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Sources

* Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

* Slides inspired by the ,,On-Chip Networks I/11“ (L-15/L-16) lectures of Ryan Lee and Tushar
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html
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F2.1 Introduction to NoCs
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Motivation

* Need for scalability and reduced cost

* Avoid long interconnects/delays caused by increased system complexity
* Reduce wiring overhead caused by increasing number of system components

* Performance demands

e Goal: high bandwidth and low latency
e Concurrent communication required due to increased traffic

* Solution: Network-on-Chip (NoC)

* Move from bus to network (small-scale networks on chip-/system-level)

* Larger-scale networks in later lectures
* Broadcast can be avoided, but still possible via multiple messages (when required)
* Serialization achievable, e.g., by forcing the same path or via sequence numbers
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Motivation: Scalability

* Scalability: How to connect hundreds of processor cores / memory interfaces?
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Network-on-Chip Basics

* Objective: Connect nodes with each other via routers and wires, so that messages can be
sent from source to destination

* Building blocks:
* Node: any component, e.g., processor, memory, or a combination of them
* Network interface: module connecting a node to the network
* Router: forwards data from inputs to outputs (network interfaces or other routers)
* Link: physical set of wires, e.g., connecting two routers
* Channel: logical connection between routers
* Message: unit of transfer for the nodes NoC Router

* Packet: unit of transfer for the network oE oF oF o /[ eutrer J—]
/'/ Buffer i<— > Crossbar
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Design

* Topology: What is the connection pattern of the nodes?
* Routing: Which path should a message take?
* Flow control: Which network resources are granted to a message over time?

 Traffic analogy
* Topology: defines roadmap, i.e., streets and intersections
* Routing: steering of the car, i.e., where to turn at each intersection
* Flow control: traffic light control, i.e., when a car can advance over the next part of the road
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F2.2 NoC Topologies
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Topology

* Topology: arrangement of nodes and channels
* Determines e.g., number of hops, number of alternative paths, cost

* Properties for comparison
* Degree: number of links at each node
* Distance: number of links in the shortest route
* Diameter: maximum distance between any two nodes

* Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network
into two equal parts (minimum for multiple possible cuts)
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Topology

* Direct networks: each terminal node is associated with a router; routers are sources/sinks
and switches for traffic from other nodes ~

FEEw
o i
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R Rt

Fully Connected Ring Mesh Torus

* Indirect networks: terminal nodes are connected via intermediate stages of switch nodes;
terminal nodes are sources/sinks, intermediate nodes only switch traffic

Crossbar Butterfly
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Fully Connected Networks

Every node connected to every other node with a direct link
N nodes, N-(N-1)/2 links
Degree: N-1

Diameter: 1
Bisection width: |[N /2| - [N /2]

Fully Connected

Pros: high fault tolerance, low contention, low latency

Cons: high costs for large N, limited scalability
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Ring (k-ary 1-cube)

Each node connected to two other nodes
N nodes, N links

Degree: 2

Diameter: |[N /2]

Bisection width: 2

Ring

Pros: simple, low link costs

Cons: high latency for large N, limited path diversity
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* k-ary n-cube: N=k" nodes in a regular n-dimensional grid
* knodes in each dimension
* Links between nearest neighbors

For n=2 (i.e., k X k grids)
* N=k?nodes, 2k - (k — 1) links
* Degree: 4
* Diameter: 2k-2
e Bisection width: k

Mesh

(here: 4-ary 2-cube)

Pros: path diversity, regular and equal-length links

Cons: large diameter, asymmetric (higher demand for center links)
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Torus

k-ary n-cube: N=k" nodes in a regular n-dimensional grid
* knodes in each dimension

* Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

For n=2 (i.e., k X k grids)
* N=k? nodes, 2N links
* Degree: 4
* Diameter: k
* Bisection width: 2k

C
C
C
C

‘-

Torus

Pros: avoids asymmetry and improves path diversity compared to mesh

Cons: unequal link lengths and higher cost compared to mesh
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Crossbar

e Connects n inputs to m outputs vian X m switches

e Switches enable concurrent communication between
disjoint input/output pairs without blocking

e N =n-mnodes, n-mlinks

e Diameter: 1

* Pros: non-blocking, latency (for small n, m) . . . .

* Cons: high cost, limited scalability Crossbar
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Butterfly

* k-ary n-flies: k" nodes connected via n stages of k" intermediate Lo 0
k X k switches 1 1
e k:switch degree 2 2
* n: number of stages of switches j j
5 5
* Pros: lower cost compared to crossbar 2 2
7 7
* Cons: blocking, lack of path diversity, locality not exploitable guttirﬂ\;
-ary 3-fly
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k-ary tree with N nodes and log, N stages

Nodes are the leaves of the tree, switches at intermediate stages

Messages are sent up to common ancestor, then sent down to
destination

Pro: simple, cheap

Cons: Bottleneck towards root

e Alternative: Fat tree, where links between switches closer to the root
are increased

Fat tree
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Application-Specific Network-on-Chip Architectures

WIFIDMA

* Custom tailored NoC
topology for chips with very ”s.\x B\
unbalanced traffic demand |
for different PEs

 Example: NoC for a 3G
Modem Chip (2014)
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F2.3 NoC Messages
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Messages

Message: logically continuous group of bits, may be arbitrarily long

Packet: basic unit of routing and sequencing, restricted maximum length
* Consists of header + segment of a message

Flit (flow control digit): basic unit of bandwidth and storage allocation
* Contain no separate routing/sequencing information and therefore follow the same path in-order
» Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

Phit (physical transfer digit): information transferred over a channel in a single clock cycle

Packet

Head flit Body flit/ Body flit - Tail flit

Flit

Phit Phit Phit Phit
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Flow Control vs. Routing

* Flow control: Allocates resources (channels, control state, buffers) to packets
* Alternative view: resolve contention during packet transmission
e Contention: What happens if two packets want to use the same channel at the same time?

* Routing: Selects the path a packet takes from source to destination
* Determines how well the potential of the given topology is exploited
* Should balance load across network channels
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F2.4 NoC Flow Control
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Flow Control

e Bufferless
* Dropping
* Misrouting
 Circuit switching

e Buffered
e Store-and-forward
e Cut-through
* Wormbhole
* Virtual channel
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Bufferless Flow Control: Dropping

4

 Competing packets: No buffers available, therefore drop “losing” packets, “winning’
packet is allowed to proceed

 Example:
Two packets A and B arriving, Packet A “wins”, B is dropped and
both requesting channel O must be retransmitted from source
NARAAR EI: > AlalA @ »AlA]o
B|B[B[B[B[O |;|= > B|B[B |;|= >

 Complete effort already invested in packet B is lost
e Source needs to be informed to about successful transmission or need for retransmission
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Bufferless Flow Control: Dropping

* Time-space diagram with negative acknowledgements (nacks)

* Example: five-flit packets, four-hop route

Bod ) _-Retransmission
Header /y T§|I nack _.-- ack received

’f
f’
-

S v “x 'lll_‘ d
0F|-T-IBBBT,'HBBBT e
R N A
T,1F H|B(B|B HIB[B[B|T
€ R N A
©
s H]B H[B][B[B]T
Forward \\:) 20 AN A
\3"F Fail to get channel 3 |H|B|B|B|T
—"—'R A
Reverse --- 0123456 7 8 9101112131415 16 17

Cycle
* Alternative: no nacks, resend packet if ack is not received before a timeout

* Dropping: simple, wastes resources
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Bufferless Flow Control: Misrouting

* Competing packets: No buffers available, therefore misroute “losing” packets, “winning”
packet gets the requested channel

* Example: Two packets A and B arriving, Packet A “wins”, B is misrouted to
both requesting channel 0 channel 1

A[A]A]A]A]o |;|= > AlA]A @ »AlA]0

B|B[B[B[B]O |;|= > B|B[B ! »B[B]0

* Requires sufficient path diversity
* Routing needs to ensure that packet reaches its destination despite misrouting

* Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need
to guarantee forward progress)
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Bufferless Flow Control: Circuit Switching

* First allocate channels to build a circuit from source to destination, then send packets
along the circuit, deallocate circuit after packets are sent

e Example: four-flit packets, five-hop route
* 1. Send request (R) to destination allocating channels along the way

e 2. Destination returns acknowledgement (A) to source

* 3. Data flits (D) are sent
* 4. Tail flit (T) deallocates the channel

0 [R AHDb[p[p|p p[D[D[D Theeo
o1 '," R A D|D|D|D D|D|D|D T| - Deallocation
€2/ IR A D[D[D[D p[p[p|D T
53/ R A D[D|D[D D[D[D[D T
4 RHA p[D[p|D p|p[p|p T
Reservatio'ﬂ’] 01 2 3 45 6k\\\7 8 91011121314 15I16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Cycle

Acknovx;ledgement
 Circuit switching: simple, high latency, high overhead for circuits with short duration
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Buffered Flow Control

* Buffers allow to store data while waiting for the following channel
» Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

* Flow control now needs to allocate channels and buffers

» Allocation at packet or flit granularity
* Packet granularity: store-and-forward, cut-through
* Flit granularity: wormhole
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Buffered Flow Control: Store-and-forward (Packet-based)

Channel

w N = O

* Each node waits until packet is received completely before transmission to the next node
* Need to allocate channel and sufficient buffer space for the packet in the next node
* Example: five-flit packet, four-hop route without contention

H(B|B|B
8 9 101112 13 14 15 16 17 18 19
Cycle

to serialization

T

Could also be transmitted later if channel/buffer space is not available
V1.0

e Store-and-forward: channels not held idle, only small buffers required, high latency due
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Buffered Flow Control: Cut-through (Packet-based)

* Flits are forwarded as soon as they are received and the following channel and buffer
space is acquired (allocation still at packet granularity)

* Avoids waiting for receiving the complete packet before transmission

* Example: five-flit packet, four-hop route without/with contention
No breaks within

5 O [H|BIBIBIT g O [HBIBIBIT packet transmission
€1 |[H|B[B[B|T €1 [H[B[B[B|T| «
9 H|B|B|B|T ) ——+—H|B|B[B|T
© 3 H|B[B[B[T =~ 3 HIBIBIBIT
01234567 0123456 7 8910
Cycle Cycle
No contention Three-cycle contention before channel 2

e Cut-through: high channel utilization, low latency, inefficient use of buffer storage and
long contention latency due to packet-based allocation
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Buffered Flow Control: Wormhole (Flit-based)

Similar to cut-through, but allocates channels and buffers to flits instead of packets
» Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
* Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
 Tail flit treated like body flit, but additionally releases virtual channel

Blocking might occur as the single virtual channel belongs to a packet, while buffers are
allocated to flits

e Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

Wormhole: Saves buffer space, may block a channel mid-packet

Improvement: virtual-channel flow control
* Associate multiple virtual channels (channel state and flit buffers) with single physical channel
e Other packets can use channel when one packet is blocked
* Competition for transmitting flits over single physical channel
e Reduces blocking, more complex routers
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Buffered Flow Control: Wormhole vs. Virtual-channel

 Wormhole flow control: When B blocks, channel p and g are idle

Virtual channel-,

B
N idle idle
— A »—{ B > —
chan. p w chan. g
Node 1 Node21 Node 3
blocked

* Virtual-channel flow control: A can use channel p and g using a second virtual channel

|—"—| —— ——

B
| A JBIMN A -,
chan.p LA chan. q l
Node 1 Node 2 Node 3
blocked
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F2.5 NoC Routing
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Routing

» Selects the path a packet takes from source to destination in a given topology

* Determines how well the potential of the given topology is exploited

e Balance load across the network channels to avoid hotspots and contention
 Difficult, particularly with non-uniform traffic patterns causing load misbalances

V1.0 ACA 34



Routing Algorithms

* Properties

* Minimal or non-minimal
* Minimal: select shortest paths
* Non-minimal: not limited to shortest paths only

e Oblivious or adaptive
* Oblivious: select route without considering information about current network state

* Deterministic: Subset of oblivious; always select same path between source and destination

* Adaptive: select route based on current network state

* Design aspects
e Table-based or algorithmic

* Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

e Algorithmic: Compute route using an algorithm usually implemented via combinational logic
* Deadlocks
» Situations where packets cannot make progress as they are waiting on one another to release resources
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Routing Example

* Routing decision in ring network: clockwise or counter-clockwise?

* Potential routing algorithms
* Greedy (deterministic, minimal): always pick the shortest direction
e Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

* Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter
direction
* Adaptive (adaptive, non-minimal): pick direction based on load of the local channels
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Dimension-order Routing

* First move towards x-dimension, then move towards y-dimension (XY)
* To increase the clarity, we will focus on 2D meshes in the following

* Example: 2D Mesh
0 e
oo

Dimension-order routing: Alternate route:
Deterministic and minimal non-minimal

* Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path
diversity
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Valiant’s Algorithm

* Packet from source s to destination d is routed via an intermediate node d*
* Randomly select intermediate node d* -
* Phase I: Route packet from s to d*

* Phase Il: Route packet from d“to d

e Use arbitrary routing algorithm for Phase I+ll,
e.g., dimension order routing for tori and meshes

e Can use arbitrary routing algorithm for the two phases
* For tori and meshes: Dimension-order routing as appropriate choice

e Valiant’s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t
exploit locality
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Valiant’s Algorithm

Minimal version of Valiant’s algorithm for k-ary n-cubes:

* Restrict intermediate node: d”lies in minimal quadrant
between s and d (subnetwork with s and d as corner nodes)

 Randomly selects among minimal routes

Steps:
 |dentify quadrant
e Select intermediate node d‘from quadrant
* Route fromstod’
* Route fromd‘tod

With dimension-order routing (either XY or YX): Doesn‘t use all paths
 |dea: Select randomly whether to use XY or YX (but: deadlock problem arises)

Preserves locality, improves load balancing (compared to deterministic routing)
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Deadlocks

e Deadlock: Situation where packets cannot make progress as they are waiting on each
other to release resources (buffers or channels)

>

u

e Example: D
* Nodes: 0, 1, 2, 3; Channels: u, v, w, x

A holds u and waits for v v

B holds v and waits for w

C holds w and waits for x

D holds x and waits for u

* Observation: Cycles pose a problem <
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Deadlock Avoidance: Restrict Routing

* Dimension Order Routing (k-ary n-meshes)
e E.g., first x then y (we have seen this approach already)
* Deadlock-free, but restricts path diversity

* Turn Model: Focuses on the turns allowed and the cycles they can form
e 2D mesh: 8 possible turns forming two abstract cycles

F1 0
Lt t

« XY Routing removes four turns (prevents deadlocks)
<= ! | |->
S | |
L <=!
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Deadlock Avoidance: Restrict Routing

* Turn Model: Focuses on the turns allowed and the cycles they can form
* Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

Fora3 o er
Lttt o L+t 1 L1t |

west-first: traveling west north-last: traveling north negative-first: traveling first
only allowed at the start only allowed as last direction west and south, then east
and north

 Removing any two turns does not prevent deadlocks

- ]
SR A
t T L, ¢
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Examples: West-First

 Example 1

<=
oo iy
|
i i o . L>J 1—4-'
west-first: traveling west
. . . only allowed at the start
s N
 Example 2 !

d -
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Channel Dependence Graph (CDG)

* Network topology:

e Channel Dependence Graph:
* One vertex for each channel

* Edges denote dependences

* Dependence exists if it is possible for channel i to wait for channel i+1
* 180° turns not allowed (e.g., AB - BA)
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Cycles in the CDG

e Channel Dependence Graph may contain cycles

— Remove selected
edges in the CDG
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Acyclic CDG

* Example: Remove Edges in the CDG (West-first turn model)
Cyclic CDG

Acyclic CDG
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A look at real Systems-on-Chip

Optional, not relevant for exam

PULP 2016, PULP 2022, SpiNNaker2



Simple SoC Architecture for loT / Wearables — Example - PULPino 2016

UART =—
RAM

* SoC: System-on-chip

e PULPino Architecture 2016: G"""""'__-‘

All memories are on the same chipas gp-—
the processor core

[Instructlon]

193UU02IAU] FIXY

 SoC Modules:

* Processor Core 5P|——[ e

* |Instruction memory

Data RAM
* Data memory [ J
* Input/output devices: UARR, SPI, GPIO | |
. Timer JTAG Adv. Dbg Unit

* Programming and Debug Devices: SPI

. L )
Slave and DEbUg Unit Source: CNX Software

e Connected by on-chip interconnect: https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-
AHB, AX|4 for-iot-and-wearables/
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Complex Multi-core SoC — Example PULP 2022

. ey | JEE i B
* More complex architecture SoC "
. ] MEMORY CLUSTER
* Different On-chip Interconnects = (=] . [
DC FIFO <4 DMA #0 #1 #M-1
* DMA: Direct Memory Access — | — L
Module to offload data o H B—
movements from the CPU o s P = |
EHE ST~ T
 Multi-Core with shared caches e || ][ E] e [B
-------- B o ] T T 2

Y
DCFIFO | ' SHARED IS |

All these modules are physically
integrated in one integrated circuit
(1C).

Source: https://iis-projects.ee.ethz.ch/index.php/PULP

=
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SpiNNaker2 Chip

* Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)

SerDes SerDes

L b | | Mesh NoC
FTY T T | T |
|y [ e [ ]
AAEARAEAE

o oy | g | A [ [ | A [e

ol e s s s o s

urN o PEEN _

=il 8 TITF = = |

irurarararersfl 780 0 o

Y Y Y Y T | T L TIE L Bl
HrarYraray F‘L
dAkdARARANE [ s | 1
L | | Ay | | ‘[ | ]
idh Ak ALAL AR S = 4

Source: SpinnCloud ' ﬁgﬁ‘i |
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Conclusion

* Bus-based On-chip Interconnect
* Network on-Chip

* Next Sessions: Specialized Cores
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Thank you for your attention
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