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Sources

• Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

• Slides inspired by the „On-Chip Networks I/II“ (L-15/L-16) lectures of Ryan Lee and Tushar 
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html
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F2.1 Introduction to NoCs



Motivation

• Need for scalability and reduced cost
• Avoid long interconnects/delays caused by increased system complexity

• Reduce wiring overhead caused by increasing number of system components

• Performance demands
• Goal: high bandwidth and low latency

• Concurrent communication required due to increased traffic

• Solution: Network-on-Chip (NoC)
• Move from bus to network (small-scale networks on chip-/system-level)

• Larger-scale networks in later lectures

• Broadcast can be avoided, but still possible via multiple messages (when required)

• Serialization achievable, e.g., by forcing the same path or via sequence numbers
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Motivation: Scalability

• Scalability: How to connect hundreds of processor cores / memory interfaces?

ACA 5
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• Objective: Connect nodes with each other via routers and wires, so that messages can be 
sent from source to destination

• Building blocks:
• Node: any component, e.g., processor, memory, or a combination of them

• Network interface: module connecting a node to the network

• Router: forwards data from inputs to outputs (network interfaces or other routers)

• Link: physical set of wires, e.g., connecting two routers

• Channel: logical connection between routers

• Message: unit of transfer for the nodes

• Packet: unit of transfer for the network

NoC Router
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Design

• Topology: What is the connection pattern of the nodes?

• Routing: Which path should a message take?

• Flow control: Which network resources are granted to a message over time?

• Traffic analogy
• Topology: defines roadmap, i.e., streets and intersections

• Routing: steering of the car, i.e., where to turn at each intersection

• Flow control: traffic light control, i.e., when a car can advance over the next part of the road
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F2.2 NoC Topologies



Topology

• Topology: arrangement of nodes and channels
• Determines e.g., number of hops, number of alternative paths, cost

• Properties for comparison
• Degree: number of links at each node

• Distance: number of links in the shortest route

• Diameter: maximum distance between any two nodes

• Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network 
into two equal parts (minimum for multiple possible cuts)
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Topology

• Direct networks: each terminal node is associated with a router; routers are sources/sinks 
and switches for traffic from other nodes

• Indirect networks: terminal nodes are connected via intermediate stages of switch nodes; 
terminal nodes are sources/sinks, intermediate nodes only switch traffic
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Fully Connected Networks

• Every node connected to every other node with a direct link

• N nodes, N∙(N-1)/2 links

• Degree: N-1

• Diameter: 1

• Bisection width: 𝑁/2 ∙ 𝑁/2

• Pros: high fault tolerance, low contention, low latency

• Cons: high costs for large N, limited scalability
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Ring (k-ary 1-cube)

• Each node connected to two other nodes

• N nodes, N links

• Degree: 2

• Diameter: 𝑁/2

• Bisection width: 2

• Pros: simple, low link costs

• Cons: high latency for large N, limited path diversity

ACA 12
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Mesh

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2𝑘 ∙ 𝑘 − 1  links

• Degree: 4

• Diameter: 2k-2

• Bisection width: k

• Pros: path diversity, regular and equal-length links

• Cons: large diameter, asymmetric (higher demand for center links)

ACA 13

Mesh
(here: 4-ary 2-cube)
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Torus

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2N links

• Degree: 4

• Diameter: k

• Bisection width: 2k

• Pros: avoids asymmetry and improves path diversity compared to mesh 

• Cons: unequal link lengths and higher cost compared to mesh

ACA 14
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Crossbar

• Connects n inputs to m outputs via 𝑛 ×𝑚  switches

• Switches enable concurrent communication between 
disjoint input/output pairs without blocking

• 𝑁 = 𝑛 ∙ 𝑚 nodes, 𝑛 ∙ 𝑚 links

• Diameter: 1

• Pros: non-blocking, latency (for small n, m)

• Cons: high cost, limited scalability

ACA 15
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Butterfly

• k-ary n-flies: kn nodes connected via n stages of kn-1 intermediate 
𝑘 × 𝑘 switches
• k: switch degree

• n: number of stages of switches

• Pros: lower cost compared to crossbar

• Cons: blocking, lack of path diversity, locality not exploitable
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Trees

• k-ary tree with N nodes and logk N stages

• Nodes are the leaves of the tree, switches at intermediate stages

• Messages are sent up to common ancestor, then sent down to
destination

• Pro: simple, cheap

• Cons: Bottleneck towards root
• Alternative: Fat tree, where links between switches closer to the root 

are increased

ACA 17
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Application-Specific Network-on-Chip Architectures

• Custom tailored NoC 
topology for chips with very 
unbalanced traffic demand 
for different PEs

• Example: NoC for a 3G 
Modem Chip (2014)
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F2.3 NoC Messages



Messages

• Message: logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, restricted maximum length
• Consists of header + segment of a message

• Flit (flow control digit): basic unit of bandwidth and storage allocation
• Contain no separate routing/sequencing information and therefore follow the same path in-order

• Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle

ACA 20
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Flow Control vs. Routing

• Flow control: Allocates resources (channels, control state, buffers) to packets
• Alternative view: resolve contention during packet transmission

• Contention: What happens if two packets want to use the same channel at the same time?

• Routing: Selects the path a packet takes from source to destination
• Determines how well the potential of the given topology is exploited

• Should balance load across network channels
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F2.4 NoC Flow Control



Flow Control

• Bufferless
• Dropping

• Misrouting

• Circuit switching

• Buffered
• Store-and-forward

• Cut-through

• Wormhole

• Virtual channel

ACA 23V1.0



Bufferless Flow Control: Dropping

• Competing packets: No buffers available, therefore drop “losing” packets, “winning” 
packet is allowed to proceed

• Example:

• Complete effort already invested in packet B is lost

• Source needs to be informed to about successful transmission or need for retransmission

ACA 24

Two packets A and B arriving, 
both requesting channel 0

Packet A “wins”, B is dropped and 
must be retransmitted from source

A A A A A 0

B B B B B 0

A A 0A A A
0

B B B

V1.0



• Time-space diagram with negative acknowledgements (nacks)
• Example: five-flit packets, four-hop route

• Alternative: no nacks, resend packet if ack is not received before a timeout

• Dropping: simple, wastes resources
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Bufferless Flow Control: Misrouting

• Competing packets: No buffers available, therefore misroute “losing” packets, “winning” 
packet gets the requested channel

• Example:

• Requires sufficient path diversity
• Routing needs to ensure that packet reaches its destination despite misrouting

• Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need 
to guarantee forward progress)
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• First allocate channels to build a circuit from source to destination, then send packets 
along the circuit, deallocate circuit after packets are sent

• Example: four-flit packets, five-hop route
• 1. Send request (R) to destination allocating channels along the way

• 2. Destination returns acknowledgement (A) to source

• 3. Data flits (D) are sent

• 4. Tail flit (T) deallocates the channel

• Circuit switching: simple, high latency, high overhead for circuits with short duration
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Buffered Flow Control

• Buffers allow to store data while waiting for the following channel
• Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

• Flow control now needs to allocate channels and buffers
• Allocation at packet or flit granularity

• Packet granularity: store-and-forward, cut-through

• Flit granularity: wormhole
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• Each node waits until packet is received completely before transmission to the next node

• Need to allocate channel and sufficient buffer space for the packet in the next node

• Example: five-flit packet, four-hop route without contention

• Store-and-forward: channels not held idle, only small buffers required, high latency due 
to serialization
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Could also be transmitted later if channel/buffer space is not available
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Buffered Flow Control: Cut-through (Packet-based)

• Flits are forwarded as soon as they are received and the following channel and buffer 
space is acquired (allocation still at packet granularity)

• Avoids waiting for receiving the complete packet before transmission

• Example: five-flit packet, four-hop route without/with contention

• Cut-through: high channel utilization, low latency, inefficient use of buffer storage and 
long contention latency due to packet-based allocation
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Buffered Flow Control: Wormhole (Flit-based)

• Similar to cut-through, but allocates channels and buffers to flits instead of packets
• Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
• Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
• Tail flit treated like body flit, but additionally releases virtual channel

• Blocking might occur as the single virtual channel belongs to a packet, while buffers are 
allocated to flits
• Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

• Wormhole: Saves buffer space, may block a channel mid-packet

• Improvement: virtual-channel flow control
• Associate multiple virtual channels (channel state and flit buffers) with single physical channel
• Other packets can use channel when one packet is blocked
• Competition for transmitting flits over single physical channel
• Reduces blocking, more complex routers
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Buffered Flow Control: Wormhole vs. Virtual-channel

• Wormhole flow control: When B blocks, channel p and q are idle

• Virtual-channel flow control: A can use channel p and q using a second virtual channel
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F2.5 NoC Routing



Routing

• Selects the path a packet takes from source to destination in a given topology

• Determines how well the potential of the given topology is exploited

• Balance load across the network channels to avoid hotspots and contention
• Difficult, particularly with non-uniform traffic patterns causing load misbalances
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Routing Algorithms

• Properties
• Minimal or non-minimal

• Minimal: select shortest paths
• Non-minimal: not limited to shortest paths only

• Oblivious or adaptive
• Oblivious: select route without considering information about current network state

• Deterministic: Subset of oblivious; always select same path between source and destination
• Adaptive: select route based on current network state

• Design aspects
• Table-based or algorithmic

• Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

• Algorithmic: Compute route using an algorithm usually implemented via combinational logic

• Deadlocks
• Situations where packets cannot make progress as they are waiting on one another to release resources
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Routing Example

• Routing decision in ring network: clockwise or counter-clockwise?

• Potential routing algorithms
• Greedy (deterministic, minimal): always pick the shortest direction

• Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

• Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter 
direction

• Adaptive (adaptive, non-minimal): pick direction based on load of the local channels
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Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)
• To increase the clarity, we will focus on 2D meshes in the following

• Example: 2D Mesh

• Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path 
diversity

ACA 37

Dimension-order routing:
Deterministic and minimal

Alternate route:
non-minimal
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Valiant‘s Algorithm

• Packet from source s to destination d is routed via an intermediate node d‘
• Randomly select intermediate node d‘

• Phase I: Route packet from s to d‘

• Phase II: Route packet from d‘ to d

• Use arbitrary routing algorithm for Phase I+II, 
e.g., dimension order routing for tori and meshes

• Can use arbitrary routing algorithm for the two phases
• For tori and meshes: Dimension-order routing as appropriate choice

• Valiant‘s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t 
exploit locality

ACA 38
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Valiant‘s Algorithm

• Minimal version of Valiant‘s algorithm for k-ary n-cubes:
• Restrict intermediate node: d‘ lies in minimal quadrant

between s and d (subnetwork with s and d as corner nodes)

• Randomly selects among minimal routes

• Steps:
• Identify quadrant

• Select intermediate node d‘ from quadrant

• Route from s to d‘

• Route from d‘ to d

• With dimension-order routing (either XY or YX): Doesn‘t use all paths
• Idea: Select randomly whether to use XY or YX (but: deadlock problem arises)

• Preserves locality, improves load balancing (compared to deterministic routing)
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Deadlocks

ACA 40

• Deadlock: Situation where packets cannot make progress as they are waiting on each 
other to release resources (buffers or channels)

• Example:
• Nodes: 0, 1, 2, 3; Channels: u, v, w, x

• A holds u and waits for v

• B holds v and waits for w

• C holds w and waits for x

• D holds x and waits for u

• Observation: Cycles pose a problem

u

v

w

x

D A

BC
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Deadlock Avoidance: Restrict Routing

ACA 41

• Dimension Order Routing (k-ary n-meshes)
• E.g., first x then y (we have seen this approach already)

• Deadlock-free, but restricts path diversity

• Turn Model: Focuses on the turns allowed and the cycles they can form
• 2D mesh: 8 possible turns forming two abstract cycles

• XY Routing removes four turns (prevents deadlocks)
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Deadlock Avoidance: Restrict Routing

ACA 42

• Turn Model: Focuses on the turns allowed and the cycles they can form
• Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

• Removing any two turns does not prevent deadlocks

west-first: traveling west 
only allowed at the start

north-last: traveling north 
only allowed as last direction

negative-first: traveling first 
west and south, then east 

and north

≡ ≡
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• Example 1

• Example 2
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Channel Dependence Graph (CDG)

• Network topology:

• Channel Dependence Graph:
• One vertex for each channel

• Edges denote dependences
• Dependence exists if it is possible for channel i to wait for channel i+1

• 180° turns not allowed (e.g., AB → BA)
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Cycles in the CDG

• Channel Dependence Graph may contain cycles

• Route through AB, BE, EF and route through EF, FA, AB → Deadlock
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Acyclic CDG

• Example: Remove Edges in the CDG (West-first turn model)
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A look at real Systems-on-Chip

PULP 2016, PULP 2022, SpiNNaker2

Optional, not relevant for exam



Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016

ACA 48

Source: CNX Software 
https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-
for-iot-and-wearables/

• SoC: System-on-chip

• PULPino Architecture 2016: 
All memories are on the same chip as 
the processor core

• SoC Modules:
• Processor Core
• Instruction memory
• Data memory
• Input/output devices: UARR, SPI, GPIO 
• Timer
• Programming and Debug Devices: SPI 

Slave and Debug Unit
• Connected by on-chip interconnect: 

AHB, AXI4
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Complex Multi-core SoC – Example PULP 2022 

ACA 49

Source: https://iis-projects.ee.ethz.ch/index.php/PULP

• More complex architecture

• Different On-chip Interconnects 

• DMA: Direct Memory Access – 
Module to offload data 
movements from the CPU

• Multi-Core with shared caches

• All these modules are physically 
integrated in one integrated circuit 
(IC).
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SpiNNaker2 Chip

• Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)

ACA 50

Source: SpinnCloud

Mesh NoC
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Summary



Conclusion

• Bus-based On-chip Interconnect

• Network on-Chip

• Next Sessions: Specialized Cores
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Thank you for your attention


	Folie 1
	Folie 2: Sources
	Folie 3
	Folie 4: Motivation
	Folie 5: Motivation: Scalability
	Folie 6: Network-on-Chip Basics
	Folie 7: Design
	Folie 8
	Folie 9: Topology
	Folie 10: Topology
	Folie 11: Fully Connected Networks
	Folie 12: Ring (k-ary 1-cube)
	Folie 13: Mesh
	Folie 14: Torus
	Folie 15: Crossbar
	Folie 16: Butterfly
	Folie 17: Trees
	Folie 18: Application-Specific Network-on-Chip Architectures
	Folie 19
	Folie 20: Messages
	Folie 21: Flow Control vs. Routing
	Folie 22
	Folie 23: Flow Control
	Folie 24: Bufferless Flow Control: Dropping
	Folie 25: Bufferless Flow Control: Dropping
	Folie 26: Bufferless Flow Control: Misrouting
	Folie 27: Bufferless Flow Control: Circuit Switching
	Folie 28: Buffered Flow Control
	Folie 29: Buffered Flow Control: Store-and-forward (Packet-based)
	Folie 30: Buffered Flow Control: Cut-through (Packet-based)
	Folie 31: Buffered Flow Control: Wormhole (Flit-based)
	Folie 32: Buffered Flow Control: Wormhole vs. Virtual-channel
	Folie 33
	Folie 34: Routing
	Folie 35: Routing Algorithms
	Folie 36: Routing Example
	Folie 37: Dimension-order Routing
	Folie 38: Valiant‘s Algorithm
	Folie 39: Valiant‘s Algorithm
	Folie 40: Deadlocks
	Folie 41: Deadlock Avoidance: Restrict Routing
	Folie 42: Deadlock Avoidance: Restrict Routing
	Folie 43: Examples: West-First
	Folie 44: Channel Dependence Graph (CDG)
	Folie 45: Cycles in the CDG
	Folie 46: Acyclic CDG
	Folie 47: A look at real Systems-on-Chip
	Folie 48: Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016
	Folie 49: Complex Multi-core SoC – Example PULP 2022 
	Folie 50: SpiNNaker2 Chip
	Folie 51: Summary
	Folie 52: Conclusion
	Folie 53: Thank you for your attention

