
F2 Networks-on-Chip (NoCs)

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Sources

• Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

• Slides inspired by the „On-Chip Networks I/II“ (L-15/L-16) lectures of Ryan Lee and Tushar
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html

ACA 2V1.0

V1.0 ACA 3

F2.1 Introduction to NoCs

Motivation

• Need for scalability and reduced cost
• Avoid long interconnects/delays caused by increased system complexity

• Reduce wiring overhead caused by increasing number of system components

• Performance demands
• Goal: high bandwidth and low latency

• Concurrent communication required due to increased traffic

• Solution: Network-on-Chip (NoC)
• Move from bus to network (small-scale networks on chip-/system-level)

• Larger-scale networks in later lectures

• Broadcast can be avoided, but still possible via multiple messages (when required)

• Serialization achievable, e.g., by forcing the same path or via sequence numbers

ACA 4V1.0

Motivation: Scalability

• Scalability: How to connect hundreds of processor cores / memory interfaces?

ACA 5

L2

Cache

S
y
s
te

m
 I
n

te
rc

o
n

n
e

c
t

T T

Processor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

…

Processor

Core N

Instruction

Cache

Data

Cache

I I

I I

Processor

Core N-1

Instruction

Cache

Data

Cache

I I

I I L2

Cache
T T

…

Memory

Controller
T T Memory

Controller

Compute PE

L2

Cache

S
y
s
te

m
 I
n

te
rc

o
n

n
e

c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Network

InterfaceMemory PE

L2

Cache

S
y
s
te

m
 I
n

te
rc

o
n

n
e

c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Compute PE

N
et

w
o

rk
-o

n
-C

h
ip

 (
N

o
C

)

V1.0

L2

Cache
S

ys
te

m
 I

n
te

rc
o

n
n

e
c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Compute PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE
Buffer

Buffer

Buffer

Buffer

Allocators

Crossbar

Switch

Network-on-Chip Basics

ACA 6

• Objective: Connect nodes with each other via routers and wires, so that messages can be
sent from source to destination

• Building blocks:
• Node: any component, e.g., processor, memory, or a combination of them

• Network interface: module connecting a node to the network

• Router: forwards data from inputs to outputs (network interfaces or other routers)

• Link: physical set of wires, e.g., connecting two routers

• Channel: logical connection between routers

• Message: unit of transfer for the nodes

• Packet: unit of transfer for the network

NoC Router

V1.0

Design

• Topology: What is the connection pattern of the nodes?

• Routing: Which path should a message take?

• Flow control: Which network resources are granted to a message over time?

• Traffic analogy
• Topology: defines roadmap, i.e., streets and intersections

• Routing: steering of the car, i.e., where to turn at each intersection

• Flow control: traffic light control, i.e., when a car can advance over the next part of the road

ACA 7V1.0

V1.0 ACA 8

F2.2 NoC Topologies

Topology

• Topology: arrangement of nodes and channels
• Determines e.g., number of hops, number of alternative paths, cost

• Properties for comparison
• Degree: number of links at each node

• Distance: number of links in the shortest route

• Diameter: maximum distance between any two nodes

• Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network
into two equal parts (minimum for multiple possible cuts)

ACA 9V1.0

Topology

• Direct networks: each terminal node is associated with a router; routers are sources/sinks
and switches for traffic from other nodes

• Indirect networks: terminal nodes are connected via intermediate stages of switch nodes;
terminal nodes are sources/sinks, intermediate nodes only switch traffic

ACA 10

Mesh TorusRingFully Connected

Butterfly TreeCrossbar

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7

V1.0

Fully Connected Networks

• Every node connected to every other node with a direct link

• N nodes, N∙(N-1)/2 links

• Degree: N-1

• Diameter: 1

• Bisection width: 𝑁/2 ∙ 𝑁/2

• Pros: high fault tolerance, low contention, low latency

• Cons: high costs for large N, limited scalability

ACA 11

Fully Connected

V1.0

Ring (k-ary 1-cube)

• Each node connected to two other nodes

• N nodes, N links

• Degree: 2

• Diameter: 𝑁/2

• Bisection width: 2

• Pros: simple, low link costs

• Cons: high latency for large N, limited path diversity

ACA 12

Ring

V1.0

Mesh

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2𝑘 ∙ 𝑘 − 1 links

• Degree: 4

• Diameter: 2k-2

• Bisection width: k

• Pros: path diversity, regular and equal-length links

• Cons: large diameter, asymmetric (higher demand for center links)

ACA 13

Mesh
(here: 4-ary 2-cube)

V1.0

Torus

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2N links

• Degree: 4

• Diameter: k

• Bisection width: 2k

• Pros: avoids asymmetry and improves path diversity compared to mesh

• Cons: unequal link lengths and higher cost compared to mesh

ACA 14

Torus

V1.0

Crossbar

• Connects n inputs to m outputs via 𝑛 ×𝑚 switches

• Switches enable concurrent communication between
disjoint input/output pairs without blocking

• 𝑁 = 𝑛 ∙ 𝑚 nodes, 𝑛 ∙ 𝑚 links

• Diameter: 1

• Pros: non-blocking, latency (for small n, m)

• Cons: high cost, limited scalability

ACA 15

Crossbar

V1.0

Butterfly

• k-ary n-flies: kn nodes connected via n stages of kn-1 intermediate
𝑘 × 𝑘 switches
• k: switch degree

• n: number of stages of switches

• Pros: lower cost compared to crossbar

• Cons: blocking, lack of path diversity, locality not exploitable

ACA 16

Butterfly
(2-ary 3-fly)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

V1.0

Trees

• k-ary tree with N nodes and logk N stages

• Nodes are the leaves of the tree, switches at intermediate stages

• Messages are sent up to common ancestor, then sent down to
destination

• Pro: simple, cheap

• Cons: Bottleneck towards root
• Alternative: Fat tree, where links between switches closer to the root

are increased

ACA 17

Tree

0 1 2 3 4 5 6 7

Fat tree

0 1 2 3 4 5 6 7

V1.0

Application-Specific Network-on-Chip Architectures

• Custom tailored NoC
topology for chips with very
unbalanced traffic demand
for different PEs

• Example: NoC for a 3G
Modem Chip (2014)

ACA 18V1.0

V1.0 ACA 19

F2.3 NoC Messages

Messages

• Message: logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, restricted maximum length
• Consists of header + segment of a message

• Flit (flow control digit): basic unit of bandwidth and storage allocation
• Contain no separate routing/sequencing information and therefore follow the same path in-order

• Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle

ACA 20

Message

Packet

Head flit Body flit

Phit

Body flit Tail flit

Header

Phit Phit Phit

Packet

Flit

V1.0

Flow Control vs. Routing

• Flow control: Allocates resources (channels, control state, buffers) to packets
• Alternative view: resolve contention during packet transmission

• Contention: What happens if two packets want to use the same channel at the same time?

• Routing: Selects the path a packet takes from source to destination
• Determines how well the potential of the given topology is exploited

• Should balance load across network channels

ACA 21V1.0

V1.0 ACA 22

F2.4 NoC Flow Control

Flow Control

• Bufferless
• Dropping

• Misrouting

• Circuit switching

• Buffered
• Store-and-forward

• Cut-through

• Wormhole

• Virtual channel

ACA 23V1.0

Bufferless Flow Control: Dropping

• Competing packets: No buffers available, therefore drop “losing” packets, “winning”
packet is allowed to proceed

• Example:

• Complete effort already invested in packet B is lost

• Source needs to be informed to about successful transmission or need for retransmission

ACA 24

Two packets A and B arriving,
both requesting channel 0

Packet A “wins”, B is dropped and
must be retransmitted from source

A A A A A 0

B B B B B 0

A A 0A A A
0

B B B

V1.0

• Time-space diagram with negative acknowledgements (nacks)
• Example: five-flit packets, four-hop route

• Alternative: no nacks, resend packet if ack is not received before a timeout

• Dropping: simple, wastes resources

H B B B T
N

H B B B TF
R

0

H B B B
N

H B B B TF
R

1

H B
N

H B B B TF
R

2

H B B B TF
R

3

C
h

an
n

e
l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

A

A

A

Cycle

Bufferless Flow Control: Dropping

ACA 25

Forward

Reverse

Header
Body

Tail nack
Retransmission

Fail to get channel 3

ack received

V1.0

Bufferless Flow Control: Misrouting

• Competing packets: No buffers available, therefore misroute “losing” packets, “winning”
packet gets the requested channel

• Example:

• Requires sufficient path diversity
• Routing needs to ensure that packet reaches its destination despite misrouting

• Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need
to guarantee forward progress)

ACA 26

Two packets A and B arriving,
both requesting channel 0

Packet A “wins”, B is misrouted to
channel 1

A A A A A 0

B B B B B 0

A A 0A A A
0

B B B
1

B B 0

V1.0

• First allocate channels to build a circuit from source to destination, then send packets
along the circuit, deallocate circuit after packets are sent

• Example: four-flit packets, five-hop route
• 1. Send request (R) to destination allocating channels along the way

• 2. Destination returns acknowledgement (A) to source

• 3. Data flits (D) are sent

• 4. Tail flit (T) deallocates the channel

• Circuit switching: simple, high latency, high overhead for circuits with short duration

R
R

A

A
A0

1
R

R
R

A
A2

3
4

C
h

an
n

e
l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D

Cycle

D D D
D D D D

D D D D
D D D D

D D D D
18 19

D D D D
D D D D

D D D D
D D D D

D D D D
20 21 22 23 24 25 26 27 28 29 30

T
T

T
T

T

Bufferless Flow Control: Circuit Switching

ACA 27

Reservation
Acknowledgement

Deallocation

V1.0

Buffered Flow Control

• Buffers allow to store data while waiting for the following channel
• Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

• Flow control now needs to allocate channels and buffers
• Allocation at packet or flit granularity

• Packet granularity: store-and-forward, cut-through

• Flit granularity: wormhole

ACA 28V1.0

• Each node waits until packet is received completely before transmission to the next node

• Need to allocate channel and sufficient buffer space for the packet in the next node

• Example: five-flit packet, four-hop route without contention

• Store-and-forward: channels not held idle, only small buffers required, high latency due
to serialization

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cycle
18 19

H B B B T
H B B B T

H B B B T

Buffered Flow Control: Store-and-forward (Packet-based)

ACA 29

Could also be transmitted later if channel/buffer space is not available

V1.0

Buffered Flow Control: Cut-through (Packet-based)

• Flits are forwarded as soon as they are received and the following channel and buffer
space is acquired (allocation still at packet granularity)

• Avoids waiting for receiving the complete packet before transmission

• Example: five-flit packet, four-hop route without/with contention

• Cut-through: high channel utilization, low latency, inefficient use of buffer storage and
long contention latency due to packet-based allocation

ACA 30

No contention Three-cycle contention before channel 2

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7

Cycle

H B B B T
H B B B T

H B B B T

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7 8 9 10

Cycle

H B B B T
H B B B T

H B B B T

No breaks within
packet transmission

V1.0

Buffered Flow Control: Wormhole (Flit-based)

• Similar to cut-through, but allocates channels and buffers to flits instead of packets
• Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
• Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
• Tail flit treated like body flit, but additionally releases virtual channel

• Blocking might occur as the single virtual channel belongs to a packet, while buffers are
allocated to flits
• Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

• Wormhole: Saves buffer space, may block a channel mid-packet

• Improvement: virtual-channel flow control
• Associate multiple virtual channels (channel state and flit buffers) with single physical channel
• Other packets can use channel when one packet is blocked
• Competition for transmitting flits over single physical channel
• Reduces blocking, more complex routers

ACA 31V1.0

Buffered Flow Control: Wormhole vs. Virtual-channel

• Wormhole flow control: When B blocks, channel p and q are idle

• Virtual-channel flow control: A can use channel p and q using a second virtual channel

ACA 32

B

A

Node 1

B

Node 2 Node 3

idle

chan. p

idle

chan. q

blocked

Virtual channel

Node 1 Node 2 Node 3

chan. p chan. q

blocked

A
B

A

B A

V1.0

V1.0 ACA 33

F2.5 NoC Routing

Routing

• Selects the path a packet takes from source to destination in a given topology

• Determines how well the potential of the given topology is exploited

• Balance load across the network channels to avoid hotspots and contention
• Difficult, particularly with non-uniform traffic patterns causing load misbalances

ACA 34V1.0

Routing Algorithms

• Properties
• Minimal or non-minimal

• Minimal: select shortest paths
• Non-minimal: not limited to shortest paths only

• Oblivious or adaptive
• Oblivious: select route without considering information about current network state

• Deterministic: Subset of oblivious; always select same path between source and destination
• Adaptive: select route based on current network state

• Design aspects
• Table-based or algorithmic

• Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

• Algorithmic: Compute route using an algorithm usually implemented via combinational logic

• Deadlocks
• Situations where packets cannot make progress as they are waiting on one another to release resources

ACA 35V1.0

Routing Example

• Routing decision in ring network: clockwise or counter-clockwise?

• Potential routing algorithms
• Greedy (deterministic, minimal): always pick the shortest direction

• Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

• Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter
direction

• Adaptive (adaptive, non-minimal): pick direction based on load of the local channels

ACA 36V1.0

Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)
• To increase the clarity, we will focus on 2D meshes in the following

• Example: 2D Mesh

• Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path
diversity

ACA 37

Dimension-order routing:
Deterministic and minimal

Alternate route:
non-minimal

V1.0

Valiant‘s Algorithm

• Packet from source s to destination d is routed via an intermediate node d‘
• Randomly select intermediate node d‘

• Phase I: Route packet from s to d‘

• Phase II: Route packet from d‘ to d

• Use arbitrary routing algorithm for Phase I+II,
e.g., dimension order routing for tori and meshes

• Can use arbitrary routing algorithm for the two phases
• For tori and meshes: Dimension-order routing as appropriate choice

• Valiant‘s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t
exploit locality

ACA 38

s

d‘

d

V1.0

Valiant‘s Algorithm

• Minimal version of Valiant‘s algorithm for k-ary n-cubes:
• Restrict intermediate node: d‘ lies in minimal quadrant

between s and d (subnetwork with s and d as corner nodes)

• Randomly selects among minimal routes

• Steps:
• Identify quadrant

• Select intermediate node d‘ from quadrant

• Route from s to d‘

• Route from d‘ to d

• With dimension-order routing (either XY or YX): Doesn‘t use all paths
• Idea: Select randomly whether to use XY or YX (but: deadlock problem arises)

• Preserves locality, improves load balancing (compared to deterministic routing)

ACA 39

s

d‘

d

V1.0

Deadlocks

ACA 40

• Deadlock: Situation where packets cannot make progress as they are waiting on each
other to release resources (buffers or channels)

• Example:
• Nodes: 0, 1, 2, 3; Channels: u, v, w, x

• A holds u and waits for v

• B holds v and waits for w

• C holds w and waits for x

• D holds x and waits for u

• Observation: Cycles pose a problem

u

v

w

x

D A

BC

V1.0

Deadlock Avoidance: Restrict Routing

ACA 41

• Dimension Order Routing (k-ary n-meshes)
• E.g., first x then y (we have seen this approach already)

• Deadlock-free, but restricts path diversity

• Turn Model: Focuses on the turns allowed and the cycles they can form
• 2D mesh: 8 possible turns forming two abstract cycles

• XY Routing removes four turns (prevents deadlocks)

V1.0

Deadlock Avoidance: Restrict Routing

ACA 42

• Turn Model: Focuses on the turns allowed and the cycles they can form
• Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

• Removing any two turns does not prevent deadlocks

west-first: traveling west
only allowed at the start

north-last: traveling north
only allowed as last direction

negative-first: traveling first
west and south, then east

and north

≡ ≡

V1.0

d

s

d

s

d

s

Examples: West-First

ACA 43

• Example 1

• Example 2

s

d

s

d

west-first: traveling west
only allowed at the start

N

E

S

W

s

d

V1.0

Channel Dependence Graph (CDG)

• Network topology:

• Channel Dependence Graph:
• One vertex for each channel

• Edges denote dependences
• Dependence exists if it is possible for channel i to wait for channel i+1

• 180° turns not allowed (e.g., AB → BA)

ACA 44

A

F

B

E

C

D

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

V1.0

A

F

B

E

C

D

Cycles in the CDG

• Channel Dependence Graph may contain cycles

• Route through AB, BE, EF and route through EF, FA, AB → Deadlock

ACA 45

→ Remove selected
edges in the CDG

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AFA

F

B

E

C

D

V1.0

Acyclic CDG

• Example: Remove Edges in the CDG (West-first turn model)

ACA 46

A

F

B

E

C

D

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

Cyclic CDG

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

Acyclic CDG

A

F

B

E

C

D

V1.0

A look at real Systems-on-Chip

PULP 2016, PULP 2022, SpiNNaker2

Optional, not relevant for exam

Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016

ACA 48

Source: CNX Software
https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-
for-iot-and-wearables/

• SoC: System-on-chip

• PULPino Architecture 2016:
All memories are on the same chip as
the processor core

• SoC Modules:
• Processor Core
• Instruction memory
• Data memory
• Input/output devices: UARR, SPI, GPIO
• Timer
• Programming and Debug Devices: SPI

Slave and Debug Unit
• Connected by on-chip interconnect:

AHB, AXI4

V1.0

Complex Multi-core SoC – Example PULP 2022

ACA 49

Source: https://iis-projects.ee.ethz.ch/index.php/PULP

• More complex architecture

• Different On-chip Interconnects

• DMA: Direct Memory Access –
Module to offload data
movements from the CPU

• Multi-Core with shared caches

• All these modules are physically
integrated in one integrated circuit
(IC).

V1.0

SpiNNaker2 Chip

• Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)

ACA 50

Source: SpinnCloud

Mesh NoC

V1.0

Summary

Conclusion

• Bus-based On-chip Interconnect

• Network on-Chip

• Next Sessions: Specialized Cores

ACA 52V1.0

Thank you for your attention

	Folie 1
	Folie 2: Sources
	Folie 3
	Folie 4: Motivation
	Folie 5: Motivation: Scalability
	Folie 6: Network-on-Chip Basics
	Folie 7: Design
	Folie 8
	Folie 9: Topology
	Folie 10: Topology
	Folie 11: Fully Connected Networks
	Folie 12: Ring (k-ary 1-cube)
	Folie 13: Mesh
	Folie 14: Torus
	Folie 15: Crossbar
	Folie 16: Butterfly
	Folie 17: Trees
	Folie 18: Application-Specific Network-on-Chip Architectures
	Folie 19
	Folie 20: Messages
	Folie 21: Flow Control vs. Routing
	Folie 22
	Folie 23: Flow Control
	Folie 24: Bufferless Flow Control: Dropping
	Folie 25: Bufferless Flow Control: Dropping
	Folie 26: Bufferless Flow Control: Misrouting
	Folie 27: Bufferless Flow Control: Circuit Switching
	Folie 28: Buffered Flow Control
	Folie 29: Buffered Flow Control: Store-and-forward (Packet-based)
	Folie 30: Buffered Flow Control: Cut-through (Packet-based)
	Folie 31: Buffered Flow Control: Wormhole (Flit-based)
	Folie 32: Buffered Flow Control: Wormhole vs. Virtual-channel
	Folie 33
	Folie 34: Routing
	Folie 35: Routing Algorithms
	Folie 36: Routing Example
	Folie 37: Dimension-order Routing
	Folie 38: Valiant‘s Algorithm
	Folie 39: Valiant‘s Algorithm
	Folie 40: Deadlocks
	Folie 41: Deadlock Avoidance: Restrict Routing
	Folie 42: Deadlock Avoidance: Restrict Routing
	Folie 43: Examples: West-First
	Folie 44: Channel Dependence Graph (CDG)
	Folie 45: Cycles in the CDG
	Folie 46: Acyclic CDG
	Folie 47: A look at real Systems-on-Chip
	Folie 48: Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016
	Folie 49: Complex Multi-core SoC – Example PULP 2022
	Folie 50: SpiNNaker2 Chip
	Folie 51: Summary
	Folie 52: Conclusion
	Folie 53: Thank you for your attention

