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2 RISC-V Assembly and Compilers

a) Can you mix C-Code and assembly code in one project? What do you need to take care about?

Solution: Yes, but you must adhere to the ABI

b) What is the RISC-V instruction to add register al and a2 and store the result in a0?

Solution: ADDI a0, al, a2

¢) What is the RISC-V instruction to subtract 4 from register al and save the result in register a2?

Solution: ADDI a2, al, -4

d) What alternative instruction can you use to multiply a value by 4 if you do not want to use the MUL
instruction?

Solution: SLLI <rd>, <rsl>, 2

e) Your current PC value is 0x00AA0000 What is the PC value after executing the instruction J 16?
Solution: J 16 is pseudo instruction for JAL zero, 16;

PC,.,, =PC+16

= OxO0AA0000 + 0x10
= Ox00AA0010

PC value will be 0x00AA0010

£\ Warning

Most tools do not allow to add immediates to J-Type instructions. Thus, it is not well defined.
According to TUWEL question immediate will not be shifted and taken as it is.

f) Write the RISC V assembly that implements this C function. Please make sure to adhere to the RISC-V
ABL

1 int acc ( int * x )
2 {

3 int z;

4 z =x [0] + x [1] + x [2] + x [3];

5 return z ;

6 }

1 acc: asm
2 LW t0, 0(a0)

3 LW t1, 4(a0)

4 LW t2, 8(a0)

5 LW t3, 12(a0)

6 ADD t0O, tO ,tl

7 ADD t2, t2, t3

8 ADD a0, tO, t2

9 JALR zero, O(ra) // ret

g) Generate the LLVM IR representation with no optimization and explain the generated LLVM IR code.

P
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Solution: > clang -S -emit-1lvm acc.c -o acc noopt.ll --target=riscv32 will result in

1
2 ; Funct
3 define
4 %2 =
5 %3 =
6 store
7 %4 =
8 %5 =
9 %6 =
10 %7 =
11 %8 =
12 %9 =
13 %10 =
14 %11 =
15 %12 =
16 %13 =
17 %14 =
18 %15 =
19 %16 =
20 %17 =
21 %18 =
22 store
23 %19 =
24 ret i
25 }
Explanations:

ion Attrs: noinline nounwind optnone
dso_local 132 @acc(i32* noundef %0) #0 {
alloca i32*, align 4

alloca i32, align 4

132*% %0, 132** %2, align 4

load i32*, i32** %2, align 4

getelementptr inbounds 132, i32* %4, 132 0
load 132, i32* %5, align 4

load i32*, 1i32** %2, align 4

getelementptr inbounds 132, i32* %7, i32 1
load 132, i32* %8, align 4

add nsw 132 %6, %9

load i32*, 1i32** %2, align 4
getelementptr inbounds 132, i32* %11, i32 2
load 132, i32* %12, align 4

add nsw 132 %10, %13

load 1i32*, 132** %2, align 4
getelementptr inbounds 132, i32* %15, i32 3
load 132, i32* %16, align 4

add nsw 132 %14, %17

132 %18, 132* %3, align 4

load 132, i32* %3, align 4
32 %19

Line 4,5,6,7,10,11,14,22,24 Stack frame and load stores for input parameter and return value (for

debug),

Line 8,11,15 getelementptr is pointer arithmetic. In this case fist 132 is type, second 132* %4 is the
basepointer and third i32 0 is the offset (first element 0, next 1, next 2, next 3). For integer
variables with width 32 bit = 4 byte, in byte addressable memory these offsets should then be

multiplied by 4 for address offsets. Attribute inbounds promises the pointer access will not be out
of bounds (segmentation fault).
The rest of the code is straight forward, load, add and return.

h) Generate the LLVM IR representation with optimization level O2 and explain the generated LLVM IR
code.

Solution: > clang -S -emit-1lvm acc.c -o acc opt.ll -02 --target=riscv32 produces:
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1
2 ; Function Attrs: mustprogress nofree norecurse

3 nosync nounwind readonly willreturn

4 define dso_local 132 @acc(i32* nocapture noundef
5 readonly %0) local unnamed addr #0 {

6 %2 = load 132, 132* %0, align 4, !tbaa !4

7 %3 = getelementptr inbounds 132, i32* %0, i32 1
8 %4 = load 132, 132* %3, align 4, !tbaa '4

9 %5 = add nsw 132 %4, %2

10 %6 = getelementptr inbounds i32, i32* %0, 132 2
11 %7 = load 132, i32* %6, align 4, !tbaa !4

12 %8 = add nsw 132 %5, %7

13 %9 = getelementptr inbounds i32, i32* %0, i32 3
14 %10 = load 132, i32* %9, align 4, !tbaa '4

15 %11 = add nsw 132 %8, %10

16 ret 132 %11

17 }

18

Explanations:

« The lines Line 4,5,6,7,10,11,14,22,24: of the non-optimized code were removed.

i) Compile the optimized version to RISC-V assembler and compare the result to your written solution.

Solution: >clang -02 acc.c -o acc opt.S -S --target=riscv32 produces:

1 .text
2 .attribute 4, 16

3 .attribute 5, "rv32i2p0 m2p0 a2p0O c2p0O"
4 .file "acc.c"

5 .globl acc

6 .p2align 1

7 .type acc,@function

8 acc:

9 lw al, 0(a0)

10 lw a2, 4(a0)

11 lw a3, 8(a0)

12 lw a0, 12(a0)

13 add al, al, a2

14 add al, al, a3

15 add a0, a0, al

16 ret

17 7/ ...
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3 Static Code Analysis

3.1 Data and Control Flow Analysis

Given is the program solvequad that computes the solutions z; and x, of the quadratic equation ax? +
bz 4+ c=0as:

_—b+vb2—4ac —b—Vb?% —4ac

7 2a T2 = 2a

We assume that the solutions are always real. The following program is used to compute the solutions:

1 void solvequad ( double a , double b , double c , double * x1 , double * x2 ) {
2 * x1 = ( -1 b + mysqrt (b *b -4* a * ¢ ) ) /2% a ;
3 * x2 = ( -1* b - mysqrt ( b *b -4%x a * c ) ) /2% a ;
4 }

5 double mysqrt ( double x ) {

6 double y =0.22222 + 0.888889 * x ;

7 int i = 0;

8 while (i <3)

9 {

10 =0.5* (y+x/y);

11 =1 +1;

12 }

13 return y ;

14 }

The three-address code is given as:
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1 solvequad:
2 tl := -1* b
3 t2 :=2*% a
4 t3 :=b *b
5 t4 :=4* a
(1) B1
6 t5 1= t4 * ¢
7 t6 := t3 - t5
8 param t6
9 t7 := call mysqrt ,1
10 t8 := t1 + t7
11 t9 := tl1 - t7
12 t10 := t8 / t2
13 t1l := t9 / t2 (2) B2
14 * x1 := tlo
15 * x2 = tll
16 return
17 mysqrt:
18 t12 := 0.888889* x
19 y :=0.222222+ t12 (3) B3
20 i :=0

21 mysqrt_loopl:

22 tl13 :=x/y

23 t1l4 =y + t13

24 y :=0.5*% t14 (4) B4
25 i:=1+1

26 if 1 < 3 goto mysqrt_loopl

27 return y } (5) B5

a) Mark the basic blocks in the IR code.

Solution: Comments in code

b) Draw the control flow graph for this program.

B1 B3
B4
B2 B5

Figure 1: Control flow graph
c) Draw the data flow graph for each basic block of the IR code.

Solution:

7/ 62



Static Code Analysis — Code optimization

Advanced Computer Architecture (191.019)

-1 b

o

™

t3

t1

o o

t4

e

t5
to
7

t2 t

o>

Figure 2: Data Flow graph for basic Block B1

3.2 Code optimization

The Taylor expansion can be used to compute an approximation of the sine function:

The following sub-optimal implementation of this approximation is given as a C function:

sin(z) ~ = —

float sine taylor(float x) {

(x*x*x) / (3*%2*%1) + (x*x*x*x*x) /(5*%4*3*2*1);

1

2 float sinx;
3 sinx = X -
4 return sinx;
5}

A straight-forward translation of this program into intermediate representation leads to the following

three address code:

3
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1 tl = x * x

2 t2 = t1 * x

3 t3 =1 %2

4 t4 := t3 * 3

5 t5 :=t2/ t4
6 t6 :=x - t5

7 t7 = x * X

8 t8 = t7 * t7
9 t9 := t8 * x
10 t10 =1 * 2

11 t11 := t10 * 3
12 t12 := t11 * 4
13 t13 := tl12 * 5
14 t14 := t9 / t13
15 sinx := t6 + tl1l4

16 return sinx

a) Optimize this IR code using classical compiler optimization steps one by one and name the optimization
method.

Solution:
1) Constant propagation (calculate the constants and use them as such):

1 tl =X * X

2 t2 = tl1 * x

3 t5 :=t2/ 6

4 t6 =X - t5

5 t7 =X * X

6 t8 = t7 * t7

7 t9 := t8 * x

8 t14 := t9 / 120
9 sinx := t6 + tl14
10 return sinx

2) Common subexpression elimination (remove double calculation of 2 and x3):

1 tl =X * X

2 t2 = t1 * x

3 t5 =t2 /6

4 t6 :=x - t5

5 t9 = t1 * t2

6 t14 := t9 / 120
7 sinx := t6 + tl14
8 return sinx

3.3 Live variable analysis

a) Conduct a live variable analysis to compute the set of live variables at the entry and end of basic block
B1. For this provide USE[B1], DEF[B1], OUT[B1] and IN[B1].

The IR code for B1 is given as:
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1 Bl:

2 tl = x[i];

3 t2 = t1 * c ;

4 t2 = t2 -5;

5 j=3+1;

6 z [j] = t2;

7 if t2 < 0 goto B3
8 B2:

9

B2 and B3 are successors of B1 with current IN[B2]= {z, 2,4, j} and IN[B3]= {z, t2}.

Solution:

« USE[B1] = {z,1,¢, 7, 2} (this does not include the variables from DEF)
« DEF[B1] = {t1,t2}

« IN[B1] = USE[B1] U (OUT[B1] — DEF[B1]) = {z,4,¢, j, 2}

« OUT[B1] = IN[B2] U IN[B3] = {z, 2,1, j, t2}

b) How many registers do you need to use to store all values in this basic block?

Solution: Draw lines for each variables lifetime next to the code, this is probably the easiest way to

check.

It is 6. 4 for the variables that are in IN and OUT ({z, i, j, z}), one for ¢ in the beginning, and one shared
register for t1 and t2.

c) Bonus: Given is the C-Code for the quicksort algorithm as well as the IR code and the control flow
graph on the next pages. Run the complete live variable analysis for the quicksort algorithm.

This is solved in the solutions.
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4 Five Stage Pipeline and Branch

Prediction

4.1 Scalar in-order 5-stage Pipeline

Given are the following RISC-V Assembly codes for the same function.

© 60 N O U b W N R

=
(<]

1
2
3
4
5
6
7
8
9

acCc:

lw t0,0(a0)
lw t1,4(a0)
add to0,t0,tl
lw t1,8(a0)
add t0,t0,tl
lw t1,12(a0)
add t0,t0,tl

acc:

mv a0, to
ret
1w al, 0(a0)
lw a2, 4(a0)
lw a3, 8(a0)

lw a0, 12(a0)
add al, al, a2
add al, al, a3
add a0, a0, al
ret

a) Determine the number of cycles it takes to execute this program on the scalar, in-order, 5-stage pipeline

from the slides without forwarding paths.

Solution: Draw the data dependencies into the code and note down how many cycles delay they cause.

Then count up the instructions and the added delay cycles.

The ret instructions takes 3 cycles, since it takes one for normal executions and the next 2
instructions get discarded because of the jump.

1) 19 cycles
2) 14 cycles

b) Determine the number of cycles it takes to execute this program on the scalar, in-order, 5-stage pipeline

from the slides with forwarding paths.

Solution:
1) 14 cycles
2) 10 cycles
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4.2 Branch Prediction

In machine learning a possible activation function is leaky ReLU. For each acti-vation output a; scales the
negatives linear accumulators z; with a small factor ¢ and the positive with a larger factor d.

The following integer implementation is given as c function:

1 void act leaky relu size64(int *z , int *a, int c, int d) {
2 int 1i;

3 for (i = 0; i < 64; i++) {
4 if ( z[i] < 0) {

5 ali] = z[i] * c;

6 } else {

7 alil = z[i] * d;

8 ¥

9 ¥

10 return;

11 }

A CLANG compilation of this program for RISCV32 leads to the following assembly code:

1 (...) asm
2 act leaky relu size64: // BO

3 1i a4, 0

4 1i a6, 256 (1) BO
5 j .LBBO 2

6 .LBBO 1: // Bl

7 mul a7, a5, a7

8 add a5, al, a4

9 addi a4, a4, 4 (2) B1
10 sw a7, 0(a5)

11 beq a4, a6, .LBBO 4

12 .LBBO 2: // B2

13 add a5, a0, a4

14 lw a5, 0(ab) (3) B2
15 mv a7, a2

16 bltz a5, .LBBO 1

17 i a7, a3 // B3 }(4) B3
18 j .LBBO 1

19 .LBBO 4: // B4

20 ret } (5) B4
21 .Lfunc endO:

22 (...)

Assume z, 2;, 23 to be positive and 2, to be negative. Create a table for different branch predictors with
the following contents:

« Code Line Nr. of Branch that is executed.
Predictor State (with entry for branch instruction address, use code line number as substitute)

« Prediction Direction
« Direction
+ Prediction Correct/Wrong
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a)

b)

Branch Target buffer entry (use Assembly Code Line Nr. as substitute for the branch instruction address
and branch target address)

What is the basic block sequence of execution up to the computation of a3? Use the assigned basic
block nr. to indicate the basic block, e,g, a jump to label LBBO_2 is equal to a jump to B2.

Solution: Basic Block Sequence:
B0, B2, B3, B1, B2, B3, B1, B2, B1, B2, B3, B1

Start: BO

For positive zy, z; : Two times B2, B3, Bl
For negative z, : B2, Bl

For positive z3 : B2, B3, Bl

Local Branch Predictor, 2-bit, start state undefined: Predictor always uses not taken (NT) as first
prediction if no BTB entry exists, and then initializes to weakly not taken (WNT) state. No entries are
cached in the BTB. The BTB has two slots for entries. Unconditional jumps and return statements are
ignored by the predictor.

Solution: We assume if there is no predictor state entry yet, that we initialize with the weak state.

Basic Branch Pred. . ) Wrong/ Pred. BTB Pred. BTB
. . Direction

Block Line Nr. | Direct. Correct | State1l | Entry1 | State2 | Entry2
B0 - - - - - - - -
B2 L16 NT NT C L16:WNT | L16:L6 - -
B3 - - - - L16:WNT | L16:L6 - -
B1 L11 NT NT C L16:WNT| Li6:L6 |L11:WNT| L11:L19
B2 L16 NT NT C L16:SNT | Li6:L6 |[L11:WNT| L11:L19
B3 - - - - L16:SNT | Li6:L6 |[L11:WNT| L11:L19
B1 L11 NT NT C L16:SNT | Li6:L6 | L11:SNT | L11:L19
B2 L16 NT T \W% L16:WNT | L16:L6 L11:SNT | L11:L19
B1 L11 NT NT C L16:WNT| Li6:L6 | L11:SNT | L11:L19
B2 L16 NT NT C L16:SNT | Li6:L6 | L11:SNT | L11:L19
B3 - - - - L16:SNT | Li6:L6 | L11:SNT | L11:L19
B1 L11 NT NT C L16:SNT | Li6:L6 | L11:SNT | L11:L19
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5 Out of Order Execution

5.1 Instruction Dependencies

The following integer implementation is given as c function:

1 void act leaky relu size64(int* z, int *a, int c, int d) {
2 int 1i;

3 for (i=0; i<64; i++) {

4 if (z[1]<0) {

5 alil = z[i] * c;

6 } else {

7 alil = z[i] * d;

8 }

9 ¥

10 return;

11 }

A CLANG compilation of this program for RISCV32 leads to the following assem-bly code:

1 (...) asm
2 act leaky relu size64: // BO

3 1i a4, 0

4 1i a6, 256 (1) Bo
5 j .LBBO 2

6 .LBBO 1: // Bl

7 mul a7, a5, a7

8 add a5, al, a4

9 addi a4, a4, 4 (2) B1
10 sw a7, 0(a5)

11 beq a4, a6, .LBBO 4

12 .LBBO 2: //B2

13 add a5, a0, a4

14 lw a5, 0(ab) 3) B2
15 mv a7, a2

16 bltz a5, .LBBO 1

17 i a7, a3 // B3 }(4) 53
18 j .LBBO 1

19 .LBBO 4: // B4

20 ret }(5)B4
21 .Lfunc endO:

22 (...)

a) Mark all RAW, WAW, and WAR dependencies in the program. Only consider local dependencies within
the basic blocks (not across basic blocks). Solution:
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(o)
act leaky relu size64: // BO

1i a4, 0

1li a6, 256 (1) BO

j .LBBO 2

.LBBO 1: // Bl
mul a7, a5, a7

0 N o U A W N

add a5, al, a4|WAR on line 7]

©

addi a4, a4, 4|WAR on line 8] (2) B1

=

(
(

0 ( swa7, 0(a5)|RAW on line 7,8)
(

11 ( beq a4, a6, .LBBO 4|RAW on line 9)

12 .LBBO 2: //B2
13 add a5, a0, a4

14 (1w a5, 0(a5)|WAW and RAW on line 13)

15 mv a/, a2
16 ( bltz a5, .LBBO 1|RAW on line 13)

17 mv a7, a3 // B3
(4) B3
18 j .LBBO 1

19 .LBBO 4: // B4

20 ret }(5)B4
21 .Lfunc_endO:
22 (...)

5.2 Out of order processors

Given is the following basic block.

(..)) (asm]

1

2 .LBBO 1: // Bl

3 mul a7, a5, a7
4

add a5, al, a4|WAR on line 3]

sw a7, 0(a5)|RAW on line 3,4]

(

5 ( addi a4, a4, 4|WAR on line 4)
(
[

beq a4, a6, .LBBO 4|RAW on line 5)

8 (...)

a) Draw the pipeline diagram for the simple out of order pipeline from the slides (single instruction fetch,
no renaming, no reorder buffer) with scoreboard.
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Cycle

mul a7, a5, a7

add a5, al, a4

addi a4, a4, 4

10

11

12

13

sw a7, 0(a5)

beq a4, a6, .LBBO 4

We stall here because the pipeline does not allow an instruction with a WAW or WAR dependency to a

previous one to enter.

b) Discuss, what is the problem with the scheme to block instructions with WAW and WAR dependencies to

enter the pipeline.

Solution: They stall the pipeline for longer than necessary and prevent the following instructions from

entering, even if they could be executed without any conflicts.

c) What alternative scheme could be used when not using register renaming for the WAR dependencies?
What would be the resulting pipeline diagram?

Solution: The next instruction can be issued immediately after the WAR-dependency instruction has
gone through the RO stage.

Cycle

mul a7, a5, a7

add a5, al, a4

addi a4, a4, 4

sw a7, 0(ab5)

beq a4, a6, .LBBO 4
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6 VLIW and Superscalar

6.1 VLIW

The following C code with corresponding RISC-V assembler code is given:

C-Code: RISC-V Assembly Code (scalar)
1 #define N 2 1 // a0: adl, al: ad2,
2 2 // a2: asl, a3: as2, a4: s
3 void func(int *adl, int *ad2, 3 func:

4 int *asl, int *as2, int s) { 4 1i to, 0 // i=0

5 unsigned int 1i; 5 1i t1, 8

6 for(i =0; i < N; i++){ 6 loop:

7 adl[i] = s+asl[i] + as2[i]; 7 lw t2, 0(a2)

8 ad2[i] = asl[i] - as2[il; 8 add t4, t2, a4

9 } 9 lw t3, 0(a3)

10 } 10 add t4, t4, t3
11 sw t4, 0(a0)
12 sub t4, t2, t3
13 sw t4, 0(al)
14 addi a0, a0, 4
15 addi al, al, 4
16 addi a2, a2, 4
17 addi a3, a3, 4
18 addi to, to, 4
19 bne tl, t0, loop
20 ret

Given the following RISC-V VLIW pipeline with static dual issue, where slot-1 can execute ALU/branch
instructions and slot-2 can execute load/store instructions:

Forwarding

Slot 1

B ALU
N BTA
B N Branch Comp.
I &
Slot 2

N = |

a) Perform loop unrolling, optimizing the assembly code of the loop of the function for execution on the
VLIW pipeline.

v

v

¥

]

Solution: Remove loop, since N is statically 2. So the loop only runs two times.

1) Remove Loop:
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1 // a0: adl, al: ad2, a2: asl, a3: as2, ad: s
2 func:

3 lw t2, 0(a2)

4 add t4, t2, a4
5 lw t3, 0(a3)

6 add t4, t4, t3
7 sw t4, 0(a0)

8 sub t4, t2, t3
9

10 lw t2, 4(a2)
11 add t4, t2, a4
12 lw t3, 4(a3)
13 add t4, t4, t3
14 sw t4, 4(a0)
15 sub t4, t2, t3
16 sw t4, 4(al)
17 ret

2) Change registers to remove double use

1 // a0: adl, al: ad2, a2: asl, a3: as2, a4: s
2 func:

3 lw t2, 0(a2)

4 add t4, t2, a4

5 lw t3, 0(a3)

6 add t4, t4, t3

7 sw t4, 0(a0)

8 sub t4, t2, t3

9

10 lw t5, 4(a2)
11 add t6, t5, a4
12 lw t7, 4(a3)
13 add t6, t6, t7
14 sw t6, 4(a0)
15 sub t6, t5, t7
16 sw t6, 4(al)
17 ret

3) Reorder instructions to remove data dependencies

18 / 62



VLIW and Superscalar — Superscalar

Advanced Computer Architecture (191.019)

1 // a0: adl, al: ad2, a2: asl, a3: as2, ad: s asm
2 func:

3 lw t0, 0(a2)

4 w t1, 0(a3)

5 lw t4, 4(a2)

6 lw t5, 4(a3)

7

8 add t2, t0, a4
9 add t2, t2, tl1
10 sw t2, 0(a0)
11 sub t3, t0O, tl
12 sw t3, 0(al)
13

14 add t6, t4, a4
15 add t6, t6, t5
16 sw t6, 4(a0)
17 sub t7, t4, t5
18 sw t7, 4(al)
19 ret

b) Schedule the assembly code and create the schedule for the static dual issue RISC-V pipeline specified
above by filling in the table.

Solution:

Slot 1: ALU/Branch | Slot 2: Load/Store
nop lw t0,0(a2)
nop lw t1,0(a3)
add t4,t0,a4 lw t2,4(a2)
add t4,t4,tl lw t3,4(a3)
sub t5,t0,tl1 sw t4,0(a0)
add t4,t2,a4 sw t5,0(al)
add t4,t4,t3 nop

sub t5,t2,t3 sw t4,0(a0)
ret sw t5,0(al)

6.2 Superscalar

Assume the simple superscalar RISC-V pipeline of the script with dual fetch, decode and issue, as well as
forwarding. The size of the issue buffer is 8. There is a ROB and Commits (CO) should be in-order (multi-
commits in same cycle allowed).

The following functional units are available:

« ALU, ADD: 1 cycle latency; 1 cycle interval

« MUL: 2 cycles latency; 1 cycle interval (pipelined)
+ DIV: 4 cycles latency; 4 cycles interval (serial)

« LSU:

» LU: 2 cycles latency; 1 cycle interval (non-blocking)

» SU: 1 cycle latency, Store Buffer; 1 cycle interval
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Dependencies are handled as follows without register renaming:

« RAW hazards are handled by the scoreboard. The instruction can be issued when all previous
instructions with RAW dependency are at least in their finish state (last cycle of execute), hence, values
are ready to be forwarded or available in the register file.

« WAR hazards are resolved by the scoreboard. The instruction can be issued when all previous
instructions with WAR dependency are at least in their RO state (cycle before execute).

« WAW hazards are resolved by a ROB. Instructions can only be committed one cycle after all previous
instructions with WAW dependency committed.

a) Execute the following code. Draw the pipeline diagram and calculate the achieved IPC value
(instructions per clock cycle).

1 1w al, 0(ad)

(div a2, a4, al|RAW to line 1)

N

3 (sw a2, 4(a0) [RAW to line 2]

4 addi a3, a4, 5

5 (slli a4, a3, 5|/WAR and RAW to line 4]

[o)]

(mul a4, a4, a7[RAW and WAW to line 5]

Solution:

Cycle
lw al, 0(a0)

div a2, a4, al
sw a2, 4(a0)
addi a3, a4, 5

slli a4, a3, 5

mul a4, a4, a7

The ROBs for the addi and s11i are there because of interrupts. If the code gets interrupted/throws
an exception in e.g. the sw instr., the value of addi and s11i must not be written.

The ROB in the last line is because of the WAW hazard to the s11i before it.

12
IPC=—=2
6
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7 Caches und Memories

7.1 Cache Structure

The cache system should be capable of addressing at least 42 MiB of memory. Each data word is 4 bytes in
size, and the cache itself has a total capacity of 8 KiB, organized into blocks of 256 bytes each. Determine
the number of address bits required with word addressing.

a) Analyze the following three cache configurations:
« Direct-Mapped Cache
+ 4-Way Set Associative Cache
o Fully Set Associative Cache

For each configuration, determine the minimum number of bits required for the Tag, Index, and Offset,
as well as the total address length.

Solution:
Type Tag | Index | Offset | addr. length
Direct-mapped | 13 |5 6 24
4-Way setass. |15 (3 6 24
Fully ass. 18 |0 6 24
Explanations:

addr. length Is always the same. The next power of 2 from 42 is 64 = 2°. 1 MiB takes 20 bit to address.
Therefore we need 26 bit for byte addressing, and 24 bit for word addressing.
Offset Is always the same, depends on the cache blocksize. Used to index into the 256 byte blocks in
the cache. To address 256 bytes, we need 8 bits, therefore we need 6 bit for word addressing,.
Index Bits needed to address one “block of memory” in the cache.
Direct-Mapped Every 256 byte block gets its own address => 13 — 8 = 5 bit (13 to address the 8
KiB cache, remove 8 to address the 256 byte block)
4-Way set ass. 4 of the 256 byte blocks share one address => 13 — 8 — 2 = 3 bit
Fully ass. There is only one set of memory => we need no address to select.
Tag the rest, so Tag+Index+Offset=addr. length

b) For the addresses 0x000DEADB and 0x000BE33F, compute the corresponding values of Tag, Index, and
Offset for both the Direct-Mapped and 4-Way Set Associative cache configurations. Provide your
answers in both binary and hexadecimal formats, omitting leading zeros where applicable.

Solution:

Type Full Tag Index | Offset
Direct-mapped | 6b0000116111161|01611|011611 | 0x1BD | OxB 0x1B
4-Way set ass. | 0b000011011110101|011|011011 | Ox6F5 | 0x3 0x1B
Direct-mapped | 0b00001601111100|011600|111111 | 0x17C | OxC Ox3F
4-Way set ass. | 0b000010111110001|100]|111111 | 6x5F1 | 0x4 Ox3F

7.2 Caching Hierachy

The processor used in this task has the following specification:
« Clock Frequency: 2 GHz
« Access time to L1-Cache: 3 Cycles
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« Access time to L2-Cache: 30 Cycles
« Access time to L3-Cache: 300 Cycles
+ Access time to main memory: 1000 Cycles

Hint: The access time of the L2 cache already includes the access time incurred by an L1 cache miss.
Similarly, the access time of the L3 cache includes the time taken to miss in both L1 and L2 caches. This
same principle applies to main memory access time, which includes the cumulative delay of misses in all
cache levels.

a)

b)

Assume the CPU performs 600,000 memory accesses. The hit rate (h) is 90% for the L1 cache, and 80%
for both the L2 and L3 caches. Calculate the miss rate and the access time for each individual memory
module.

Solution:
Layer | Miss rate | Misses | Access time
L1 10% 60000 | 1.5ns
L2 20% 12000 | 15ns
L3 20% 2400 | 150ns
main | 0% xD 0 500ns

Discuss the impact of cache misses at different levels on overall system performance.

By what factor does the effective memory access time improve when using an L2 cache in addition to
an L1 cache, compared to using only the L1 cache? How does the introduction of a third-level (L3)
cache affect this?

To calculate this, determine ¢ 4 for the scenario without an L2/L3 cache and ¢ , for the scenario with
aLland a L2 Cache, but no L3-Cache. .4  represent the time of all 3 utilized cache levels.

To analyze this, calculate:

* to : the effective memory access time when only an L1 cache is used (no L2 or L3).
* ty ,: the effective access time when both L1 and L2 caches are used, but no L3 cache.
* B, the effective access time when all three cache levels are utilized.

Use these values to compare performance improvements and the contribution of each cache level.

Hint: Use this formula to calculate the AMAT (average memory access time):
boit = P - Eeacne + (1 = h) - fopiy
Solution:
o tegr, = hpy -t + (L —hyy) g = 0.9-1.5+0.1-500 = 51.35ns
o tegr, = Pyt + (L= hyy) - (Bro - to + (1 — hyy) - tyaw) = 12.55ns
o o, = byt + (L —hyy) - (Rt + (1 —hyy) - (hrg -t + (1 — hyg) - taim)) = 6.95ns

+ speed up with L1: % =9.737

» speed up with L1+L2: % = 39.841

+ speed up with L1+L2+L3: g’%% = 71.942

. Ctefiy _ 51.35ns _
» relative speed up L1 to L2: ﬁ = J5 e = 4.092

. Ctefiy _ 51.35ns _
« relative speed up L1 to L3: ﬁ = Tt = 1.388

. Ctemy _ 12.55ns
« relative speed up L2 to L3: teffiz = Goras = 1.806
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From this we can see, that more cache levels are more effective (no shit sherlock...)

Assume a 2-level cache hierarchy where the L2 cache has significantly greater capacity than the L1
cache. Can the hit rate of the L1 cache even be higher than that of the L2 cache?

If so, explain elaborate multiple reasons.

Solution: Yes this is possible.

For example: Build a program, that runs in a loop and completely fits into the L1 cache. At some points
in the program, it jumps to a random address and returns back into the loop.

This means, that the L1 cache has a hitrate of almost 1, except for the random jumps. If they are rare
enough, they can be neglected.

The hitrate of the L2 cache only counts with the misses from the L1 cache. Since the jumps are to
random positions, the data is also not in the L2 cache, which leads to a miss rate of 100%.

This example assumes, that the random jump does not kick any instruction from the L1 cache. But it
can be safely assumed, that it is possible to construct such a program.

From solution document:

« Data patterns access far distant entries (Program fow)

« Sub-optimal Global Cache Configuration (Exclusive/Inclusive filling)

+ Sub-optimal Local Cache Configuration (Direct/Full/Different associativity would be more beneficial)
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8 RISC-V Vector (RVV) Instruction Set

8.1 Vector Pipeline Diagrams
A RISC-V Vector Unit is configured as follows:

« VLEN = 256 bits (register length)

« LMUL = 2 (number of registers per vector)

« SEW = 32 bits (selected element width — width of one element in the vector)
« VL = VLMAX (number of elements in one vector)

Vector Functional Units are designed with:

« VADD: 128 bits wide (4 32-bit lanes), pipelined, 3 cycles latency

« VMUL: 128 bits wide (4 32-bit lanes), pipelined, 5 cycles latency

« VLSU: 128 bits wide (4 32-bit lanes), pipelined, 4 cycles latency for loads, 2 cycles latency stores

+ 1 Vector Register Write Port, 2 Vector Register Read Ports. On conflict, oldest instruction gets priority.

Given the following RISC-V Vector Code:

1 vle32.v v0O, (al) asm
2 vmul.vx v2, vO, tO

3 vadd.vv v4, vO, v2

4 vse32.v v4, (a2)

Draw the pipeline state of the vector unit for this code. Assume this vector unit allows for chaining results
between vector functional units.

LMUL - VLEN

VLMAX =
SEW

16
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Solution:

Instruction Register 1 12 13 14 15 16 17 18 19
vle32.v vO, (al) vo[0-3] R

vle32.v vO, (al) vO[4-7]

vle32.v vO, (al) v1[0-3]

vle32.v vO, (al) v1[4-7]

vmul.vx v2, vO, t0O vO[0-3]

vmul.vx v2, vO, tO vO[4-7]

vmul.vx v2, vO, tO v1[0-3]

vmul.vx v2, vO, toO v1[4-7] \%
vadd.vv v4, vO, v2 vO[0-3] stall
vadd.vv v4, vO, v2 vo[4-7] stall
vadd.vv v4, vO, v2 v1[0-3] stall
vadd.vv v4, v0O, v2 v1l[4-7]
vse32.v v4, (a2) vO[0-3]
vse32.v v4, (a2) vO[4-7]
vse32.v v4, (a2) v1[0-3]
vse32.v v4, (a2) v1[4-7]
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8.2 RISC-V Vector Configuration

The RISC-V vector unit configuration is as follows:
+ Vector Register Parameters:

» VLEN: 256 Bits

» LMUL: 4

» SEW: 32 Bits
« Input Data:

» Array a

» Data Type: int (32 Bits)

» Data Length n: 122

Solve the following problems:
a) Calculate VLMAX

Solution:

VLEN - LMUL

VLMAX = SEW

32

b) Determine the number of iterations required to process 122 elements.

Solution:
[ 122 " B
VLMAX |

c) In the last iteration, illustrate the data layout in the vector registers based on the given configuration
and dynamic vector length (vl). Label the key parameters (SEW, LMUL, VLEN, VLMAX, vl).

Solution:

All the orange entries are filled with data, the white ones are not.

« SEW is 4, which is the width of one entry (one cell of the table)

« LMUL is 4, which is the number of bundled registers, here the number of lines in the table.

« VLEN is the register width, which is 256 bit or 32 bytes, here the width of the table

« VLMAX is the maximum number of entries that fit into one vector. Here the number of cells
(including the not-colored ones)

« vl is the current number of entries that fit into one vector, which is 26. Here the number of colored
cells.

8.3 Vectorized Assembly Code

Given the following assembly code:
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1 addi t0, x0, 100
2 loop:

3 lw t1l, 0(a0)

4 lw t2, 0(al)

5 mul t3, t1, t2

6 sw t3, 0(a2)

7 addi t0, tO, -1
8 addi a0, a0, 4

9 addi al, al, 4
10 addi a2, a2, 4
11 bne x0, t0, loop
12 ret

Write a version of this code using scalable RISC-V Vector assembly instructions.

Solution:

1 for (int i

2 a2[i]
3}

= 0; i< 100; ++i) {
ad[i] * al[il;

Therefore this can be parallelized with vectorized assembly instructions.

1 addi tO, x0, 100
2 loop:

3

4 slli t3, t1, 2

5 vle32.v v0O, (a0)
6 vle32.v v2, (al)
7 vmul.vv v4, vO, v2
8 vse32.v v4, (a2)
9 sub to, tO, t1
10 add a0, a0, t3
11 add al, al, t3
12 add a2, a2, t3
13 bne x0, t0, loop
14 ret

vsetvli t1, tO, e32, m2, ta, ma

// new loop handles VLMAXx2 elements

How could this code be improved to make use of interleaving on the vector unit? Modify your written

code to use this principle.

Solution: Yes, it can be improved:
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1 vsetvli t2, x0, 32, m2, ta, ma #Get VLMAX
2 sl1i t2, t2, 1 // new loop handles VLMAXx2 elements
3 addi tO, x0, 100
4 loop:

5 blt to, t2, tail

6 vsetvli t1, t0O, e32, m2, ta, ma

7 slli t3, t1, 2

8 vle32.v v0O, (a0)

9 add a0, a0, t3

10 vle32.v v2, (al)

11 add al, al, t3

12 vmul.vv v4, vO, v2

13 vle32.v v6, (a0) //interleave 2nd load with 1st multiply
14 add a0, a0, t3

15 vle32.v v8, (al)

16 add al, al, t3

17 vmul.vv v10, v6, v8

18 vse32.v v4, (a2) // interleave 1lst store with 2nd multiply
19 add a2, a2, t3

20 vse32.v v10, (a2)

21 add a2, a2, t3

22 sub tO, to, t2

23 bne x0, t0, loop

24 tail: beq t0, x0, exit // if vector fits perfectly in loop
25 vsetvli t1, t0, e32, m4, ta, ma // use old code here
26 slli t3, t1, 2

27 vle32.v v0O, (a0)

28 vle32.v v2, (al)

29 vmul.vv v4, vO, v2

30 vse32.v v4, (a2)

31 sub to, to, t1

32 add a0, a0, t3

33 add al, al, t3

34 add a2, a2, t3

35 bne x0, t0, tail

36 exit:

37 ret
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9 HLS Basics

Given is the following function to compute the estimate the square root of the input parameter x. If the
input parameter is negative, then the function should first multiply the input x with -1 to make it positive.

1 double mysqrt(double x) {
2 if (x < 0) {

3 X =x * -1;

4 }

5 double y = 0.22222 + 0.888889 * x;
6 int i = 0;

7 while (i < 3) {

8 y =0.5* (y +x/vy);

9 i=1+1;

10 }

11 return y;

12 }

a) Give an intermediate code representation using three-address code notation.

Solution:

1 if x>=0 goto endifl
2 X =X * -1

3 endifl:

4 tl := 0.888889 * x
5 y := 0.22222 + t1
6 i:=0;

7 whilestart:

8 t2 :=x /vy

9 t3 1= t2 +y

10 y :=0.5*y

11 i =1+1

12 if i < 3 goto whilestart
13 return y

b) Give the sequencing graph for your intermediate code representation.

Solution:
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10 HLS Scheduling

We look at the following code line of the XTEA encryption algorithm:

1 y =y +(z<<4 ~ z>>5) + z ~ sum + k[sum & 3];

The code line should be implemented in hardware. An ALU is used, which can execute shift operations
(SL,SR), logic operations (XOR,AND) and additions (+). The array k is stored in local memory. The access to
the memory is done by a READ operation.

Given is the intermediate code representation using three-address code notation:

1 tl1 :1=2z << 4
2 t2 :=2z2>5
3 t3 := sum & 3
4 t4 := t1 ~ t2
5 t5 := k[t3]
6 t6 :=y + t4
7 t7 := sum + t5
8 18 = t6 + z
9 y =17 ~ t8

The resulting Sequencing Graph is:

« red values are priorities (just bottom up times how long it takes, starting from 0)

« blue values are the ALAP times for the nodes
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« The ALU supports multi-cycle operations.

« The shift and logical operations have a delay of one clock cycle

The add operation (+) has a delay of three clock cycles

The READ operations takes the array index as input to compute a memory address and outputs the
value of the array element after one clock cycle on the memories’ read bus.

a) Schedule the sequencing graph for a resource constrained (2 ALUs, 1 decoder) with the list scheduling
method.

Solution:
2 x ALU 1 decoder (for READs) | Start time
tact | Uakt,alu Ticean | Satate | Uaktdee | Saktdec ti
1 {vl,v2,v3} [ {} {v1,v2} [ {} {} t; =ty =1
2 | {v3,v4} {} {v3,v4} | {} {} ta =1, =2
3 | {v6} {} {v6} {v5} {v5} tg=1t5=3
4 |{v7} {v6} [{v7} {3 {} ty =4
5 |{} {v6,v7} [ {} {} {}
6 | {v8} {vri}  [{v8 {3 {} tg =6
T {} {v8} [{} {} {}
8 |{} {v8} [{} {} {}
9 | {v9} {} {vo} [{} {} tg =9
10 | {v10} {} {vio} [{} {} typ =10

b) Schedule the sequencing graph with the ASAP schedule and give the number of required resources.

Solution:

et =ty =ty =1
ety =t =2
ctg=1t; =3

+ tg =26

s tg =9

s t,0=10

A% =9 (latency)

Resources: 3 ALUs, 1 decoder

c) Schedule the sequencing graph with the ALAP schedule for a latency of 10 clock cycles.

Solution:

ot =11

s tg =10

s tg=t, =7
+ ts =6

sty =05

o tg =4

ety =3

cty =ty =2
oty =2
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d) Give the mobility of the operations and the critical path for a latency of 10 clock cycles.

Solution:
© My =y =y =4
© Mo =My = Pg = Py = P = Py = fhg = fyg =1

Critical path: v0 — v1 | v2 — v4 — v6 — v8 — v9 —> v10
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e) Schedule the sequencing graph with the list scheduling method and a timing constraint (maximal 10 clock cycles latency).

Solution:
1 ALU 1 decoder (for READs) Start time

tact | Uaktalu Slack Tt atu | Saktatu | Raktat | Gatn | Usktdee | 18K | Sopt dec | Raktalu | Gdec | &

1 [ {vl,v2,v3} | sy =8y =183 =4|{} {} {vip (1 | {} [ { {} {3 |t=1

2 [ {v2,v3} Sy =0;85 =3 {} {v2} [ {} 1 [{} {} {} {} { [t.=2

3 [ {v3,v4} S3=2,54=1 {} {} {vat (1 | {} {} {} {} {+ [ta=3

4 [{v3,v6} s3=1,56=0 {} {v6} | {} 1 [{} {} {} {} { [te=4

4 | {v3} s3 =0 {v6} [{v3} |{} 2 | {} [ { {} {} |ts=5

The last line is not possible with one ALU, since v6 is running and we need to add v3. By the algorithm, we would now restart with 2 ALUs. We already did
that in point a) and proved that it is possible to remain below 10 cycles of latency, so we do not have to continue here.

* t,. current time

* Upxt a1n Candidates to schedule

+ Slack: tALAP - tact

. Takt’alu currently running

* S.kt am NOW starting (with slack 0)

. Raktmu now starting (with not slack 0)
s a,), number of availible ALUs

« t; starting time of vi
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11 HLS Binding and RTL Generation

Given is the following c-program:

1 int32 t calc2(int32 t a, int32_t b, int32 t c) {
2 int32 t d;

3 d=a*a+b*b-3%*a*c;

4 return d;

5}

The three address code for this code line is given as follows:

1 calc2

2 tl:=a*a

3 t2:=b*b

4 t3:=a*c

5 t4:=3*t3
6 t5:=t1+t2
7 d:=t5-t4
8 return d

a) Draw the sequencing graph for this three address code.

Solution:

b) Compute the start times for all operations using the list schedule method for a resource constraint of
one ALU that can execute additions and subtractions and two multipliers that can execute
multiplications. The delay of the ALU is one clock cycle and the delay of the multiplier is two clock
cycles.
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Solution:
2 MUL 1 ALU Start time

tact | Uaktmul Togmu | Saktmul | Uikt atu | Saktalu [ &

1 {vl,v2,v3} [ {} {v1,v3} [ {} {} t, =13 =1
2 [{v2} {vi,v3} | {} {} {}

3 | {v2,v5} {} {v2,v5} [ {} {} ty =1t5 =3
4 1 {} {v2,v5} | {} {} {}

5 [{} {3 {} {va} [{v4} [t =5

6 [{} {} {} {v6} [{v6} [t;=6

T {3 {} {} {vit [T} |t =T

8 [{} {} {} {} {} tg =8

¢) Find a valid binding of the multiplications to the multipliers using the left edge algorithm.

Solution: Find the multiplication intervals:

e I =
. I, =
.« I =
. I =

[1,2]
[3,4]
[1,2]
[3,4]

Sort by left sides of the intervals (the starting points): I;, I5, I,, I,

e a,, =0—1, > a,,:choose I
s =7, =2—1; > a,,: choose I,

e a, =Ty =4 — 1, > a,,: there is none left

Try again for the other multiplier with set {5, I, }:
s a,, =0—1, > a,,: choose I3
* Ay =T33 =2—1; > a,,: choose I,

* Q=14 =4—1, > a,,: there is none left

So the bindings are {I;, I, } on the first multiplier and {5, I, } on the second one.

d) Give the lifetime of all compiler temporary variables tx. Draw the register conflict graph for these
variables tx.

Solution:

D0 O N A
3
<
<
N
/7
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Reg1 t,T5,d
Reg2 t,,t3
Reg3 t,

e) Find a valid binding of the compiler temporary variables to registers using the left edge algorithm.
How many registers are required? Color the register conflict graph accordingly.

o e

Figure 8: Conflict graph

Solution:

f) Draw the data flow graph with schedule and binding,.

/1 2 3 4 5 A Ei

+4 7
Mot MULA . .
v
MuLy MuL2 MuLy MuL2 ALY ALV E
vi3 v &
HoL1 MULA
v|Z

g) Draw a structural view of the data path.
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a D

b D
C D—

P
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(W ara—
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MOLA

MOL 2

|
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ALV
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a?.D—U
ad
— 0
ald

al o
)
h) Give the activation signals for all operations.
Solution:
Note | Operation Binding | Cycle | MX1 [ MX2 [ MX3 | MX4 | MX5 | MX6 | MX7 | ALU_OP
vl tl := a*a MUL1 1 0 - - - - - -
vl tl := a*a MUL1 2 0 - - - 00 - -
v2 t2 := b*b MUL1 1 1 - - - - - -
v2 t2 := b*b MUL1 2 1 - - - - 00 | -
v3 t3 := a*c MUL2 1 0 0 - - - R
v3 [ t3 := a*c [ muL2 2 - e fo |- |- o1 |-
v4 | t5 := tl+t2 | ALU 1 - - - e Jer |- |- |+
v5 t4 := 3*t3 | MUL2 1 - 1 1 - - - -
v5 t4 := 3*t3 | MUL2 2 - 1 1 - - - 0
v6 |d :=t5-t4 [ALU 1 -l - 1 Jer |- |- =

i) Give the hold signals for all variables, for which they are required.

Solution:

Operation Binding MX1 | MX2 | MX3 | MX4 | MX5 | MX6 | MX7
hold tl1 R1 - - - - 10 - -
hold t3 R2 - - - - - 10 -
hold t4 R3 - - - - - - 1
hold d R1 - - - - 10 - -
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j) Draw the FSM with data specification to control the data path. Apply a start, ready, acknowledge
control scheme. The value of d should be kept at its output port for readout until the acknowledge
signal is high.

Solution:

start =0

v1(CC1)
v3(CC1)
start=1
v1(CC2)
v3(CC2)

v2(CC1), v5(CC1)
hold t3, hold t1

v2(CC2), v5(CC2)
hold t1

ack=1

v4
hold t4

v6

hold d

Q
0
=
I
@)

« The state transitions that are not given explicitly are done on every clock edge.

« There should be a state transition from each state to CCO if reset is high.

 The syntax v1(CC1) means that in this state, the multiplexer signals from state v1 in clock cycle 1
should be applied.

k) Conduct a state assignment for your FSM applying binary encoding.

Solution:
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State | Binary encoding | One-hot encoding | Almost-one-hot encoding
CCo | 000 0000001 000000
CC1 |[o01 0000010 000001
Ccc2 010 0000100 000010
CC3 |[011 0001000 000100
CC4 100 0010000 001000
CC5 101 0100000 010000
rdy 110 1000000 100000

) Give the truth table for the output logic of your FSM.

Solution:

State MX1 [ MX2 | MX3 | MX4 | MX5 | MX6 | MX7 | ALU OP | ready
ccoee) |0 [o o |- |- |- |- 0
ccr@e1)|o [o |e |- |eo |61 |- 0
cc2e1w0) |1 |1 |1 |- |10 [10 |- 0
cc3@e1) |1 |1 |1 |- |10 |60 |o 0
ccao) |- |- |- [o |er |- |1 |+ 0
ccs@aen) |- |- |- |1 Jer |- |- |= 0
rdy (110) | - - - - 10 | - - 1

m) Give the truth table for the next state logic of your FSM. Include a reset signal that brings the FSM
from any state to its initial state.

Solution:

State | start | ack | reset | next State
000 0 X 0 000
000 1 X 0 001
001 X X 0 010
010 X X 0 011
011 X X 0 100
100 X X 0 101
101 X X 0 110
110 X 0 0 110
110 X 1 0 000
XXX X X 1 000
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12 HLS Loop Optimization

A FIR filter with an input sample vector x, coefficient vector ¢ and output vector y should be designed.
Given is the following C-function that implements the FIR filter:

1 void fir(int x[703], int c[64], int y[640]) {
2 int i, j;

3  for (j =0; j <640; j++){
4 y[il = 0;

5 for (i=0;1i<64;i++){
6 y[jl = y[jl + clil * x[i + jI;
7

8

9

}

The arrays x,c and y are all stored in local dedicated memories. Read operations to the memories take two
cycles, write operations one cycle. The multiplication takes six cycles. All other operations take one cycle.
Attention: the first cycle of a read operation can be chained in one cycle together with an add operation! The
read operation is pipelined, such that one can use the read port every cycle, but the result is returned in the
next cycle.

12.1 Solution 1:

At first we implement the FIR filter without any loop optimization: Its intermediate representation in
three-address code notation is as follows:

1 fir:

2 j:=0

3 Loopl:

4 yljl:=0

5 i:=0

6 Loop2:

7 tl:=i+j

8 t2:=x[t1]

9 t3:=c[1i]

10 t4:=t2*t3

11 t5:=y[j]

12 t6:=t5+t4

13 y[jl:=t6

14 i:=i+1

15 if (i<64) goto Loop2
16 ji=j+1

17 if(j<640) goto Loopl

18 return

a) Can this three-address code further be optimized? If yes, give the optimized code.

b) Draw the sequencing graph for this intermediate representation of the fir function.

¢) Schedule the Sequencing Graph using ASAP Scheduling. Compute the latency for the whole fir
function. Give the number of adders, multipliers, read ports for x and c as well as write ports for y.

Solution:
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12 Solution - HLS Loop Optimization

a) Optimized code:

1| fir:

2 j:=0 // wi
3 ||Loopl:

4 tl:=j // w6
5 t2:=0 // v7
6 i:=0 // wv8
7||Loop2:

8

t3:=i+t1 //vi1b

9 td:=x[t3] //v17

10 t5:=c[i] //vwi16

11 t6:=t4*t5 //v20

12 t2:=t2+t6 //v21

13 i:=i+1 //v18

14 if (i<64) goto Loop2 //vi19
15 ylt1l:=t2 //vwi10

16 ji=j+1 //v11

17 if (j<640) goto Loopl //vi12
18 return //v3

b) Sequencing Graph

Figure 16: Sequencing graph
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¢) ASAP Scheduling (Most Inner Loop 2)
=
ti’):l? tfﬁzl
t7-=1 (chained with v;5)
t50=3, 115=3
221S9:4
t5,=9

A~

t5,=10

ALoopQ =9
Execution time of Loop node: dg= Apoope- #iterations = 9 - 64 = 576

ASAP Scheduling (Most Inner Loop 1)
=1
ti=1, t5=1, t5=1
?51:27 5322
€1S2:3
t7,=578
t75=579
ALoopl = 978
Execution time of Loop node: dg= Ap,n1- #iterations = 578 - 640 = 369920

ASAP Scheduling of top FIR SGU
t5=1
=1
t5=2
£5=369922
£5=369923
Aprr =369922

We need Aprr =369922 cycles and one resource of each type (two ADD as vy
and vy5 would run in same cycle in this schedule).

12.2 Solution 2

We unroll the inner loop completely to optimize the FIR filter for a resource constrained case: at maximum

two read ports may be used for x and two read ports may be used for c.

1
2
3
4
5
6
7
8
9

void firUnrolledl(int x[703], int c[64], int y[640]) {
int j;
for (j = 0; j < 640; j++) {
ylil = 0;
y[jl = y[jl + c[0] * x[0 + jI;
y[il = y[jl + c[1] * x[1 + jI;
y[il = y[j] + cl[2] * x[2 + jI;
(...)
y[jl = yl[j] + c[63] * x[63 + jl;
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d) Draw the sequencing graph for this case. Assume the same optimization as in the previous solution.
e) Compute the latency of the fir function.

Solution:

d) Unroll the inner loop: Three-address code

fir:
j:=0 // wi
Loopl:
tl:=j // v6
// block: ©1=0,1=1
t2:=x[t1] //v7
t3:=c[0] //v8
t4:=t2%t3 //v9
9 t5:=1+t1 //v10
10 t6:=x[t5] //vi11
11 t7:=c[1] //vwi2
12 t8:=t6%t7 //v13
13 t9:=t4+t8 //vi14
14 // block 1=2,1=3
15 t10:=2+t1 //vi1b
16 t11:=x[t10] //vi16
17 t12:=c[2] //v17
18 t13:=t11*t12 //v18
19 t14:=3+t1 //v19
20 t165:=x[t14] //v20
21 t16:=c[3] //v21
22 t17:=t15*%t16 //v22
23 t18:=t13+t17 //v23
24 t19:=t9+t18 //v24
25 // block: i=4,i=5
26 (...)

0 O U W

28 y[t1]:=t319 //v332

29| j:=j+1 //v333

30 if (j<640) goto Loopl //v334
31 return //v3

Simplified Sequencing Graph for only four iterations (i=0,1,2,3) of the inner
loop The real sequencing graph has 32 blocks for i = 0..64!

Figure 17: Sequencing graph

12.3 Solution 3

In the following, the inner loop should be pipelined. There needs to be only a single ramp-down phase at
the end of the last iteration of the outer loop NOT at every iteration of the outer loop.

P
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f) Draw the sequencing graph including the cross-carried data dependency edges.

g) What is the possible initialization interval 7},?

h) What is the latency for this schedule for the complete function with the smallest initialization interval?
What are the number of required resources?

Solution:

e) Scheduling with max. two read ports for x and two read ports for y. We
can schedule two blocks at the same time with the available read ports.
Hence, there are 32 blocks for the 64 inner loop iterations.
Each block has a latency of Apgjox=9 cycles (2 for read, 6 for mult, 1 for add).
As the read port is pipelined, we can start each block one cycle after the pre-
vious one, leading to a quasi-pipelined schedule: The latency for all 32 blocks is
hence 32 cycles to start all blocks plus 8 cycles to finsh the last block (ramp down):

A auBiocks = #blocks + (Apjock-1) = 32 + 9 -1 = 40

Finally, these is one more cycle required to add the output of the last two
blocks and one cycle for the write operation.

ALoop=NauBiocks +2 = 42

With this we can compute the latency of the LOOP node vs:
dy = Apoep #iterations = 42 - 640 = 26880

The latency of the FIR filter adds 2 for node v; and node vs.
AFIR,um"olled: 26882
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f) Add the cross-loop dependencies in the sequencing graph

Figure 18: Sequencing graph

The pipelining starts each operation again after the initialization interval:
D =4V 41,
The cross-loop dependencies at new constraints:

to ) > t5) + doy
tD 7, > ) 4 dyy
Tp Z d21

T,>1

TATARID S Ly R A
tW 41, >t 4 dyg
Tp Z d18

T,>1

tgl;l) > tﬁg) + dis

tD 47, >t 4 dyg with 12 = 1,64 =3
1+T,>3+1

T, >3

tgl;” > t§2 + dis

D+ 7, >t 4+ dyg with 189 = 1,64 =3
1+7,>3+1

T,>3

So with the schedule and three address code of a) + b), we can only select an initialization interval of T}, >
3.
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13 Multicore Synchronization Challenges
13.1 Iterative Stencil Loops (ISLs)

Numerical data processing with a fixed pattern, called a stencil, is most commonly used in computer
simulations. ISLs perform their calculations in so-called timesteps within a given array, where each
element or cell is updated. The stencil describes the access pattern to the neighboring cells utilized. We
investigate in the following task the 5-Point 2D stencil to calculate the average over 4 neighbors + cell
itself:

A

z,y

X (Ux,y + Ux—l,y + U:l:-i—l,y + Ux,y—la Ux,y-‘,—l)

QU =

Figure 3a depicts the pattern for each cell in each timestep. Figure 3b illustrates a simple application
designed solely for visualization purposes, demonstrating why such an access pattern might be reasonable.
We assume for the following questions, that U and Z are both implemented as 2-D arrays (x and y-axis).

Subfigure 18.1: 5 Point 2D Stencil Pattern Subfigure 18.2: HeatMap for visualization
Figure 18: 5-Point 2D stencil pattern and a simplified application example

a) Is this a do-all or do-across loop? Is there any data shared between computations?

Solution: This is an do-all loop with U and its elements as shared data.

b) Write pseudo-code for this task and indicate which parts can be parallelized?

1 offsets = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)]

2 for x in range(width): # can be parallelized
3 for y in range(height): # can be parallelized
sum = 0
count = 0
for offset in offsets:
sum += U[x + offset.x, y + offset.y]
count += 1

© 00 N o U b

Z[x, y] = sum / count

c) Considering multi-core synchronizations, is a parallelization always correct?

Solution: Yes, since U and Z are different buffers. Therefore there are no race conditions.

d) Can there be performance bottlenecks when doing the parallelization? How can these be mitigated?
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Solution: No. Since each thread/processor writes to its own memory address without having to fetch the

data that is in there, there are no cache problems like false sharing.

from solution document: There can be a performance bottleneck as caches operate on blocks of data.
Hence two threads on different cores writing to nearby indices in Z may both invalidate the cache line
requiring many cache refills. Ideally parallelization is done in a way that threads on different cores
work on output data that is located in different cache lines, e.g, thread 1: x = 1 to X/2 and thread 2: x =

X/2 +1toX.

13.2 SoC Memory Hierarchies

Modern multi-core processors feature increasingly specialized architectures. Typically, each core has its
own dedicated L1 and L2 caches, while the L3 cache is shared among all cores. Smaller chips often use

different internal structures.

Clusterd Cluster] RCPU Subsystem
X60-Al Core0 ‘SRAM 256K8 |
RISCV RCPU o 1 |—{_cAN/CANFD
RISV RISC-V [recanio |
FPU
64GCVB Core 64GCVB Core R120 L] Power
Audio Subsystem
- e i
| 32K I-cache | 32K D-Cache | [ 32k 1-cache [32k D-Cache | ADC_L MainMIC wrozs | [ _sPimu
HP-MIC — e
te—f—>{_ExtCodec
[ 512K L2 + 512K TCM \ [ 512K L2 | DO R LINE-IN R.Debug
-_': AUXIN [ Rarx_ | f«—f—+{ Wakeup-Trigger
EAR [(2xrouarT | N | MICIN ]
[ Coherent Interconnect Bus | DAGL [1oxRPWM | | LINEOUT |
Internal Memory AON PMU
, T
High Speed 1/0 Subsystem
System Control Syst
ystem Control Systern USB30 Comb X1PCle21 (1lane)
Securty | [ BootroM | [ Mailbox ] T PHY oruses.0 (ORD)
€21 x
Secure N Efuse r— Serdes X2 PCle2.1 (2lane)
Ke 11 PLIC DMA POie2 122 PHY or x1PCle21 (1lane)
Crypto
Spinlock WDOG POR21 Serdes x2 PCle2.1 (2lane)
PHY or x1PCle21 (llane)
Management Unit | T-Sensor \
] PLLs Main PMU
an 3 Clock & Reset
Image Processing
XTALOSG Crystal RTG timer [ oo ] @ SiPTeS
Source o0 o H.264/H.265 (4lane)
5 fe—>] DEC
s ISP 2]
= Low Speed I/0 Subsystem £ H.264/H.265 S
o ENC IPTCSI
UART [ 2xsp ][ _2xsoo | [ sxizs/eem | (2-1ane)
CAN/CAN-FD
TRAX [ rosuner I wax [ 2ocPwn | Display Controlers
S Card MIPICSI
B [ oanFo ][ axizc | [ 1zexepio | DPUO
(1920 pixel buffer)
|—>{2c]
‘Connectivity Subsystem (520 DPU“D e
élxe uffer)
1 xeMmC eMMCS.1 MI(TV\Z‘::)W
51/8D30 |
1 |—~{zc]
[[usezoore } [ _use200ts | External Graphics Processing Unit
— Memory |
USBZ.0 HUB USB2.0 Host Interface R —] v
100/1000M PHY Controller [ OOPESEE; 35 ; 9
[ zomc ] pen
Ethernet ZGIAC ulkor 1.2
NOR Flash | QsPI ] l DDRPHY | | sPiDispla)
~ Crypto:
AON Power Domain 32.bit LPDDR4/LPDDRAX H.264/H.265 Dec(4K) TRNG/AES/RSA/ECC/SHA2/HMAC
@2400MT H.264/H.265 Enc(4K) SM2/SM3/SM4

Figure 19: RISC-V K1 CPU diagram

a) Examine the cache hierarchy in the diagram (see Figure 19) for the SPacemit K1 RISC-V octa-core

processor (see https://www.spacemit.com/en/key-stone-k1/) and explain the overall structure.

Solution: Each of the processor (the X60-AI cores) has its own dedicated 32K L1 instruction and 32K L1
data cache. Each compute cluster (consisting of 4 cores) then has its own 512K cache, not split into instr.

and data. There is no L3 cache here.

from solution document:

« The 16 GB eMMC storage is accessible only through the connectivity subsystem.

+ A shared L2 cache per cluster can cause contention — serializing eMMC memory accesses.

« Inter-cluster communication incurs additional latency due to the coherent interconnect bus.

b)

Solution: from solution document:
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What might be an undesired effect of having a shared vector unit per cluster?


https://www.spacemit.com/en/key-stone-k1/

Multicore Synchronization Challenges — SoC Memory
Hierarchies Advanced Computer Architecture (191.019)

Since vector units typically transfer much larger amounts of data than scalar cores, they generate
significantly higher bandwidth demands, which can monopolize the L2 cache and interconnect bus,
leading to resource starvation for the simpler cores.
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14 Multicore Cache Coherency

3 CPUs with 3 write-back Caches (C0/C1/C2) have a shared bus system and a snooping-based Cache
Coherency protocol, which is depicted in Subfigure 20.1. Assume for the task that each memory access
uses the same memory address and each cache entry is invalid at the beginning.

PrRd/-
(7)) (/) (72 e "

co c1 c2 ' PrWr/BusRdX ‘
M s

{/Li I PrRd/BusRd
N L// BusRdX/-
i PrWr/BusRdX | BusRdX/Flush

Busd/
BusRdX/-

Subfigure 20.1: Memory structure Subfigure 20.2: MSI Protocol without BusUpgr

BusRd/-

BusRd/Flush

Figure 20: Memory system and MSI Protocol for task 1

14.1 MSI Protocol

a) Fill the following table with all corresponding states, bus requests and data transfer using the MSI
protocol w/o BusUpgr(ade). Fill each line with the states after the operation is executed.

t | Operation Co C1 C2 | Bus Request data transfer
Initial - - -

1| R2 - - S | BusRead M—C2

2| W2 - - M | BusRdX M — discard
3 [R1 - S S | BusRead C2—-M—=C1
4|1 WO M I I BusRdX M — Co

5| R2 S I S | BusRead Co - M —C2
6 | R1 S S S | BusRead M—C1

7| WO M I I | BusRdX M — discard

Table 6: Cache after (R/W)-operations for the MSI protocol

Without the BusUpgr(ade) protocol, each BusRead and BusRdX request initiates a data transfer, but
the data from BusRdX requests gets discarded.

b) Would BusUpgr(ade) impact the data transfer?

Solution: Yes, it would save the two data transfers that get discarded, which saves data bandwidth.
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14.2 MESI Protocol

PrRd/-
Prwr/- PrRd/-

BusRdX/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

BusRd/FlushOpt

BusUpgr/-

Figure 21: MESI Protocol

a) Now fill the table for the MESI protocol: Distinguish explixitly between Flush and FlushOpt and its
impact on the data transfer. This also includes the direction from which it is flushed (e.g., Flush (C0)).

t | Operation Co C1 C2 | Bus Request data transfer
Initial - - -

1|R2 - - E | BusRead !C M— C2

2| W2 - - M |-

3 |R1 - S S | BusRead C C2—-M—=C1

4 | WO M I I | BusRdX C1/C2 — Co

5| R2 S I S | BusRead C Co—-M—C2

6 | R1 S S S | BusRead C Co/C2 — C1

7 | WO M I I | BusUpgrade -

Table 7: Cache states after (R/W)-operations with the MESI protocol

14.3 MOESI Protocol

PrRd/-
Prwr/- PrRd/-

3
pt BusRdX/
BusRdX/Flush FlushOpt

|

BusRdX/- ‘
BusUpgr/-

BusRd/-
BusRdX/-

BusUpgr/-

BusRd/-

BusRdX/Flush
BusUpgr/-

Figure 22: MOESI Protocol

a) Now fill the table for the MOESI protocol: Distinguish explixitly between Flush and FlushOpt and its
impact on the data transfer. This also includes the direction from which it is flushed.
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t | Operation Co C1 C2 | Bus Request data transfer

Initial - - -
1|R2 - - E | BusRead !C M— C2
2| W2 - - M |- -
3 |R1 - S O | BusRead C C2 — C1 (with Flush)
4 | WO M I I | BusRdX C2 — CO0 (with Flush)
5| R2 0 I S | BusRead C C0 — C2 (with Flush)
6 | R1 o S S | BusRead C C0 — C1 (with Flush)
7 | WO M I I | BusUpgrade -

Table 8: Cache states after (R/W)-operations with the MOESI protocol
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15 Atomic Data Types and Memory Models

15.1 Synchronisation — Blocking und Nonblocking

Given the following program fragment that updates two variables A and B with new values. Access is
protected from concurrent access using Lock/Unlock.

1: Lock(S);

2: A=A+ 1;
3: B:=B - 1;
4 : Unlock(S);

Write alternative code with the same functionality, but which should be non-blocking, using:
a) RMW (Read-Modify-Write) operations.

Solution:

// initialize S with 0

1
2
3 while start:

4 if !read-modify-write(S, 0, 1) goto while start; // acquire lock
5 A=A+ 1;

6 B :=B - 1;

7

S :=0; // release lock

read-modify-write(A, B, C):

« A: variable to change

 B: what we expect

» C: what to set A to, if A matches B
« returns true if set was successful

b) LL/SC (Load-Linked / Store-Conditional)

In addition to the statements already given above, you may also use if-statements, loops, labels, and
gotos. The function Address (V) returns the address at which the variable V is stored.

What problems can occur in the RMW and LL/SC implementations?

Solution:

LL(addr):

« loads data from addr

. remembers that this thread loaded the variable
« returns the read value

SC(addr, data):
« stores data to addr, if nobody wrote something since the corresponding LL (addr) call
« returns if write was successful
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1 // initialize S with @
2 s _addr = Address(S)

3

4 check start:

5 if LL(s_addr) != 0 then goto check start;
6 if not SC(s_addr, 1) then goto check start;
7

8 // lock acquired

9 A=A+ 1;

10 B :=B - 1;

11

12 S =0;

+ Problems with RMW implementation:

» Needs hardware support

» is vulnerable to ABA problem

« Problems with LL/SC:
» Needs hardware support

15.2 Release-Acquire Model

Given are the two threads Th; und Th, with their respective instructions to be executed. The initial

variable assignment before the execution of the threads is

N o o A WN =

LOOO\IO‘»U'I#U)NI—'?,
—

[
N P ©

la:
1b:
1c:
1d:
le:
1f:
1g:

then goto iftl;
1h:
1i:
1j:
1k:

H
&

24

V1 := atomic load(B, Acquire);

X=X+ 1;
V1l := V1 * X;
V1 := V1l - 1;

atomic store(B, V1, Release);
atomic store(E,1, Release);
iftl: if atomic load(E, Acquire) =1

X 1= X * X;
Y :=7 + 1;
Vi := V1l + 1;

Z := atomic_load(B, Acquire);
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1 2a: ift2: if atomic load(E, Acquire) !=1

2 2 then goto ift2

3 2b: V2 := atomic load(B, Acquire);

4 2c: V2 :=V2 / 7;

5 2d: X := X * Z

6 2e: Z =7+ 1;

7 2f: Y =Y + V2;

8 2g: atomic_store(B, V2, Release);

9 2h: atomic_store(E, 0, Release);

a) Calculate the final values of each variable after execution of both threads. Justify your answer.

Solution:
Th, Th, B X Y Z Vi V2 E
- - 24 4 2 3 0 0 0
la 2a 24 4 2 3 24 0 0
1b 2a 24 5 2 3 24 0 0
1c 2a 24 5 2 3 120 0 0
1d 2a 24 5 2 3 119 0 0
le 2a 119 5 2 3 119 0 0
1f 2a 119 5 2 3 119 0 1
1g 2b 119 5 2 3 119 119 1
1g 2c 119 5 2 3 119 17 1
1g 2d 119 15 2 3 119 17 1
1g 2e 119 15 2 4 119 17 1
1g 2f 119 15 19 4 119 17 1
1g 2g 17 15 19 4 119 17 1
1g 2h 17 15 19 4 119 17 0
1h - 17 225 19 4 119 17 0
1i - 17 225 5 4 119 17 0
1j - 17 225 5 4 120 17 0
1k - 17 225 5 17 120 17 0

b) Specify all release and acquire operations in the example above that can be made relaxed without
affecting the final values of the variables. Justify your answer.

Solution:

« la: can be Relaxed as 1c has RAW dependency

« le: can be Relaxed as it has RAW dependency on 1d, 1f is Release such that it cannot move behind 1f
+ 1k: can be Relaxed because 19 is Acquire such that it cannot move before 1g

+ 2b: can be Relaxed as 2a is Acquire such that it cannot move before 2a, 2c has RAW dependency

+ 2g: can be Relaxed as it has RAW dependency on 2c, 2h is Release such that it cannot move behind 2h

Correct synchronization is provided by variable E, here we need to keep Acquire and Release to fence
the critical sections.

¢) Is it necessary that the variable B is atomic qualified? Justify your answer.
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Solution: No, B does not have to be atomic. Since Th; and Th, each access B exclusively through
synchronization via E, the accesses to B are exclusive anyway.
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16 On-chip Buses

Given is the following architecture for a shared layered bus:

« There are two initiator components, CPU and DMA.
« There are three target components, MEM, HWacc and IO.
» The MEM, is on layer 1

» The Hwacc and IO component is on layer 2.

a) Draw the bus architecture. It is sufficient to show the directed connections between components and

arbiters/decoders.
Solution:
’ ArbiterLayerl |
Decoderl ;
P M
ADDR : :
WDATA »> M MEM
cPU P ; 2
_ X
EDATﬂ W:
- u -«
I* | ArbiterLayer2 |
Decoder2 l
» M
ADDR > U >
WDATA 2 M HWacc
DMA Moy =
b )
RDATA M e
u
X e

rF 9

b) Assume that the CPU wants to read access the IO slave component in the bus cycle 1 and that the DMA
wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The IO component inserts two wait cycles. The
HWacc component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no
pipelining.

Solution:
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Cl iC2 {C3 {C4 (C5 iC6 iC7 |
REQ-CPU 2 IR
REQ-DMA 12 | | |
GRANT-Layerl | & i i
GRANT-Layer2 CPU DMA
ADDR-Layerl | |\ i i i |
RDATA-Layerl § | | | | § | §
ADDR-Layer2 addr-10 addr-:HWacc
RDATA-Layer2 ‘ ‘ "1 [detat |data2

wait cycles

c) Now assume there is pipelining. Draw the bus access diagram again.

Solution:

Round-robin: With pipelining

'C1 Q2

'C3 iC4 |C5 (C6 iC7 |
REQ-CPU 2 IR
REQ-DMA L2 | ; §
GRANT-layerl | Z i | | | ' §
GRANT-Layer2 | CPU DMA |
ADDR-Layerl | bbb
RDATA-Layer1 f § | | | | f §
ADDR-Layer2 addr-10 addr-HWacc!
! . S B n : |

RDATA-Layer2 / datal |data2

wait cycles
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17 Network-on-chip

17.1 NoC - Routing

Given is the following on-chip interconnection network (4-ary 2-cube):

MF—N——O—P

[ J —K—L]
[EF—FF—G—H]

AF—BF—CD]

a) Show a path from E to P using Dimension-order Routing for
1) the variant XY

Dimension-order routing:
+ XY: first go in X, then go in Y direction
+ YX: first go in Y, then go in X direction

Solution:E F—G—-H—L—P

2) the variant YX

Solution:E -1 —- M —-=N—-0—=P

b) Are there other minimal paths from E to P? If yes, provide an example, if no give a reason.
Solution: Yes, all paths that go up and left in any combination have equal length and are minimal.
eg:E=2I1—=]J]=>N—=-+0—=P

¢) Give an example of a minimum path from E to P that is not used in the minimum version of Valiant’s

Algorithm in conjunction with XY dimension-order routing, even if all possible nodes are considered as
intermediate nodes d’. Justify your solution.

Valiant’s algorithm:

« To diversify the routes, choose any random node that has to be visited before the goal.

Minimum version:

« chose this random node to be in the bounding box of the start and end point

Solution:E - F—>]—>K—-0—P

No matter which point of those to chose as d’, it is not possible to get this path with XY routing.
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d) To avoid deadlocks, one option is to prohibit turning in certain directions during routing, thereby
preventing abstract cycles (see “turn model”). Is the selection of prohibited direction changes (gray)
listed below promising in this regard? Justify your assessment.

T 3
L.t

Solution: No, since it is possible to get a cycle once again with this rules by doing the following:

3

b
L

17.2 NoC - Channel Dependency Graph

Given is the following on-chip interconnection network:

> > >
D |g C |le H | < G

!

—>> —P>
A‘ B E g F

a) Compared to previously presented topologies (such as meshes), not all neighboring routers are
connected to each other here:

What arguments could be made in favor of choosing this topology?

Solution:
« less hardware needed

+ This is almost equally effective as the mesh if the two clusters rarely communicate with each other,
but there is much traffic in each of the clusters.

b) Create the CDG (Channel Dependence Graph) for the network (assume that 180° turns are not
allowed).

Solution:
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c) Based on the CDG: Is there a possibility of deadlocks here, and how can this be determined using the
CDG? Justify your assessment based on the CDG.

If there are cycles in the CDG, there is a possibility for deadlocks.

Solution: There are cycles in the CDG:

d) If deadlocks can occur: Propose a solution using the CDG and the results from task part (c). Show the
resulting CDG.

Solution: Remove a few edges (prohibit turns) to remove all the cycles in the CDG:
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18 ML on GPUs, Systolic Arrays and
CGRAs

a) What is the challenge for executing ANNs with nonlinear operators, on Edge compute platforms?

Solution: Many nonlinear operators require to call math library functions with complex algorithms to
compute results (e.g. tanh, softmax needs exp() computations). As this has to be done many times, it is
computational expensive. Fast implementations may, e.g., use look up tables or specialized hardware
blocks.

b) Why are MAC units a key building block of Al systems/ML platforms?

Solution: Fully-connected layers and convolution layers require to multiply activation with weights and
accumulate the result (fully connected: row times column, convolution: all values in kernel window) ,
which basically results in many required MAC operations.

c) Assume an embedded ML platform that can execute 24 parallel MAC operations per cycle on 4-byte
integer inputs (activations and weights). Assume that activations and weights are streamed in a straight
forward fashion from memory. How many bytes have to be loaded per cycle (read memory bandwidth)?
Is storing data a challenge (write memory bandwidth)?

Solution: 24 MAC — 24 x 4 byte for activation +24 X 4 byte for weights = 48 x 4 byte = 192 byte /
cycle. Storing data usually not a challenge as we accumulate many values first locally and only store the
result, not the intermediate sum.
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