et al; Softwaretechnik Mit Fallbeispielen aus realen

Entwicklungsprojekten, 2010

• ISTQB Foundation Level Syllabus

• A. Spillner and T. Linz; Basiswissen Softwaretest. 5. Aufl. dpunkt Verlag,

2012.

• D. Graham et al; Foundations of Software Testing: ISTQB Certification.

Cengage Learning EMEA, 2008.

• IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software

Engineering Terminology IEEE, 1990.

• A. Spillner et al; Praxiswissen Softwaretest – Testmanagement: Aus- und

Weiterbildung zum Certified Tester, 2014

• R. C. Martin; Clean Architecture – A Craftsman‘s Guide to Software

Structure and Design, Prentice Hall, 2018

56

