3

FUNDAMENTALS OF EDF
SCHEDULING

This chapter discusses the basic results for the EDF scheduling algorithm, re-
garding optimality and feasibility analysis, respectively. The optimality of a
real-time scheduling algorithm means that whenever a task set can be sched-
uled to meet all its deadlines, then it will be feasibly scheduled by the optimal
algorithm. Usually, a real-time scheduling algorithm must guarantee a prior:
that all deadlines of a particular task set are met. The problem is thus to estab-
lish whether a given task set can be feasibly scheduled by the chosen algorithm.
In the literature, a solution to this problem is termed feasibility analysis. In
this chapter, the optimality of the EDF algorithm, and a feasibility analysis for
task sets, when EDF scheduling is assumed, are described in detail.

The description in this chapter and the next is meant to present a basic, but
comprehensive theory of the EDF algorithm for independent tasks. The results
are presented for task models of increasing complexity, but always retaining
the notion of independent tasks. Three different concepts used in the analysis
are described: processor utilization, processor demand, and busy period. Each
concept is valuable in different contexts. In the remainder of the book more

sophisticated task modles are presented including task sets with dependencies
of various types.

One practical result of the basic theory presented in chapters 3 and 4 is an

algorithm that real-time system designers can use to analyze the feasibility of
EDF scheduled systems.

b

28 CHAPTER 3

3.1 OPTIMALITY ON UNI-PROCESSOR
SYSTEMS

The first result concerning the optimality of the EDF scheduling algorithm
was originally given in [13]. In this work the reference (system) model is quite
simple: there are n independent jobs in the system (i.e., n jobs with a single
instance each), all ready at time ¢ = 0, with each job J; having a deadline d;. For
any given scheduling sequence, the lateness of a job i is defined as [; = f; — d;,
where f; is its completion time. If the goal is to minimize the maximum lateness
of all jobs, assuming the schedule is non-preemptive, a simple solution is the
earliest-deadline first algorithm:

Theorem 3.1 (Jackson’s Rule) Any sequence is optimal that puts the jobs
in order of non-decreasing deadlines.

The proof of the theorem can be given by a simple interchange argument,
however it is not presented here, since it is similar to other arguments described

later, and applicable to more general optimality results.

Now consider some changes to the reference model. When release times are
introduced in the model, the problem becomes NP-hard [18]. However, if pre-
emption is allowed, even with release times the scheduling problem remains
easy, and, in particular, the EDF algorithm is one possible solution. Note that
release times are complications to task models which make scheduling problems
difficult and that allowing preemption tends to make the scheduling problems

easier.

The optimality of the EDF preemptive scheduling algorithm was first described
for a set of synchronous periodic tasks (i.e., all tasks share the same start
(release) time) by Liu and Layland [21], whose paper is considered a milestone
in the field of real-time scheduling. In particular, any synchronous periodic
task set, with deadlines equal to their respective periods, is feasibly scheduled
by EDF if and only if the processor utilization U = Y-, —% is not larger than
1. ! The optimality is given by the fact that the condition is necessary for any
algorithm. The condition is also sufficient for feasibility under EDF scheduling.

The optimality result (not the feasibility condition, though) was later extended
to asynchronous periodic task sets, with D; < T; for any i, by Labetoulle [17)

1 The proof is given in a later section.

Fundamentals of EDF Scheduling 29

where D; is a relative deadline. Another result is the proof of Dertouzos (7], in
which the optimality of the EDF scheduling algorithm (Theorem 3.2) is shown
for tasks with:

®m arbitrary release times and deadlines, and

® arbitrary and unknown (to the scheduler) execution times.

Theorem 3.2 (Dertouzos) The EDF algorithm is optimal in that if there
exists any algorithm that can build a valid (feasible) schedule on a single pro-
cessor, then the EDF algorithm also builds a valid (feasible) schedule.

Proof. By using a “time slice swapping” technique, it can be shown that any
valid schedule for the task set can be transformed into a valid EDF schedule.
In particular, by induction on ¢, the transformation is shown for any interval
[0,t) (note that all the parameters of the problem are assumed to be integers).

The theorem is trivially true for t = 0. Assume now that it is true for the
interval [0,t), that a task’s instance with absolute deadline d; is executed in
the interval [t,t+ 1), and that the earliest deadline among all instances pending
at time ¢ is d; < d;. Let ' be the first time at which the instance with deadline
d; is executed after t. By definition, ¢ < t'. Furthermore, since this is a
valid schedule, t' < d; < d;. It follows that by swapping the executions in the
intervals [t,t+1) and [t',t' +1), a valid EDF schedule is obtained in the interval
[0,t + 1). 0

Note that with a similar “time slice swapping” technique, the Least Laxity First
(LLF) algorithm was also proven optimal by Mok [23]. However, the LLF algo-
rithm has the disadvantage of a potentially very large number of preemptions,
and it is no longer optimal if preemption is not allowed [10].

When preemption is not allowed the scheduling problem is known to be NP-
hard. However, if only non-idling schedulers are considered, the problem is
again tractable. Namely, a scheduler is non-idling if it is not allowed to leave
the processor idle whenever there are pending jobs. In this subclass of non-
preemptive schedulers, the EDF algorithm is optimal.

This result was first shown by Kim and Naghibzadeh [16], who term the non-
preemptive non-idling EDF algorithm as the relative urgency non-preemptive
(RUNP) strategy.

30 CHAPTER 3

Theorem 3.3 (Kim and Naghibzadeh) The RUNP strategy is an optimal
non-preemptive scheduling strategy in the sense that if a system runs without
a task overrun under any non-preemptive scheduling strategy, the system also
runs without a task overrun under the RUNP strategy.

The theorem is proven assuming systems of sporadic tasks, with relative dead-
lines equal to the respective minimum interarrival times (D; = T; in our nota-
tion). The generalization to more general task sets, that is, the equivalent of
Dertouzos’ theorem, is due to George et. al. [9].

Theorem 3.4 (George et. al.) Non-preemptive non-idling EDF is optimal.

Proof. By using a “swapping” technique, it is shown that any finite valid
schedule can be transformed into a valid EDF schedule. In particular, let t;
and ¢, be the execution start times of two successive jobs in the valid schedule.
Assume both jobs were pending at t;, and d; > dy, where d; and d; are the
absolute deadlines of the two jobs, respectively. That is, at t; the scheduler
has not chosen the job with the earliest deadline.

If the executions of the two jobs are swapped, the resulting schedule is still
valid, since due to the condition d; > da the two jobs are still completed by
their respective deadlines, while the rest of the schedule remains unchanged.
In a finite number of such swaps the schedule is transformed into a valid EDF

schedule. O

What Theorems 3.2 and 3.4 show is that the EDF algorithm theoretically
dominates any other in the field of real-time uni-processor scheduling when
there is no system overload and all jobs are independent. Other practical
considerations may reduce its advantages, but its optimality still makes it one
of the best choices for real-time system designers.

It is also worth remarking that the EDF algorithm is not only optimal in the
sense of Theorems 3.2 and 3.4, but also “under various stochastic condition-
s” [28, 11]; but these are not treated in this book. Furthermore, because of
EDF optimality, in the following sections the terms “feasibility” and “feasibil-
ity under EDF scheduling” are used interchangeably.

Fundamentals of EDF Scheduling 31

3.2 FEASIBILITY ANALYSIS

This section focuses on techniques for the assessment of task set feasibility
under EDF scheduling. To assess the feasibility of a task set means to establish
whether the task deadlines are going to always be met.

Historically, the first feasibility analysis for synchronous periodic task sets was
given by Liu and Layland [21]. Afterwards, new approaches have been intro-

duced in order to relax some of the assumptions and to analyze more complex
task sets.

At present, sophisticated analysis procedures exist that are able to precisely as-
sess the feasibility of “almost” any task set in pseudo-polynomial time. Whether
the problem can be solved in fully polynomial time is still an open question [2].

In this section, the most important results concerning the feasibility analysis
of real-time task sets are described. The discussion spans from the relatively
simple model of synchronous periodic task sets, with relative deadlines equal
to their respective periods, to more complex models in which extensions like
deadlines not related to task periods, release jitter, and system overheads are

taken into account. The analysis of non-preemptive non-idling systems is also
described.

3.2.1 The Notion of Loading Factor

Two concepts are particularly helpful when analyzing the feasibility of real-time
task (job) sets: the processor demand and the loading factor. The processor
demand is a focused measure of how much computation is requested, with
respect to timing constraints, in a given interval of time, while the loading
factor is the maximum fraction of processor time possibly demanded by the
task (job) set in any interval of time.

Definition 3.1 Given a set of real-time jobs and an interval of time [ty,t2),
the processor demand of the job set on the interval [ty,t2) is

h’[thh) - Z: C’k

t1 <rp,dp<ta

Lol

32 CHAPTER 3

Uz,18) = ==
» 15 15
us12) = 7

O s il 3
ug4) = §

u = ¥

Table 3.1 Loading factor computation for the job set of Figure 3.1.

Namely, the processor demand on [t;, ;) represents the amount of computation
time that is requested by all jobs with release time at or after ¢; and deadline
before or at t,.

Definition 3.2 Given a set of real-time jobs, its loading factor on the interval
[t1,t2) is the fraction of the interval needed to execute its job, that is,

h[t -)
Uty ,te) = ﬁ

and its

Definition 3.3 Absolute loading factor, or simply loading factor, is the maz-
imum of all possible intervals, that is,

u = sup u[h,tz)‘
0<t; <tz

In other words, a job set (i.e., a set of task instances) has loading factor u if
in each interval of time [t;,¢,) the maximum amount of demanded cpu time is
at most u(t; — t;). For example, the job set of Figure 3.1 has loading factor
= lgeo, as shown in Table 3.1. Note that only the computation of the loading
factor on the most significant intervals is shown. It is easy to verify that the

loading factor on any other interval is less than those shown in Table 3.1.

Intuitively, a condition necessary for the feasibility under any scheduling al-
gorithm is that the loading factor is not greater than 1. In fact, not only is
this claim true, but the condition is also sufficient for feasibility under EDF
scheduling [25].

Figure 3.1 A set of three real-time jobs.

Theorem 3.5 (Spuri) Each set of real-time jobs is feasibly scheduled by EDF
if and only if
R &

Proof. “If’: Assume there is an overflow, that is, a deadline miss, at time
t. The overflow must be preceded by a cpu busy period, that is, a period of
continuous processor utilization, in which only jobs with deadlines less than
¢ are executed. Let to = t and t; be the last instant preceding t such that
there are no pending execution requests of jobs released before ¢; and having
deadlines less than or equal to t. Both ¢, and ¢, are well defined. See Figure 3.2
for an example. In particular, after ¢;, which must be the release time of some
job, the processor is allocated to jobs released after t, and having deadlines less
than ». Since there is an overflow at t,, the amount of cpu time demanded in
the interval [t1,ts) must be greater than the interval itself, that is

¥ B>l -h)

t1 <ry,dp <tz
It follows that
Y[ty ta) > 1

hence
w > 1,

a contradiction.

34 CHAPTER 3

]

|
I
1
C‘]=4 I l
|
) g i
0 3 ! ! 18 t
I 1
] 4 l
o |
— ' T
0 5 12 ; t
TIME OVERFLOW
Ci=6
] 1 I T T T T T T T
e e e e B e

Figure 3.2 EDF schedule (with time overflow) of the job set of Figure 3.1.

“Only If”: Since the schedule is feasible, the amount of time demanded in each
interval of time must be less than or equal to the length of the interval, that is

Vitita)is 3 iCrg (ta — 1)

t1<7k,dr <tz

It follows that
u[t],tg} S 17

hence
<l

O

Note that the result just shown also confirms the optimality of the EDF al-
gorithm for uni-processor systems. From this point of view the theorem is
equivalent to that by Dertouzos, previously described in Section 3.1. The main
outcome of the theorem, however, is that the problem of assessing the feasibil-
ity of a task set is equivalent to the problem of computing the loading factor
of the same task set. This fact is used in the following sections to show several
other results.

Fundamentals of EDF' Scheduling 35

3.2.2 Synchronous and Asynchronous
Periodic Tasks

As already mentioned, the first researchers to address the feasibility analysis of
a task set under EDF scheduling were Liu and Layland [21]. In their remarkable
work, the reference model consists of synchronous independent periodic tasks
(i.e., all tasks share the same start time, which, without loss of generality,
can be assumed to be 0), and with relative deadlines equal to their respective
periods (i.e., Vi, D; = T;). With this hypothesis, a necessary and sufficient
condition for the feasibility of a task set is that the processor utilization is
not greater than 1. This result can now be easily seen as a consequence of
Theorem 3.5.

Corollary 3.1 (Liu and Layland) Any set of n synchronous periodic tasks

with processor utilization U = Y-, ; is feasibly scheduled by EDF if and only
if '
U<l.

Proof. It is sufficient to show that the loading factor u of the task set (i.e.,
the loading factor of the instances generated by the task set) is equal to U. By
Theorem 3.5 the thesis then follows.

For any interval [t1,t2):

. 0%2[“ “J <yt '“(tr’fl‘;rr

t1 <ri,t2<dg i=1

| Q

that is,
u[t11t2) <_: U
Now, let t; = 0 and 3 = lem(T,...,T,):
Y1 2Ci
Ul tg) = __;Q_T_ U.
It follows
u="U.

a

In the previous corollary it is assumed that all the periodic tasks have a null
initial phasing, that is, for each task 7;, the first instance is released at time

36 CHAPTER 3

———t— | ———T—1— > TP T
012 3456789 10111213141516171819202122232425 t

Figure 3.3 EDF schedule of two periodic tasks with different initial phasing.

t = 0. Liu and Layland’s result is very simple and efficient to use, however, in
actual systems it may not be practical to start all periodic tasks at the same
time. A first relaxation to their reference model is thus to let each task have
its own start time. Namely, each task 7; is allowed to have a start time s;, the
time at which the first job of the task is released. In this way, the k* job of
Ti, Ji k, has release time

Tik = 8 + (k - 1)‘T,'

and deadline
dix = s8i + (k- 1)T; + D;,

where d; is the deadline of task i. Again, such task sets where the first instance
has a non-zero start time are termed asynchronous. It is still assumed that
Vi,D; = T;. See Figure 3.3 for an example of EDF scheduling with different
initial phasing.

Coffman [6] showed that the condition of having a processor utilization not
exceeding 1 is still sufficient for the feasibility under EDF of asynchronous
periodic task sets. His result, too, can be seen as a consequence of Theorem 3.5.

Corollary 3.2 (Coﬁ'man) Any set of n asynchronous periodic tasks with pro-
cessor utilization U = z —l, is feasibly scheduled by EDF if and only if

Ul

Proof. Once again, it is sufficient to show that « = U. For any interval [t1,12):

5 ck<§:[t2 Jc<zt"’ e z*tlzT,

t1<rk,ta<dj

Fundamentals of EDF Scheduling 37

that is,
Ulty o) = U.

Consider now the interval [0, s + mH), where m is an integer greater than 0,
s=max{n,....8n},a0d H =lem(Ty, ..., Ta):

: " mH DL
h[o,s+mH) = Z T G = mHZ T =mHU.
i=1 H e
It follows =
m
gt it
’ Lt = s+mH
and for arbitrary m
1> U

from which it can be finally concluded that v = U. By Theorem 3.5, the thesis
follows. m]

The importance of this result is that the feasibility condition introduced by
Liu and Layland can be efficiently used in asynchronous systems. That is, as
long as deadlines are equal to periods, the feasibility of task set can be assessed
by simply computing its processor utilization, whatever the start times of the
tasks are.

A further natural relaxation for the reference model thus far introduced is to
let the relative deadline of each task be different from the task period. That is,
deadlines and periods may not be necessarily related. In fact, in actual systems
it may be useful to specify deadlines shorter than periods, in order to improve
the responsiveness of a given task, or to enforce a minimum time gap between
two consecutive instances of the same task. Other times, it may be useful to
assign deadlines longer than periods, if responsiveness is not a requirement and
a maximum processor utilization is needed. If deadlines are longer than periods
note that two or more instances of the task may be active at the same time.
The runtime system must be designed to handle this situation.

Unfortunately, these relatively simple extensions to the reference model make
the feasibility analysis much more difficult. Indeed, even if attention is re-
stricted to task sets in which Vi, D; < T;, Leung and Merrill [19] proved that
the analysis becomes NP-hard.

Theorem 3.6 (Leung and Merrill) Deciding if an asynchronous periodic
task set, when deadlines are less than the periods, is feasible on one proces-
sor is NP-hard.

38 CHAPTER 3

The proof of the theorem is given by showing a polynomial reduction of the
Simultaneous Congruences Problem to the given feasibility decision problem.
The Simultaneous Congruences Problem is shown to be NP-complete by Leung
and Whitehead [20].

Further, Baruah et. al. [2] show that the Simultaneous Congruences Problem
is NP-complete in the strong sense which means that the feasibility decision
problem is even harder than initially proven. This extra difficulty is shown in
the following theorem.

Theorem 3.7 (Baruah et. al.) The problem of deciding whether an asyn-
chronous periodic task set when deadlines are less than the periods is feasible
on one processor is NP-hard in the strong sense.

The importance of this negative result is that it precludes the existence of
pseudo-polynomial time algorithms for the solution of this feasibility decision
problem, unless P=NP. In fact, the problem remains NP-hard in the strong
sense even if the task sets are restricted to have processor utilization bounded
above by any fixed positive constant.

Asynchronous task sets (which are defined as having known start times for the
tasks) are termed complete by Baruah et. al. [2]. Complete task sets are in
contrast to incomplete task sets where start times are not specified. According
to Baruah et. al., an incomplete task set is feasible if there is some choice of
start times such that the resulting complete task set is feasible.

So far, it has been shown that the feasibility analysis of complete task sets is
a very difficult problem. As can be easily guessed, the analysis of incomplete
task sets is exponentially more difficult.

Theorem 3.8 (Baruah et. al.) The problem of deciding whether an incom-
plete task set is feasible on one processor is }:2 -complete.

According to the notation of Garey and Johnson [8], the class Zz is the class
of problems NPNF,

The difficulty of this problem can be circumvented if the feasibility of incom-
plete task sets is defined in different terms. In fact, due to the strictness of
timing constraints, real-time system design is usually based on a worst case

& |

Fundamentals of EDF Scheduling 39

analysis. If it is assumed that the actual start times are fixed by the run-
time system, and hence, they are not known a priori, it seems reasonable to
determine the feasibility of the task set in any possible scenario.

Definition 3.4 An incomplete task set is feasible if for any choice of start
times the resulting complete task set is feasible.

With this new definition, the feasibility problem for incomplete task sets is
slightly simplified. In fact, it turns out that as our intuition suggests, the most
constraining scenario is when all tasks share the same start time. This permits
the restriction of attention to synchronous task sets. The proof of this fact,
which is also common to sporadic task sets, is given in the following section.

3.2.3 Sporadic Tasks

Not all the activities of a real-time system can be modeled with strictly periodic
tasks. Some tasks can be activated by external events or anomalous situations,
which do not necessarily occur at a fixed rate. Thus, it is necessary to introduce
into the reference model some form of aperiodic task, that is, a task released
irregularly.

The introduction of aperiodic tasks in a hard real-time system must be sub-
ject to some form of restriction such as a maximum rate. If a guarantee on
the execution of periodic task instances is still desired, as well as a determin-
istic responsiveness of the aperiodic workload, the computational bandwidth
demanded by the aperiodic tasks must be restricted in some way. The goal is
achieved by using the notion of sporadic tasks, a term introduced by Mok [23],
although the concept was already known earlier (see for example [16]).

Without ambiguity, the minimum interarrival time of a sporadic task 7; is de-
noted Tj, as is the period of a periodic task. Similarly, C; and D; denote
its worst case execution time and its relative deadline, respectively. Unless
otherwise stated, no particular relation is assumed between periods and corre-
sponding deadlines, which are thus arbitrary.

According to the definition, the k" instance of 7; has release time

Tik = Tik—1+ T

40 CHAPTER 3

Periodic

\
Sporadic T_l l ?_' I_| l : l
C NI.T 3 _l 5
C,=3 T,=5 |8 i h el v v PR l >

LT T B s T T s
9'123456789IUI]52131415161713192()2122232425 t

Figure 3.4 EDF schedule of two tasks: a sporadic one and a periodic one.

and deadline
dix =rix + D;.

See Figure 3.4 for an example of an EDF schedule with one sporadic task and
one periodic task.

Since the release time of any sporadic task instance is not known a priori, in
order to guarantee the feasibility under any possible scenario, the definition of
feasibility must take all situations into account.

Definition 3.5 A sporadic task set is feasible if for any choice of release' times
compatible with the specified minimum interarrival times, the resulting job set
18 feasible.

Note that this definition is quite similar to Definition 3.4, in that both refer to
all possible situations allowed by the problem specifications. Note also that ac-
cording to Dertouzos’ Theorem, the EDF algorithm is also optimal for sporadic
task sets.

Even if the feasibility of a sporadic task set may seem hard to study, it is
not difficult to see that the analysis can be limited to a particular set of task
instances [3]. In particular, it turns out that the worst possible scenario occurs
when each sporadic task 7; is activated synchronously (i.e., all tasks share the
same start time, 0 without loss of generality) and at its maximum rate, that
is, it behaves like a synchronous periodic task with period Tj. This is stated
formally in the following lemma.

Fundamentals of EDF Scheduling 41

Lemma 3.1 Given a set of n sporadic tasks T, and the corresponding syn-
chronous periodic task set 7', for any set of instances of tasks in T:

u<u

Proof. It is sufficient to prove that for any set of instances and V[t;,t5), there
exists an interval [t],t;) such that hye, 4,) < by,) For any interval [tq,t2):
() — PEL L

; to —t; — D;
h’[t:,ta) % Z (1 + l_z__jl_‘_—J) Ci.

D;<tz—ty

Let#f =0and t; =t — 1

o “t’z—tll—Di
2 Gl wai

D; <t} —t]
—t; — D;
T)
D;<tx—t; :

It follows: ;
hity ta) < higy o)+

O

The lemma proves that among all sets of instances possibly issued by a sporadic
task set, those with synchronous periodic releases have the maximum loading
factor. By Theorem 3.5, the feasibility of a sporadic task set is thus equiv-
alent to the feasibility of the corresponding synchronous periodic task set, as
previously addressed. This proves the following lemma.

Lemma 3.2 A sporadic task set is feasible if and only if the corresponding
synchronous periodic task set is feasible.

Note that Lemma 3.1 applies also to incomplete periodic task sets, whose fea-
sibility, as defined in Definition 3.4, can thus be similarly analyzed by looking
at the corresponding synchronous complete periodic task sets.

Lemma 3.3 An incomplete task set is feasible if and only if the corresponding
synchronous periodic task set is feasible.

42 ' CHAPTER 3

According to the previous lemmas, the feasibility analysis of periodic and Spo-
radic task sets can be unified, since in both cases it is reduced to the feasibility
analysis of synchronous periodic task sets. In the following sections, all re-
sults are thus discussed with respect to hybrid task sets (i.e., containing both
periodic and sporadic tasks).

3.2.4 The Processor Demand Approach

Unfortunately, whether the problem of deciding the feasibility of a hybrid task
set is tractable, is still an open question. In fact, while polynomial or pseudo-
polynomial time solutions are known for particular cases, it is also not clear
whether the problem in its general formulation is NP-hard 23]

A clear and intuitive necessary condition for the feasibility of any hybrid task
set is that the processor utilization is not larger than 1 [3].

Theorem 3.9 (Baruah et. al.) If a given hybrid task set is feasible under
EDF scheduling, then
<1,

Proof. Consider the synchronous periodic task set corresponding to the giv?n
hybrid task set. If the processor utilization is shown to be not greater than its
loading factor, by Theorem 3.5 the thesis follows.

Let H = lem(T3, ..., T,) and m be an integer greater than zero. In the interval
[0,mH + Drax), where Dy, is the maximum relative deadline, the processor

demand is -

mH
h{o,mH+ Dimex) 2 Z TCi =mHU,

g=1
from which i
U[0,mH+Drmax) = m’l

With m arbitrary, it follows
w217

O

It is not difficult to see that the condition of the previous theorem is no longer
sufficient for the feasibility of generic hybrid task sets. But, it is sufficient when
relative deadlines are not shorter than the corresponding periods [3].

Fundamentals of EDF Scheduling 43

Theorem 3.10 (Baruah et. al.) Given any hybrid task set T with D; >
T;,Vi, T is feasible under EDF scheduling if and only if U < 1.

Proof. Consider the synchronous periodic task set corresponding to 7, and let
[t1,12) be any interval of time. The processor demand in the interval is

to —t1 — D;
w2 G et

D;<ts—t,
to — 41 D; — T,‘)

< Z (= and L7

D;<t>—t, T; %

C;
<t —t) z T
D;<ta—t,
< e =
from which © < 1. By Theorem 3.5 the thesis follows. a

When dealing with generic hybrid task sets, the approach of the previous theo-

rem leads only to a sufficient (but not necessary) condition for feasibility under
EDF scheduling.

Theorem 3.11 Given any hybrid task set T, if
n
S B
e min{D;, T;}

then 1 1is feasible under EDF' scheduling.

Proof. Consider the synchronous periodic task set corresponding 7, and let
[t1,t2) be any interval of time. The processor demand in the interval is

ty —t; — D;
o ¢ (o[B8

D;<ta-t,
A
D;<t2—t; mln{ = 1}
<

ta — 1
Z min‘{Di,Ti}a

D;<ta—t

44 CHAPTER 3

s, =0 ‘Cl =3
D, =4 T, =4] | j j ’ } l
0 4 8 12 16 20 L
s 2 =0 ‘C2 =2
Dz =18 T2 =20 D l '
0 18 20 ’l
$3=0 C,=1 h l I l
D3 =3 T3 =10 !
(1] I] '2 |3]4 '5 Ta l7 KS l9 10 11 r” Il} II(Ili [16 'l7‘ I;lB [l’i 20 21 22 23 1t
Figure 3.5 EDF schedule of periodic tasks with deadlines different from their
periods.
n
of
< (2-t)) ———
; mm{Di, T,}
< fa-1,
from which u < 1. By Theorem 3.5 the thesis follows. t

An example of an EDF schedule with deadlines different from the corresponding

periods is depicted in Figure 3.5. Note that in the example, the condition of
: : " C; 8w 9 4 48

the previous theorem does notrhold, since) . mn(D;,] —4TistTs =3 > 1,

however, the task set is feasible, as can be clearly seen.

In order to develop a procedure for the feasibility assessment of generic hybrid
task sets, Theorem 3.5 can be reformulated. It has been shown that the feasi-
bility of a hybrid task set is equivalent to the feasibility of the corresponding
synchronous periodic task set. For any such set, the ratio between the proces-
sor demand and the length of the relative interval is maximized in the intervals
[0,t), for any t greater than zero®.

The processor demand of a synchronous periodic task set in the interval [0,1),
denoted for simplicity as h(t) from now on, is

A= N - (1 + [t }DJ) £

D;<t ¥

2As in Lemma 3.1, it is simpie to see that Rty t0) < hio,t,~¢,), for any interval [t1,¢2).

Fundamentals of EDF Scheduling 45

The condition © < 1, necessary and sufficient for the feasibility of the task
set, is thus equivalent to h(t) < t,Vt. The condition is formally stated in the
following theorem.

Theorem 3.12 Any given hybrid task set is feasible under EDF scheduling if
and only if

Vt, h(t) < t

Unfortunately, testing the processor demand on any interval [0,t) is not prac-
tical. However, Baruah et. al. [2, 3] show that it is a valuable approach to
find pseudo-polynomial solutions for the feasibility problem. In fact, they show
that it is sufficient to test the processor demand for a finite number of intervals,
which gives a pseudo-polynomial complexity in “most of the cases.”

Theorem 3.13 (Baruah et. al.) If the given hybrid task set is not feasible
and U < 1, then h(t) >t implies t < Dy ort < % max;=1 . o{T; — Di}.

Proof. Assume h(t) >t and t > Dyax.

t<hit) = ¥ (1+ [t‘TP"Dci

D;<t .

=~ (t+T; - D;
< i SR ;
5 ; (T;) i
n C n
- L —(T; — D;
; T +;l (i)
< tU+ ,max {T; — Di}U,
from which
t(1-U)<U. ,Imax {T; — D;}.
It follows

U
t<'1—__31m2.l.).(, {Ti—Di}.

-

A valuable consequence of this theorem is that whenever the processor utiliza-
tion of the hybrid task set is less than or equal to a fixed positive constant ¢

46 CHAPTER 3

smaller than 1, then the complexity of evaluating the feasibility of the task set
is pseudo-polynomial. In fact, U < ¢ implies

U c
< ;
=

According to the result just shown, the condition of Theorem 3.12 can then
be efficiently tested in O(nmax;=1,.. »{T; — D;}). Note that when U = 1 the
upper bound for ¢ is H + Dax [3], which can lead to an exponential complexity.

A suggestion for a further practical improvement in testing Theorem 3.12
condition is given by Zheng and Shin [31]. Accordingly, since the value of
L(t — D;)/T:] changes only on the set {mT; + D; : m = 0,1,...}, the in-
equality h(t) < t needs only to be checked on the set S = Ui, Si, where
Si={mT;+D;:m=0,1,..., |(tmax — D;)/T:]}, and tmax is the upper bound
on the values to be checked. In their work, ¢,y is found by stopping the alge-
braic manipulation of Theorem 3.13 a step earlier, thus obtaining a potentially

smaller value
1-U

tmax = Max Dmaxa

A third upper bound is similarly obtained by George et. al. [10]:

ED,-ST,- (1 . %) Ci
tmax = ey ;

In all cases, however, the resulting complexity of the feasibility analysis is
pseudo-polynomial only when U < ¢ < 1. Note that this is enough to make the
processor demand analysis a practical tool in many situations.

3.2.5 Busy Period Analysis

By using a completely different argument, a further upper bound on the values
of ¢ for which the condition of Theorem 3.12 must be evaluated can be deter-
mined. Its rationale is found again in the work of Liu and Layland [21], in
which it is proven that if a synchronous periodic task set is not feasible, then
a deadline is missed in the first period of processor activity, that is, before any
processor idle time.

Fundamentals of EDF Scheduling 47

Later, Spuri [25] and Ripoll et. al. [24] independently found that the result
also applies to synchronous periodic task sets with D; < T3, Vi, while the case
of generic synchronous periodic task sets is discussed by Spuri [26].

Theorem 3.14 (Liu and Layland) If a synchronous periodic task set is not
feasible under EDF scheduling, then in its schedule there is an overflow without
idle time prior to it.

Proof. The same argument given by Liu and Layland can be applied with the
new model. Assume there is an overflow at time t. Let t' be the end of the
last processor idle period before ¢, or 0 if there are none. t' must be the arrival
time of at least one instance. If all instances arriving after t' are “shifted” left
up to t', the processor workload in the interval [t’,f) cannot decrease. Since
there was no processor idle time between ¢’ and ¢, there is no processor idle
time after the shift. Furthermore, an overflow still occurs at or before t. By
considering the new pattern only from time #' on, the thesis follows.]

The immediate consequence of this theorem is that when checking the feasibility
of a hybrid task set, the evaluation of Theorem 3.12’s condition can be limited
to the interval of time preceding the first processor idle time in the schedule of
the corresponding synchronous periodic task set.

Any interval of time in which the processor is not idle is termed a busy period.
The interval of time preceding the first processor idle time® in the schedule of
a synchronous periodic task set is termed a synchronous busy period. The new
upper bound mentioned previously is the length L of the synchronous busy
period.

Given a hybrid task set and its corresponding synchronous periodic task set,
L can be computed by means of a simple procedure. Given any interval [0, 1),
the idea is to compare the cumulative workload W(t), i.e., the sum of the
computation times of the task instances arriving before time ¢, with the length
of the interval: if W (t) is greater than ¢ then the duration of the busy period is
at least W (t). The argument is then recursively applied to W (t), W (W (t)), ...,
until two consecutive values are found equal. Formally, L is the fixed point of
the following iterative computation:

L = Z;L o
{L(m+l) = W(f(m)), (3.1)

3Note that a processor idle period can have zero duration, if the last pending instance
completes and at the same time a new one is released.

48 CHAPTER 3

L® = 3+42+1=6

L) = Wl =2:34+1:241-1=9
B0 =W =308 415 2 T =10
L® = W(12)=3-3+1-2+2-1=13
L) == WS -4-311.242-1=16 |
2 = Bl =¢.3:12+2-1-18

(=B]

Table 3.2 Computation of the synchronous busy period length for the task
set of Figure 3.5.

where
= [t
W= HE
and L™ is the value computed at the mth step. The computation in Equa-
tion (3.1) is stopped when two consecutive values are found equal, that is,
L(m+1) = [(m) [is then set to L(m). Accordingly, the value found for L is
the smallest positive solution of the equation

z = W(z).

In Table 3.2 the computation of L for the task set of Figure 3.5 is shown. Note
that L is correctly assigned the value 16 and not 19. The reason is that at time
t = 16 all instances arriving earlier are completed. Even if at the same time
another instance is released, the situation is like having an idle period of length
0.

Note that the value of L does not depend on the scheduling algorithm, as long
as it is non-idling, since neither its definition nor its computation are related
to any particular algorithm. Furthermore, the synchronous busy period turns
out to be the longest one [26].

It can be easily proven that the sequence L(™) converges to L in a finite number
of steps if the overall processor utilization of the task set does not exceed 1 [26]
(recall that if this condition does not hold the task set is not feasible).

Lemma 3.4 IfU < 1, then the computation (3.1) converges in a finite number
of steps.

Fundamentals of EDF' Scheduling 49

Proof. Let H =lemi(Th 55 Th)-

n H n Ci

<1 =S WIH) = =5 .= — < H,
U< (H) ;[TJQ HgTi_
It follows that L < H, since W (t) is a non-decreasing function and W (0%) >
0. Furthermore, at each step L(™) is either increased by at least Cpnin or is
unchanged. The final value is thus achieved in a finite number of steps. O

As reported by Ripoll et. al:[24], the new bound L can speed up the feasibility
analysis of a task set. However, the worst case complexity of the analysis is
not improved. In particular, even with this different approach, the analysis has
pseudo-polynomial complexity if the processor utilization is U < ¢, with ¢ a
fixed positive constant smaller than 1 [26]. In this case:

% [L & L oLy n C: n
t-3 x| G"S.Z:(“’ﬁ) Ci=3 Ci+LY 7, <3 Gt Le
=1 "' i= e = =

from which i
L < Lz G i
- l-c

Hence, the feasibility analysis has time complexity O(n Y. i—; Ci), which is,
as claimed, pseudo-polynomial. Furthermore, since each step of the iterative
formula 3.1 takes O(n) time, also the computation of L takes O(n Y 1, Ci)
time. This leaves the question of whether there exists a fully polynomial time
solution for the feasibility problem as an open question.

3.2.6 Feasibility Analysis Algorithm

A practical algorithm for the feasibility analysis of hybrid task sets can be
developed by collecting the results described in the previous sections. The
algorithm, whose pseudo-code is reported in Figure 3.6, first checks whether
the processor utilization of the given task set is greater than 1. If this is the case,
according to Theorem 3.9 the task set is not feasible. Otherwise, the analysis
continues by checking the condition of Theorem 3.12, h(t) < t, on any interval
[0,t), with ¢ limited by the minimum among the three upper bounds previously
discussed. Only the values corresponding to actual deadlines of the synchronous
periodic arrival pattern are taken into account. Recall that if U < ¢, with a
fixed positive constant smaller than 1, the algorithm has pseudo-polynomial
complexity.

50

CHAPTER 3

Analyze(7):

if U > 1 then
return(“Not Feasible”);

endif
> (1=D:/THC;
t1 = max Dmaxa ZIELT},
ED-(T’“—D"/T‘)Ci
t2 i ; l]_(/' ’

L = synchronous busy period length;
tmax = mln{tl] tza L}’

SZU?ZI {mTi+Di:m=011y---}={el,€2,... 2

=1

while e}, < tax
if h(ex) > ex then

return(“Not Feasible”);

endif
k=k+1;

endwhile

return(“Feasible”);

[Zheng and Shin bound]

[George et. al. bound]

Figure 3.6 Pseudo-code of the algorithm for the feasibility analysis of hybrid

task sets.

Fundamentals of EDF Scheduling 51

3.2.7 Extended Task Models

In the reference model of hybrid task sets studied thus far, the tasks are charac-
terized by three timing parameters, namely maximum execution time, relative
deadline, and period, or minimum interarrival time if the task is sporadic.
However, some systems may require even more complex models (such as re-
lease jitter and sporadic periodic tasks) in order to be analyzed. Furthermore,
taking into account the additional costs of an actual system implementation is
required and in other situations analyzing the feasibility of systems in which
preemption is not allowed may be necessary. These aspects are briefly covered
in this section.

Release Jitter

Given a hybrid task set, task instances may arrive at any time, assuming period-
icity or minimum distance (time between two consecutive arrivals) constraints
are respected. However, in an actual system, an arrival must be recognized by
a run-time dispatcher, which then places the instance in some run-time queue.
The instance is then said to be released. The time between an instance arrival
and its release is known as release jitter. Note that the release of a task instance
can also be delayed by other factors, such as communication of tasks executing
on nodes in a distributed system.

So far, the analysis has been described with the implicit assumption of null
release jitter. In this section this assumption is removed. It is now assumed
that after each arrival, any instance of a task 7; may be delayed for a maximum
time J; before actually being released.

When a task experiences jitter, there can be arrival patterns in which two
consecutive releases of the same task are separated by an interval of time shorter
than 7}. Thus, intuitively, the worst case arrival pattern is one in which all tasks
experience their shortest inter-release times at the beginning of the schedule.
That is, the first instance of each task is released at time ¢t = 0, all others are
then released at time ¢ = max{kT; — J;,0}, Vi and Vk > 0. See Figure 3.7 for
an example.

Indeed, it can be shown that the maximum loading factor is obtained with
this arrival pattern, since the maximum ratio between processor demand and
interval length is obtained in the intervals [0, ¢) of this scenario. The processor

52 CHAPTER 3

i ohimd B) '

' S R g o

PR e o el ¥ -
; IO I] I2 I3]4 [5 lﬁ l'l 18‘ l9 Il 0 11 Il 2(f

Figure 3.7 Worst case arrival pattern for a task set with release jitter.

demand on such intervals becomes

K= % (1+ [%D—DC

D;<t+J;

since the situation is like having the first instance arrival of any task 7; at time

= —J;, and all others equally spaced by T;: all instances arriving at time t < 0
are actually released at time ¢ = 0. By applying the argument of Theorem 3.13,
Baruah, et. al.’s upper bound becomes

T max{ max {D; — J;}, 4

B e s L D}}

The upper bounds given by Zheng and Shin, and George, et. al. change in a
similar way.

The argument of Theorem 3.14 can still be applied to show that if the task
set is not feasible, then a time overflow is found in the initial busy period of
the EDF schedule, when the described arrival pattern is considered [26]. The
equations concerning the busy period analysis must be modified accordingly.

In particular, the iterative computation (3.1) must be modified in the definition
of the cumulative workload W (t), which becomes

wo =3[

The complexity of the feasibility analysis is not affected by the introduction of
release jitter in the task model.

Fundamentals of EDF Scheduling 53

Figure 3.8 Worst arrival pattern of sporadically periodic tasks.

Sporadically Periodic Tasks

The reference model can also be extended by introducing the notion of sporadi-
cally periodic tasks [1]. These sorts of tasks are intended to model the behavior
of events which may arrive at a certain rate for a number of times, and then not
re-arrive for a longer time. For example, there are interrupts which behave in
this way (they are also termed bursty sporadics). Sporadically periodic tasks
are assigned two periods: an inner period (t) and an outer period (T'). The
outer period is the worst case inter-arrival time between bursts. The inner pe-
riod is the worst case inter-arrival time between task instances within a burst.
There is a bounded number of arrivals to each burst (n).

It is assumed that for each task 7;, the total time for any burst (i.e., n;t;, the
number of inner arrivals multiplied by the inner period) must be less than or
equal to the outer period T;. Each instance may suffer a maximum release jitter
J;. “Ordinary” periodic and sporadic tasks, which are not bursty, are simply
modeled by assigning inner periods equal to the corresponding outer periods,
and by allowing at most one inner arrival.

It can be easily realized that for any given sporadically periodic task set, the
worst arrival pattern in terms of processor loading factor is obtained by “pack-
ing” as much as possible, the releases of task instances at the beginning of the
schedule. An example of such arrival pattern is depicted in Figure 3.8. As
previously, it is such that the first instances of all tasks are released at time
t = 0, and are ideally experiencing their maximum jitter. All the following
instances are then released as soon as possible.

54 CHAPTER 3

In particular, once again the argument of Theorem 3.14 can be applied to
prove that if the task set is not feasible, then a deadline is missed in the
initial busy period of the described arrival pattern. That is, the feasibility
analysis developed in the previous sections can be adapted to the new model
of sporadically periodic task sets [26].

The iterative computation (3.1) of the busy period length must again be modi-
fied in the definition of W (t) according to the new model. The definition of the
cumulative workload released up to time ¢ is now a bit trickier. If it is assumed
that the first instance of each task 7; ideally arrives at time ¢t = —J;, but it is
actually released at time ¢ = 0, as shown in Figure 3.8, the number of instances
of 7; arrived and released by time t, I;(t), can be computed as the sum of:

® 7, times the number of outer periods entirely fitting within an interval of
t + J; units of time, and

® the minimum between n; and the number of inner periods (rounded to the
smallest larger integer) which fit in the last part of the interval (t + J; —
[(t + J;)/T;] T; wide) preceding t.

That is,

t+ J; |
o

Li(t) = [

W (t) then becomes*

W(t) = zn: L(t)C:.
i=1

With a similar argument, the number of instances of task 7; with deadline
before or at t, H;(t), can also be determined, which is thus the sum of:

® n; times the number of outer periods entirely fitting within an interval of
t + J; — D; units of time, and

41t is not difficult to see that since the new model is more general than the previous one,
the computation of W(t) reduces to those previously shown when used with simpler models,
in which tasks do not have bursty behavior nor release jitter.

Fundamentals of EDF Scheduling 55

= the minimum between n; and the number of inner periods (rounded to the
largest smaller integer) which fit in the last part of the interval (¢ + J; —
D; — |(t + J; — D;)/T;) T; wide) preceding t, increased by 1.

That is,

t+J; - Di— |l | T,
i;

The condition found in Theorem 3.12, evaluated in the interval [0, L), can still
be utilized to test the feasibility of sporadically periodic task sets. The resulting
algorithm is basically similar to that described in Section 3.2.6.

Tick Scheduling

Feasibility analysis can be further extended in order to take into account the
costs of an actual EDF preemptive scheduler implementation. From this point
of view, the considerations are very similar to those made for fixed priority
scheduling. Thus, in what follows the approach is the same as that described
by Tindell, et. al. in [29].

According to [29] “Tick scheduling is a common way of implementing a priority
preemptive scheduler: a periodic clock interrupt runs a scheduler which polls
for the arrivals of tasks; any arrived tasks are placed in a priority ordered
run queue. The scheduler then dispatches the highest priority task on the
run queue.” In the most general case, task instances can arrive at any time,
and hence can suffer a worst case release jitter of Ttick, the period of the tick
scheduler (unless there are periodic tasks with periods which are multiple of

Ttick)'

Normally, the tick scheduler uses two queues: the pending queue, which holds a
deadline ordered list of tasks awaiting their start conditions, and the run queue,
a priority-ordered list of runnable tasks. “At each clock interrupt the scheduler
scans the pending queue for tasks which are now runnable and transfers them
to the run queue.” The system overhead that must be taken into account is

S e

B e T e e o o R S R S s ™ S i e

56 CHAPTER 3

the time needed to handle the two queues, and more precisely the time needed
to move tasks from one queue to another one.

In particular, like in the work of Tindell, et. al., the following implementation
costs are considered:

Ctick The worst case computation time of the periodic timer interrupt.
Cor The cost to take the first task from the pending queue.

Cgs The cost to take any possible subsequent task from the pending queue.

According to Tindell, et. al.’s analysis, the tick scheduling overheads over a
window of width w are

OV (w) = T(w)Clicx + min{T(w), K(w)}Cqr, + max{K (w) — T'(w),0}Cqgs,

(3.2)
where T'(w) is the number of timer interrupts within the window:
[w
T{w) = |
() | Ttick-l

and K (w) is the worst case number of times tasks move from the pending queue

to the run queue:
“[w + J;

=1

In order to extend the feasibility analysis to include this overhead, Theorem 3.14
must be generalized. Again, the generalization is achieved by looking at the
paper of Liu and Layland [21]: it is simply sufficient to reformulate their the-
orem in order to fulfill our needs. This theorem is proven with respect to a
task set scheduled by the deadline driven algorithm, in a system in which the
processor time is accumulated by a certain availability function, that is, only a
fraction of the processor time is devoted to the task schedule. The attention of
Liu and Layland is on sublinear functions, that is, functions for which for all ¢
and T

L) S Hee 1)~ £(2).

The reason is that when there is a task set scheduled by fixed priority scheduling
and another task set scheduled when the processor is not occupied by tasks of
the first set (i.e., in background), then the availability function for the second
task set can be shown to be sublinear. The new model, in which all tasks are

Fundamentals of EDF Scheduling 57

scheduled when the processor is not busy executing tick scheduler code, fits
perfectly in this description.

Theorem 3.15 (Liu and Layland) When the deadline driven scheduling al-
gorithm is used to schedule a set of tasks on a processor whose availability
function is sublinear, if there is an overflow for a certain arrival pattern, then
there is an overflow without idle time prior to it in the pattern in which all task
instances are released as soon as possible.

Proof. Similar to that of Theorem 3.14. O

The feasibility analysis must be modified accordingly. The computation of the
busy period length must take into account the additional load due to the tick
scheduler. Thus the workload arriving by time ¢ becomes®

W) =0V + 3 [t—-}—J—] c..

i=1
Equation (3.2) can be used to evaluate the availability function:
a(t) > max{t — OV (t),0}.
A sufficient condition for the feasibility of the task set is then
X ' t+Ji— D
t— OV > Di;ﬁ (1 4 [TD C;
for all absolute deadlines in the initial busy period. Note that the condition is

a generalization of Theorem 9 of [21].

Jeffay and Stone [15] extended the analysis to account for interrupt handling
costs. In this work, the authors analyze the feasibility of a set of hard deadline
tasks which execute in the presence of h interrupt handlers. The interrupt
handlers are treated as sporadic tasks running at the highest priority.

Non-Preemptive Non-Idling EDF Scheduling

When preemption is not allowed in the schedule of a task set, the problem
becomes much more difficult. If a priority based scheduler like EDF is utilized,

5The analysis is described by assuming hybrid task sets with release jitter. The argument
can be similarly applied to sporadically periodic task sets [26].

58

CHAPTER 3

Y

{__ Priority Inversion

Missed Deadline

Figure 3.9 Non-preemptive non-idling EDF schedule of two jobs.

..l___4.__ Imposed Processor Idle Time

dufe

Ly

Figure 3.10 Non-preemptive idling schedule of two jobs.

non-preemption may be the source of undesired priority inversions. In Fig-
ure 3.9, a typical situation is depicted. When the second job is released at time
r2, the execution of the first job cannot be preempted. The second job is forced

to wait for the completion of the first one, even if it has a shorter deadline.

In this case the effect of the priority inversion is so bad as to invalidate the

schedule, since the second job misses its deadline.

The situation can be improved if the scheduler is allowed to keep the processor
idle, even when there are pending jobs. In the example, if the processor is
left idle between r; and rs, the second job can be executed first. As shown in
Figure 3.10, if such idling decision is taken, no deadline is missed, that is, the

schedule is valid.

E |

—

Fundamentals of EDF Scheduling 59

Unfortunately, as mentioned in Section 3.1, the feasibility problem for idling
systems, which are more general than non-idling ones, is NP-hard. Further,
Howell and Venkatrao [12] show on one hand that “the decision problem of
determining whether a periodic task system is schedulable for all start times
with respect to the class of idling algorithms is NP-hard in the strong sense,
even when the deadlines are equal to the periods.” On the other hand, they
also formally prove that there cannot exist an optimal on-line idling algorithm
for scheduling sporadic tasks, and that if a sporadic task set is schedulable by
an on-line idling algorithm, then it is also schedulable by an on-line non-idling
algorithm. These arguments, as well as practical reasons, motivate the choice
of restricting the attention only to the suboptimal class of non-idling scheduling
algorithms, among which EDF is optimal.

The analysis of task sets scheduled by the non-preemptive non-idling EDF algo-
rithm (termed simply non-preemptive EDF in the following) is not much more
difficult than that discussed thus far for preemptive systems. The processor de-
mand and busy period approaches are still useful and can be adapted without
much effort. The impact of non-preemption, and hence of priority inversions
is, in fact, limited and can be easily taken into account in the equations.

It turns out that any task instance may be subject to at most only a single
priority inversion, which can be easily bounded. Assume there is an overflow in
the schedule at time ¢, as shown in Figure 3.11. An argument similar to that of
Theorem 3.14 can be applied. Let t' be the last time before ¢ such that there
are no pending instances with arrival time earlier than ¢’ and absolute deadline
before or at t. By choice, ¢ must be the arrival time of a task instance, and
there is no idle time between t' and ¢.

A lower priority instance (i.e., with deadline after t) may be executing before
t'. If it is not completed by t', owing to its non-preemptability, a priority
inversion occurs. However, after its completion only task instances arrived at
t' or later, and having deadline before or at t are executed. In the schedule of
such instances there may be several priority inversions, but only the first one
has an impact on the deadline missed at time ¢.

If all “higher priority” instances are “packed” to the left, so that the corre-
sponding tasks are released synchronously from time t', an overflow is still
found at ¢ or earlier. This proves the following lemma [10].

Lemma 3.5 (George, et. al.) If a hybrid task set is not feasible under non-
preemptive EDF scheduling, then there is an overflow at time t in the initial

e o s

e e e T

e

it

60 CHAPTER 3

"Higher Priority”
Tasks

- .

— 1« Priority Inversion

"Lower Priority”
Tasks

Figure 3.11 Busy period preceding an overflow in a non-preemptive non-
idling EDF schedule.

busy period when all tasks with relative deadline less than or equal to t are
released synchronously from time 0, and all others, if any, are released one unit
of time earlier.

Accordingly, having assumed a discrete scheduling model, for any deadline at
time ¢ the maximum penalty introduced by the non-preemption is

- 1
with the convention that the value is zero if Aj : D; > t. The processor demand
approach must then be corrected by adding this value to h(t). The condition
of Theorem 3.12 now becomes

Vt, h(t) + g:ag{cj =1} <t

A similar feasibility condition is shown by Kim and Naghibzadeh [16] for spo-
radic task sets with deadlines equal to periods, although the assumed scheduling
model is continuous. Jeffay, et. al. [14] also prove similar results, but assume
periodic and sporadic task sets within a discrete scheduling model. Zheng and
Shin [31] extend their feasibility condition for preemptive EDF, described in
Section 3.2.4, to non-preemptive EDF. All these results are finally generalized
by George, et. al. [10] in the following theorem.

Theorem 3.16 (George, et. al.) Any hybrid task set with processor utiliza-
tion U < 1 is feasible under non-preemptive EDF if and only if

Vte S, h(t) + gljg‘{cj -1} <t,

Fundamentals of EDF' Scheduling 61

where 3
t — s
o kT; + D;,k=0,... — 1%,
Ut 0, |}

and tmax = min{L, tl, tz}-

As for the preemptive case, L is the length of the initial busy period in a
synchronous arrival pattern. According to Lemma 3.5, any possible deadline
miss is found in a busy period. Since L is the length of the longest busy period,
it is an upper bound on the absolute deadlines to check. The other upper
bounds, t; and t2, are obtained by algebraic manipulations of the condition

{1 = max {Dmax, 2oieg (1= Dy/T) C‘i} ,

1-U
s > p;<r; (1 = Di/T;) C; + maxi=,...n{Ci — 1}
2 = : - .
1-U

The algorithm described in Section 3.2.6 can then be used to check the feasi-
bility of any task set according to Theorem 3.16. Similar to the preemptive

model, the complexity is pseudopolynomial whenever U < ¢, with ¢ a fixed
positive constant less than 1.

3.3 SUMMARY

A theory for EDF feasibility analysis has been described in this chapter. In the
simplest case, it has been shown that the feasibility of an independent periodic
task set can be established by just computing the task set processor utilization
U: the task set is then recognized as feasible if and only if U < 1.

If asynchronous periodic tasks with deadlines not necessarily equal to their
periods are considered, the problem becomes intractable, since it has been
shown to be NP-Hard in the strong sense, which excludes even the existence of
a pseudo-polynomial solution, unless P=NP.

In the general case, U < 1 is only a necessary condition, as expected. New inter-
esting techniques based on processor demand and busy period approaches have

I ———

62 CHAPTER 3

been developed to analyze more complex task sets. The result is a pseudo-
polynomial solution for the analysis of hybrid task sets, that is task sets in-
cluding both periodic and sporadic tasks. Whether a fully polynomial solution
exists is still an open question.

The algorithm for the pseudo-polynomial solution has been described. Exten-
sions necessary to handle models including release jitter, sporadically periodic
tasks and tick schedulers have also been discussed. The description of how
to apply the approach to non-preemptive non-idling EDF schedulers has been
given.

[1]

[4]

[5]

[9]

REFERENCES

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings, “Ap-
plying New Scheduling Theory to Static Priority Pre-emptive Scheduling,”
Software Engineering Journal, September 1993.

| S.K. Baruah, L.E. Rosier and R.R. Howell, “Algorithms and Complexity

Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks on
One Processor,” Real-Time Systems 2, 1990.

S.K. Baruah, A.K. Mok, and L.E. Rosier, “Preemptively Scheduling Hard-
Real-Time Sporadic Tasks on One Processor,” Proc. of IEEE Real-Time
Systems Symposium, 1990.

G.C. Buttazzo and J.A. Stankovic, “RED: A Robust Earliest Deadline

Scheduling Algorithm,” Proc. of 3rd Int. Workshop on Responsive Com-
puting Systems, 1993.

G.C. Buttazzo and J.A. Stankovic, “Adding Robustness in Dynamic Pre-
emptive Scheduling,” in Responsive Computer Systems: Toward Integra-
tion of Fault Tolerance and Real-Time, Kluwer Press, 1994.

E.G. Coffman, Jr., “Introduction to Deterministic Scheduling Theory,” in

E.G. Coffman, Jr., Ed., Computer and Job-Shop Scheduling Theory, Wiley,
New York, 1976.

M.L. Dertouzos, “Control Robotics: the Procedural Control of Physical

Processes,” Information Processing 74, North-Holland Publishing Com-
pany, 1974.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, 1979.

L. George, P. Muhlethaler, and N. Rivierre, “Optimality and Non-
Preemptive Real-Time Scheduling Revisited,” Rapport de Recherche RR-
2516, INRIA, Le Chesnay Cedex, France, 1995.

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

DEADLINE SCHEDULING FOR REAL-TIME SYSTEMS

L. George, N. Rivierre, and M. Spuri, “Preemptive and Non-Preemptive
Real-Time Uni-Processor Scheduling,” Rapport de Recherche RR-2966,
INRIA, Le Chesnay Cedex, France, 1996.

J. Hong, X. Tan, and D. Towsley, “A Performance Analysis of Minimum
Laxity and Earliest Deadline Scheduling in a Real-Time System,” IEEE
Transactions on Computers, Vol. 38, No. 12, Dec. 1989.

R.R. Howell and M.K. Venkatrao, “On Non-Preemptive Scheduling of
Recurring Tasks Using Inserted Idle Times,” Information and Computa-
tion 117, 1995.

J.R. Jackson, “Scheduling a Production Line to Minimize Maximum Tar-
diness,” Research Report 43, Management Science Research Project, Uni-
versity of California, Los Angeles, 1955.

K. Jeffay, D.F. Stanat, and C.U. Martel, “On Non-Preemptive Schedul-
ing of Periodic and Sporadic Tasks,” Proc. of IEEE Real-Time Systems
Symposium, 1991.

K. Jeffay and D. L. Stone, “Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems,” Proc. of IEEE Real-Time Systems Sym-
posium, 1993.

K.H. Kim and M. Naghibzadeh, “Prevention of Task Overruns in Real-
Time Non-Preemptive Multiprogramming Systems,” Proc. of Performance
80, Association for Computing Machinery, 1980.

J. Labetoulle, “Some Theorems on Real-Time Scheduling,” Computer Ar-
chitectures and Networks, E. Gelembe and R. Mahl (Eds.), North Holland
Publishing Company, 1974.

J.K. Lenstra and A.H.G. Rinnooy Kan, “Optimization and Approximation
in Deterministic Sequencing and Scheduling: A Survey,” Ann. Discrete
Math. 5, 1977.

J.Y.-T. Leung and M.L. Merrill, “A Note on Preemptive Scheduling of
Periodic, Real-Time Tasks,” Information Processing Letters 11(3), 1980.

J.Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks,” Performance Evaluation 2,
1982.

C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the Association for
Computing Machinery 20(1), 1973.

REFERENCES 65

[22] Locke C.D., Vogel D.R., and Mesler T.J., “Building a Predictable Avion-

ics Platform in Ada: A Case Study,” Proc. of IEEE Real-Time Systems
Symposium, 1991.

[23] A.K. Mok, “Fundamental Design Problems of Distributed Systems for the
Hard Real-Time Environment,” Ph.D. Dissertation, MIT, 1983.

[24] I. Ripoll, A. Crespo, and A.K. Mok, “Improvement in Feasibility Testing
for Real-Time Tasks,” Real-Time Systems 11, 1996.

[25] M. Spuri, “Earliest Deadline Scheduling in Real-Time Systems,” Doctorate
Dissertation, Scuola Superiore S.Anna, Pisa, Italy, 1995.

[26] M. Spuri, “Analysis of Deadline Scheduled Real-Time Systems,” Rapport
de Recherche RR-2772, INRIA, Le Chesnay Cedex, France, 1996.

[27] M. Spuri, “Holistic Analysis for Deadline Scheduled Real-Time Distributed

Systems,” Rapport de Recherche RR-2873, INRIA, Le Chesnay Cedex,
France, 1996.

[28] J.A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo, “Implications

of Classical Scheduling Results for Real-Time Systems,” IEEE Computer,
June 1995.

[29] K. Tindell, A. Burns, and A.J. Wellings, “An Extendible Approach for

Analysing Fixed Priority Hard Real-Time Tasks,” Real- Time Systems 6(2),
1994.

[30] K. Tindell and J. Clark, “Holistic Schedulability Analysis for Distributed

Hard Real-Time Systems,” Microprocessors and Microprogramming 40,
1994.

[31] Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-Time Chan-
nels in Point-to-Point Packet-Switched Networks,” IEEE Trans. on Com-
munications 42(2/3/4), 1994.

