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2 RISC-V Assembly and Compilers
a) Can you mix C-Code and assembly code in one project? What do you need to take care about?

Solution: Yes, but you must adhere to the ABI

b) What is the RISC-V instruction to add register a1 and a2 and store the result in a0?

Solution: ADDI a0, a1, a2

c) What is the RISC-V instruction to subtract 4 from register a1 and save the result in register a2?

Solution: ADDI a2, a1, -4

d) What alternative instruction can you use to multiply a value by 4 if you do not want to use the MUL 

instruction?

Solution: SLLI <rd>, <rs1>, 2

e) Your current PC value is 0x00AA0000 What is the PC value after executing the instruction J 16?

Solution: J 16 is pseudo instruction for JAL zero, 16;

PCnext = PC + 16
= 0x00AA0000 + 0x10

= 0x00AA0010

PC value will be 0x00AA0010

⚠️ Warning

Most tools do not allow to add immediates to J-Type instructions. Thus, it is not well defined. 

According to TUWEL question immediate will not be shifted and taken as it is.

f) Write the RISC V assembly that implements this C function. Please make sure to adhere to the RISC-V 

ABI.

1 int acc ( int * x ) C

2 {

3   int z;

4   z = x [0] + x [1] + x [2] + x [3];

5   return z ;

6 }

1 acc: asm

2   LW t0, 0(a0)

3   LW t1, 4(a0)

4   LW t2, 8(a0)

5   LW t3, 12(a0)

6   ADD t0, t0 ,t1

7   ADD t2, t2, t3

8   ADD a0, t0, t2

9   JALR zero, 0(ra) // ret

g) Generate the LLVM IR representation with no optimization and explain the generated LLVM IR code.
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Solution: > clang -S -emit-llvm acc.c -o acc noopt.ll --target=riscv32 will result in

1 ... llvm

2 ; Function Attrs: noinline nounwind optnone

3 define dso_local i32 @acc(i32* noundef %0) #0 {

4   %2 = alloca i32*, align 4

5   %3 = alloca i32, align 4

6   store i32* %0, i32** %2, align 4

7   %4 = load i32*, i32** %2, align 4

8   %5 = getelementptr inbounds i32, i32* %4, i32 0

9   %6 = load i32, i32* %5, align 4

10   %7 = load i32*, i32** %2, align 4

11   %8 = getelementptr inbounds i32, i32* %7, i32 1

12   %9 = load i32, i32* %8, align 4

13   %10 = add nsw i32 %6, %9

14   %11 = load i32*, i32** %2, align 4

15   %12 = getelementptr inbounds i32, i32* %11, i32 2

16   %13 = load i32, i32* %12, align 4

17   %14 = add nsw i32 %10, %13

18   %15 = load i32*, i32** %2, align 4

19   %16 = getelementptr inbounds i32, i32* %15, i32 3

20   %17 = load i32, i32* %16, align 4

21   %18 = add nsw i32 %14, %17

22   store i32 %18, i32* %3, align 4

23   %19 = load i32, i32* %3, align 4

24   ret i32 %19

25 }

Explanations:

Line 4,5,6,7,10,11,14,22,24 Stack frame and load stores for input parameter and return value (for 

debug),

Line 8,11,15 getelementptr is pointer arithmetic. In this case fist i32 is type, second i32* %4 is the 

basepointer and third i32 0 is the offset (first element 0, next 1, next 2, next 3). For integer 

variables with width 32 bit = 4 byte, in byte addressable memory these offsets should then be 

multiplied by 4 for address offsets. Attribute inbounds promises the pointer access will not be out 

of bounds (segmentation fault).

The rest of the code is straight forward, load, add and return.

h) Generate the LLVM IR representation with optimization level O2 and explain the generated LLVM IR 

code.

Solution: > clang -S -emit-llvm acc.c -o acc opt.ll -O2 --target=riscv32 produces:
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1 ... llvm

2 ; Function Attrs: mustprogress nofree norecurse

3 nosync nounwind readonly willreturn

4 define dso_local i32 @acc(i32* nocapture noundef

5 readonly %0) local_unnamed_addr #0 {

6   %2 = load i32, i32* %0, align 4, !tbaa !4

7   %3 = getelementptr inbounds i32, i32* %0, i32 1

8   %4 = load i32, i32* %3, align 4, !tbaa !4

9   %5 = add nsw i32 %4, %2

10   %6 = getelementptr inbounds i32, i32* %0, i32 2

11   %7 = load i32, i32* %6, align 4, !tbaa !4

12   %8 = add nsw i32 %5, %7

13   %9 = getelementptr inbounds i32, i32* %0, i32 3

14   %10 = load i32, i32* %9, align 4, !tbaa !4

15   %11 = add nsw i32 %8, %10

16   ret i32 %11

17 }

18 ...

Explanations:

• The lines Line 4,5,6,7,10,11,14,22,24: of the non-optimized code were removed.

i) Compile the optimized version to RISC-V assembler and compare the result to your written solution.

Solution: >clang -O2 acc.c -o acc opt.S -S --target=riscv32 produces:

1   .text asm

2   .attribute 4, 16

3   .attribute 5, "rv32i2p0_m2p0_a2p0_c2p0"

4   .file "acc.c"

5   .globl acc

6   .p2align 1

7   .type acc,@function

8 acc:

9   lw a1, 0(a0)

10   lw a2, 4(a0)

11   lw a3, 8(a0)

12   lw a0, 12(a0)

13   add a1, a1, a2

14   add a1, a1, a3

15   add a0, a0, a1

16   ret

17 // ...
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3 Static Code Analysis
3.1 Data and Control Flow Analysis
Given is the program solvequad that computes the solutions 𝑥1 and 𝑥2 of the quadratic equation 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0 as:

𝑥1 = −𝑏 +
√

𝑏2 − 4𝑎𝑐
2𝑎

𝑥2 = −𝑏 −
√

𝑏2 − 4𝑎𝑐
2𝑎

We assume that the solutions are always real. The following program is used to compute the solutions:

1 void solvequad ( double a , double b , double c , double * x1 , double * x2 ) { c

2   * x1 = ( -1* b + mysqrt ( b *b -4* a * c ) ) /2* a ;

3   * x2 = ( -1* b - mysqrt ( b *b -4* a * c ) ) /2* a ;

4 }

5 double mysqrt ( double x ) {

6   double y =0.22222 + 0.888889 * x ;

7   int i = 0;

8   while (i <3)

9   {

10     y = 0.5 * ( y + x / y ) ;

11     i = i +1;

12   }

13   return y ;

14 }

The three-address code is given as:

🆙
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1 solvequad:

2   t1 := -1* b

3   t2 :=2* a

4   t3 := b * b

5   t4 :=4* a

6   t5 := t4 * c

7   t6 := t3 - t5

8   param t6
}















(1) B1

9   t7 := call mysqrt ,1

10   t8 := t1 + t7

11   t9 := t1 - t7

12   t10 := t8 / t2

13   t11 := t9 / t2

14   * x1 := t10

15   * x2 := t11
}













(2) B2

16   return

17 mysqrt:

18   t12 := 0.888889* x

19   y :=0.222222+ t12

}



(3) B3

20   i :=0

21 mysqrt_loop1:

22   t13 := x / y

23   t14 := y + t13

24   y :=0.5* t14

25   i := i +1

}







(4) B4

26   if i < 3 goto mysqrt_loop1

27   return y } (5) B5

a) Mark the basic blocks in the IR code.

Solution: Comments in code

b) Draw the control flow graph for this program.

B1

B2

B3

B4

B5

Figure 1: Control flow graph

c) Draw the data flow graph for each basic block of the IR code.

Solution:
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-1 b 2 a 4 c

* * * *

t4
t3

*

t5

-

t6

param

  

mysqrt

t1 t2 t7

Figure 2: Data Flow graph for basic Block B1

3.2 Code optimization
The Taylor expansion can be used to compute an approximation of the sine function:

sin(𝑥) ≈ 𝑥 − 𝑥3

3!
+ 𝑥5

5!
…

The following sub-optimal implementation of this approximation is given as a C function:

1 float sine_taylor(float x) { C

2     float sinx;

3     sinx = x - (x*x*x) / (3*2*1) + (x*x*x*x*x) /(5*4*3*2*1);

4     return sinx;

5 }

A straight-forward translation of this program into intermediate representation leads to the following 

three address code:
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1   t1  := x * x

2   t2  := t1 * x

3   t3  := 1 * 2

4   t4  := t3 * 3

5   t5  := t2 / t4

6   t6  := x - t5

7   t7  := x * x

8   t8  := t7 * t7

9   t9  := t8 * x

10   t10 := 1 * 2

11   t11 := t10 * 3

12   t12 := t11 * 4

13   t13 := t12 * 5

14   t14 := t9 / t13

15   sinx := t6 + t14

16   return sinx

a) Optimize this IR code using classical compiler optimization steps one by one and name the optimization 

method.

Solution:

1) Constant propagation (calculate the constants and use them as such):

1   t1  := x * x

2   t2  := t1 * x

3   t5  := t2 / 6

4   t6  := x - t5

5   t7  := x * x

6   t8  := t7 * t7

7   t9  := t8 * x

8   t14 := t9 / 120

9   sinx := t6 + t14

10   return sinx

2) Common subexpression elimination (remove double calculation of 𝑥2 and 𝑥3):

1   t1  := x * x

2   t2  := t1 * x

3   t5  := t2 / 6

4   t6  := x - t5

5   t9  := t1 * t2

6   t14 := t9 / 120

7   sinx := t6 + t14

8   return sinx

3.3 Live variable analysis
a) Conduct a live variable analysis to compute the set of live variables at the entry and end of basic block 

B1. For this provide USE[B1], DEF[B1], OUT[B1] and IN[B1].

The IR code for B1 is given as:
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1 B1:

2   t1 = x[i];

3   t2 = t1 * c ;

4   t2 = t2 -5;

5   j = j + 1;

6   z [j] = t2 ;

7   if t2 < 0 goto B3

8 B2:

9   ...

B2 and B3 are successors of B1 with current IN[B2]= {𝑥, 𝑧, 𝑖, 𝑗} and IN[B3]= {𝑧, t2}.

Solution:

• USE[B1] = {𝑥, 𝑖, 𝑐, 𝑗, 𝑧} (this does not include the variables from DEF)

• DEF[B1] = {t1, t2}
• IN[B1] = USE[B1] ∪ (OUT[B1] − DEF[B1]) = {𝑥, 𝑖, 𝑐, 𝑗, 𝑧}
• OUT[B1] = IN[B2] ∪ IN[B3] = {𝑥, 𝑧, 𝑖, 𝑗, t2}

b) How many registers do you need to use to store all values in this basic block?

Solution: Draw lines for each variables lifetime next to the code, this is probably the easiest way to 

check.

It is 6. 4 for the variables that are in IN and OUT ({𝑥, 𝑖, 𝑗, 𝑧}), one for 𝑐 in the beginning, and one shared 

register for t1 and t2.

c) Bonus: Given is the C-Code for the quicksort algorithm as well as the IR code and the control flow 

graph on the next pages. Run the complete live variable analysis for the quicksort algorithm.

ℹ️ Note

This is solved in the solutions.
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4 Five Stage Pipeline and Branch 

Prediction
4.1 Scalar in-order 5-stage Pipeline
Given are the following RISC-V Assembly codes for the same function.

1 acc: asm

2   lw t0,0(a0)

3   lw t1,4(a0)

4   add t0,t0,t1

5   lw t1,8(a0)

6   add t0,t0,t1

7   lw t1,12(a0)

8   add t0,t0,t1

9   mv a0,t0

10   ret

1 acc: asm

2   lw a1, 0(a0)

3   lw a2, 4(a0)

4   lw a3, 8(a0)

5   lw a0, 12(a0)

6   add a1, a1, a2

7   add a1, a1, a3

8   add a0, a0, a1

9   ret

a) Determine the number of cycles it takes to execute this program on the scalar, in-order, 5-stage pipeline 

from the slides without forwarding paths.

Solution: Draw the data dependencies into the code and note down how many cycles delay they cause. 

Then count up the instructions and the added delay cycles.

ℹ️ Note

The ret instructions takes 3 cycles, since it takes one for normal executions and the next 2 

instructions get discarded because of the jump.

1) 19 cycles

2) 14 cycles

b) Determine the number of cycles it takes to execute this program on the scalar, in-order, 5-stage pipeline 

from the slides with forwarding paths.

Solution:

1) 14 cycles

2) 10 cycles
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4.2 Branch Prediction
In machine learning a possible activation function is leaky ReLU. For each acti-vation output 𝑎𝑖 scales the 

negatives linear accumulators 𝑧𝑖 with a small factor 𝑐 and the positive with a larger factor 𝑑.

The following integer implementation is given as c function:

1 void act_leaky_relu_size64(int *z , int *a, int c, int d) { c

2   int i;

3   for (i = 0; i < 64; i++) {

4     if ( z[i] < 0) {

5       a[i] = z[i] * c;

6     } else {

7       a[i] = z[i] * d;

8     }

9   }

10   return;

11 }

A CLANG compilation of this program for RISCV32 leads to the following assembly code:

1   (...) asm

2 act_leaky_relu_size64: // B0

3   li a4, 0

4   li a6, 256

}



(1) B0

5   j .LBB0_2

6 .LBB0_1: // B1

7   mul a7, a5, a7

8   add a5, a1, a4

9   addi a4, a4, 4

10   sw a7, 0(a5)

}







(2) B1

11   beq a4, a6, .LBB0_4

12 .LBB0_2: // B2

13   add a5, a0, a4

14   lw a5, 0(a5)

15   mv a7, a2

}





(3) B2

16   bltz a5, .LBB0_1

17   mv a7, a3 // B3
} (4) B3

18   j .LBB0_1

19 .LBB0_4: // B4

20   ret } (5) B4
21 .Lfunc_end0:

22   (...)

Assume 𝑧0, 𝑧1, 𝑧3 to be positive and 𝑧2 to be negative. Create a table for different branch predictors with 

the following contents:

• Code Line Nr. of Branch that is executed.

• Predictor State (with entry for branch instruction address, use code line number as substitute)

• Prediction Direction

• Direction

• Prediction Correct/Wrong

🆙
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• Branch Target buffer entry (use Assembly Code Line Nr. as substitute for the branch instruction address 

and branch target address)

a) What is the basic block sequence of execution up to the computation of 𝑎3? Use the assigned basic 

block nr. to indicate the basic block, e,g, a jump to label LBB0_2 is equal to a jump to B2.

Solution: Basic Block Sequence:

B0, B2, B3, B1, B2, B3, B1, B2, B1, B2, B3, B1

Start: B0

For positive 𝑧0, 𝑧1 : Two times B2, B3, B1

For negative 𝑧2 : B2, B1

For positive 𝑧3 : B2, B3, B1

b) Local Branch Predictor, 2-bit, start state undefined: Predictor always uses not taken (NT) as first 

prediction if no BTB entry exists, and then initializes to weakly not taken (WNT) state. No entries are 

cached in the BTB. The BTB has two slots for entries. Unconditional jumps and return statements are 

ignored by the predictor.

Solution: We assume if there is no predictor state entry yet, that we initialize with the weak state.

Basic 

Block

Branch 

Line Nr.

Pred. 

Direct.
Direction

Wrong/

Correct

Pred. 

State 1

BTB 

Entry 1

Pred. 

State 2

BTB 

Entry 2

B0 - - - - - - - -

B2

B3

B1

L16

-

L11

NT

-

NT

NT

-

NT

C

-

C

L16:WNT

L16:WNT

L16:WNT

L16:L6

L16:L6

L16:L6

-

-

L11:WNT

-

-

L11:L19

B2

B3

B1

L16

-

L11

NT

-

NT

NT

-

NT

C

-

C

L16:SNT

L16:SNT

L16:SNT

L16:L6

L16:L6

L16:L6

L11:WNT

L11:WNT

L11:SNT

L11:L19

L11:L19

L11:L19

B2

B1

L16

L11

NT

NT

T

NT

W

C

L16:WNT

L16:WNT

L16:L6

L16:L6

L11:SNT

L11:SNT

L11:L19

L11:L19

B2

B3

B1

L16

-

L11

NT

-

NT

NT

-

NT

C

-

C

L16:SNT

L16:SNT

L16:SNT

L16:L6

L16:L6

L16:L6

L11:SNT

L11:SNT

L11:SNT

L11:L19

L11:L19

L11:L19
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5 Out of Order Execution
5.1 Instruction Dependencies
The following integer implementation is given as c function:

1 void act_leaky_relu_size64(int* z, int *a, int c, int d) { c

2   int i;

3   for (i=0; i<64; i++) {

4     if (z[i]<0) {

5       a[i] = z[i] * c;

6     } else {

7       a[i] = z[i] * d;

8     }

9   }

10   return;

11 }

A CLANG compilation of this program for RISCV32 leads to the following assem-bly code:

1   (...) asm

2 act_leaky_relu_size64: // B0

3   li a4, 0

4   li a6, 256

}



(1) B0

5   j .LBB0_2

6 .LBB0_1: // B1

7   mul a7, a5, a7

8   add a5, a1, a4

9   addi a4, a4, 4

10   sw a7, 0(a5)

}







(2) B1

11   beq a4, a6, .LBB0_4

12 .LBB0_2: //B2

13   add a5, a0, a4

14   lw a5, 0(a5)

15   mv a7, a2

}





(3) B2

16   bltz a5, .LBB0_1

17   mv a7, a3 // B3
} (4) B3

18   j .LBB0_1

19 .LBB0_4: // B4

20   ret } (5) B4
21 .Lfunc_end0:

22   (...)

a) Mark all RAW, WAW, and WAR dependencies in the program. Only consider local dependencies within 

the basic blocks (not across basic blocks). Solution:
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1   (...) asm

2 act_leaky_relu_size64: // B0

3   li a4, 0

4   li a6, 256

}



(1) B0

5   j .LBB0_2

6 .LBB0_1: // B1

7   mul a7, a5, a7

8   add a5, a1, a4 WAR on line 7

9   addi a4, a4, 4 WAR on line 8

10   sw a7, 0(a5) RAW on line 7,8
}







(2) B1

11   beq a4, a6, .LBB0_4 RAW on line 9

12 .LBB0_2: //B2

13   add a5, a0, a4

14   lw a5, 0(a5) WAW and RAW on line 13

15   mv a7, a2

}





(3) B2

16   bltz a5, .LBB0_1 RAW on line 13

17   mv a7, a3 // B3
} (4) B3

18   j .LBB0_1

19 .LBB0_4: // B4

20   ret } (5) B4
21 .Lfunc_end0:

22   (...)

5.2 Out of order processors
Given is the following basic block.

1   (...) asm

2 .LBB0_1: // B1

3   mul a7, a5, a7

4   add a5, a1, a4 WAR on line 3

5   addi a4, a4, 4 WAR on line 4

6   sw a7, 0(a5) RAW on line 3,4

7   beq a4, a6, .LBB0_4 RAW on line 5

8   (...)

a) Draw the pipeline diagram for the simple out of order pipeline from the slides (single instruction fetch, 

no renaming, no reorder buffer) with scoreboard.
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

mul a7, a5, a7 IF ID RO MUL MUL WB

add a5, a1, a4 IF stall stall stall ID RO ALU WB

addi a4, a4, 4 IF stall stall ID RO ALU WB

sw a7, 0(a5) IF ID RO SU SB

beq a4, a6, .LBB0 4 IF ID RO ADD

ℹ️ Note

We stall here because the pipeline does not allow an instruction with a WAW or WAR dependency to a 

previous one to enter.

b) Discuss, what is the problem with the scheme to block instructions with WAW and WAR dependencies to 

enter the pipeline.

Solution: They stall the pipeline for longer than necessary and prevent the following instructions from 

entering, even if they could be executed without any conflicts.

c) What alternative scheme could be used when not using register renaming for the WAR dependencies? 

What would be the resulting pipeline diagram?

Solution: The next instruction can be issued immediately after the WAR-dependency instruction has 

gone through the RO stage.

Cycle 1 2 3 4 5 6 7 8

mul a7, a5, a7 IF ID RO MUL MUL WB

add a5, a1, a4 IF ID RO ALU WB

addi a4, a4, 4 IF ID RO ALU WB

sw a7, 0(a5) IF ID RO SU SB

beq a4, a6, .LBB0 4 IF ID RO ADD

🆙
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6 VLIW and Superscalar
6.1 VLIW
The following C code with corresponding RISC-V assembler code is given:

C-Code:

1 #define N 2 C

2

3 void func(int *ad1, int *ad2,

4         int *as1, int *as2, int s) {

5   unsigned int i;

6   for(i = 0; i < N; i++){

7     ad1[i] = s+as1[i] + as2[i];

8     ad2[i] = as1[i] - as2[i];

9   }

10 }

RISC-V Assembly Code (scalar)

1 // a0: ad1, a1: ad2, asm

2 // a2: as1, a3: as2, a4: s

3 func:

4   li t0, 0 // i=0

5   li t1, 8

6 loop:

7   lw t2, 0(a2)

8   add t4, t2, a4

9   lw t3, 0(a3)

10   add t4, t4, t3

11   sw t4, 0(a0)

12   sub t4, t2, t3

13   sw t4, 0(a1)

14   addi a0, a0, 4

15   addi a1, a1, 4

16   addi a2, a2, 4

17   addi a3, a3, 4

18   addi t0, t0, 4

19   bne t1, t0, loop

20   ret

Given the following RISC-V VLIW pipeline with static dual issue, where slot-1 can execute ALU/branch 

instructions and slot-2 can execute load/store instructions:

a) Perform loop unrolling, optimizing the assembly code of the loop of the function for execution on the 

VLIW pipeline.

Solution: Remove loop, since 𝑁  is statically 2. So the loop only runs two times.

1) Remove Loop:

🆙
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1   // a0: ad1, a1: ad2, a2: as1, a3: as2, a4: s asm

2   func:

3     lw t2, 0(a2)

4     add t4, t2, a4

5     lw t3, 0(a3)

6     add t4, t4, t3

7     sw t4, 0(a0)

8     sub t4, t2, t3

9

10     lw t2, 4(a2)

11     add t4, t2, a4

12     lw t3, 4(a3)

13     add t4, t4, t3

14     sw t4, 4(a0)

15     sub t4, t2, t3

16     sw t4, 4(a1)

17     ret

2) Change registers to remove double use

1 // a0: ad1, a1: ad2, a2: as1, a3: as2, a4: s asm

2 func:

3   lw t2, 0(a2)

4   add t4, t2, a4

5   lw t3, 0(a3)

6   add t4, t4, t3

7   sw t4, 0(a0)

8   sub t4, t2, t3

9

10   lw t5, 4(a2)

11   add t6, t5, a4

12   lw t7, 4(a3)

13   add t6, t6, t7

14   sw t6, 4(a0)

15   sub t6, t5, t7

16   sw t6, 4(a1)

17   ret

3) Reorder instructions to remove data dependencies
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1 // a0: ad1, a1: ad2, a2: as1, a3: as2, a4: s asm

2 func:

3   lw t0, 0(a2)

4   lw t1, 0(a3)

5   lw t4, 4(a2)

6   lw t5, 4(a3)

7

8   add t2, t0, a4

9   add t2, t2, t1

10   sw t2, 0(a0)

11   sub t3, t0, t1

12   sw t3, 0(a1)

13

14   add t6, t4, a4

15   add t6, t6, t5

16   sw t6, 4(a0)

17   sub t7, t4, t5

18   sw t7, 4(a1)

19   ret

b) Schedule the assembly code and create the schedule for the static dual issue RISC-V pipeline specified 

above by filling in the table.

Solution:

Slot 1: ALU/Branch Slot 2: Load/Store

nop lw t0,0(a2)

nop lw t1,0(a3)

add t4,t0,a4 lw t2,4(a2)

add t4,t4,t1 lw t3,4(a3)

sub t5,t0,t1 sw t4,0(a0)

add t4,t2,a4 sw t5,0(a1)

add t4,t4,t3 nop

sub t5,t2,t3 sw t4,0(a0)

ret sw t5,0(a1)

6.2 Superscalar
Assume the simple superscalar RISC-V pipeline of the script with dual fetch, decode and issue, as well as 

forwarding. The size of the issue buffer is 8. There is a ROB and Commits (CO) should be in-order (multi-

commits in same cycle allowed).

The following functional units are available:

• ALU, ADD: 1 cycle latency; 1 cycle interval

• MUL: 2 cycles latency; 1 cycle interval (pipelined)

• DIV: 4 cycles latency; 4 cycles interval (serial)

• LSU:

‣ LU: 2 cycles latency; 1 cycle interval (non-blocking)

‣ SU: 1 cycle latency, Store Buffer; 1 cycle interval

🆙
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Dependencies are handled as follows without register renaming:

• RAW hazards are handled by the scoreboard. The instruction can be issued when all previous 

instructions with RAW dependency are at least in their finish state (last cycle of execute), hence, values 

are ready to be forwarded or available in the register file.

• WAR hazards are resolved by the scoreboard. The instruction can be issued when all previous 

instructions with WAR dependency are at least in their RO state (cycle before execute).

• WAW hazards are resolved by a ROB. Instructions can only be committed one cycle after all previous 

instructions with WAW dependency committed.

a) Execute the following code. Draw the pipeline diagram and calculate the achieved IPC value 

(instructions per clock cycle).

1 lw a1, 0(a0) asm

2 div a2, a4, a1 RAW to line 1

3 sw a2, 4(a0)  RAW to line 2

4 addi a3, a4, 5

5 slli a4, a3, 5 WAR and RAW to line 4

6 mul a4, a4, a7 RAW and WAW to line 5

Solution:

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

lw a1, 0(a0) IF IS RO LU LU WB CO

div a2, a4, a1 IF IS IB IB RO DIV DIV DIV DIV WB CO

sw a2, 4(a0) IF IS IB IB IB IB IB RO SU SB

addi a3, a4, 5 IF IS RO ADD WB ROB ROB ROB ROB CO

slli a4, a3, 5 IF IS RO ADD WB ROB ROB ROB CO

mul a4, a4, a7 IF IS IB RO MUL MUL WB ROB ROB CO

ℹ️ Note

The ROBs for the addi and slli are there because of interrupts. If the code gets interrupted/throws 

an exception in e.g. the sw instr., the value of addi and slli must not be written.

The ROB in the last line is because of the WAW hazard to the slli before it.

IPC = 12
6

= 2

🆙
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7 Caches und Memories
7.1 Cache Structure
The cache system should be capable of addressing at least 42 MiB of memory. Each data word is 4 bytes in 

size, and the cache itself has a total capacity of 8 KiB, organized into blocks of 256 bytes each. Determine 

the number of address bits required with word addressing.

a) Analyze the following three cache configurations:

• Direct-Mapped Cache

• 4-Way Set Associative Cache

• Fully Set Associative Cache

For each configuration, determine the minimum number of bits required for the Tag, Index, and Offset, 

as well as the total address length.

Solution:

Type Tag Index Offset addr. length

Direct-mapped 13 5 6 24
4-Way set ass. 15 3 6 24
Fully ass. 18 0 6 24

Explanations:

addr. length Is always the same. The next power of 2 from 42 is 64 = 26. 1 MiB takes 20 bit to address. 

Therefore we need 26 bit for byte addressing, and 24 bit for word addressing.

Offset Is always the same, depends on the cache blocksize. Used to index into the 256 byte blocks in 

the cache. To address 256 bytes, we need 8 bits, therefore we need 6 bit for word addressing.

Index Bits needed to address one “block of memory” in the cache.

Direct-Mapped Every 256 byte block gets its own address ⟹ 13 − 8 = 5 bit (13 to address the 8 

KiB cache, remove 8 to address the 256 byte block)

4-Way set ass. 4 of the 256 byte blocks share one address ⟹ 13 − 8 − 2 = 3 bit

Fully ass. There is only one set of memory ⟹ we need no address to select.

Tag the rest, so Tag+Index+Offset=addr. length

b) For the addresses 0x000DEADB and 0x000BE33F, compute the corresponding values of Tag, Index, and 

Offset for both the Direct-Mapped and 4-Way Set Associative cache configurations. Provide your 

answers in both binary and hexadecimal formats, omitting leading zeros where applicable.

Solution:

Type Full Tag Index Offset

Direct-mapped 0b0000110111101|01011|011011 0x1BD 0xB 0x1B

4-Way set ass. 0b000011011110101|011|011011 0x6F5 0x3 0x1B

Direct-mapped 0b0000101111100|01100|111111 0x17C 0xC 0x3F

4-Way set ass. 0b000010111110001|100|111111 0x5F1 0x4 0x3F

7.2 Caching Hierachy
The processor used in this task has the following specification:

• Clock Frequency: 2 GHz

• Access time to L1-Cache: 3 Cycles
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• Access time to L2-Cache: 30 Cycles

• Access time to L3-Cache: 300 Cycles

• Access time to main memory: 1000 Cycles

Hint: The access time of the L2 cache already includes the access time incurred by an L1 cache miss. 

Similarly, the access time of the L3 cache includes the time taken to miss in both L1 and L2 caches. This 

same principle applies to main memory access time, which includes the cumulative delay of misses in all 

cache levels.

a) Assume the CPU performs 600,000 memory accesses. The hit rate (h) is 90% for the L1 cache, and 80% 

for both the L2 and L3 caches. Calculate the miss rate and the access time for each individual memory 

module.

Solution:

Layer Miss rate Misses Access time

L1 10% 60000 1.5ns

L2 20% 12000 15ns

L3 20% 2400 150ns

main 0% xD 0 500ns

b) Discuss the impact of cache misses at different levels on overall system performance.

By what factor does the effective memory access time improve when using an L2 cache in addition to 

an L1 cache, compared to using only the L1 cache? How does the introduction of a third-level (L3) 

cache affect this?

To calculate this, determine 𝑡effL1
 for the scenario without an L2/L3 cache and 𝑡effL2

 for the scenario with 

a L1 and a L2 Cache, but no L3-Cache. 𝑡effL3
 represent the time of all 3 utilized cache levels.

To analyze this, calculate:

• 𝑡effL1
: the effective memory access time when only an L1 cache is used (no L2 or L3).

• 𝑡effL2
: the effective access time when both L1 and L2 caches are used, but no L3 cache.

• 𝑡effL3
: the effective access time when all three cache levels are utilized.

Use these values to compare performance improvements and the contribution of each cache level.

Hint: Use this formula to calculate the AMAT (average memory access time):

𝑡eff = ℎ ⋅ 𝑡cache + (1 − ℎ) ⋅ 𝑡main

Solution:

• 𝑡effL1
= ℎL1 ⋅ 𝑡L1 + (1 − ℎL1) ⋅ 𝑡main = 0.9 ⋅ 1.5 + 0.1 ⋅ 500 = 51.35ns

• 𝑡effL2
= ℎL1 ⋅ 𝑡L1 + (1 − ℎL1) ⋅ (ℎL2 ⋅ 𝑡L2 + (1 − ℎL2) ⋅ 𝑡main) = 12.55ns

• 𝑡effL3
= ℎL1 ⋅ 𝑡L1 + (1 − ℎL1) ⋅ (ℎL2 ⋅ 𝑡L2 + (1 − ℎL2) ⋅ (ℎL3 ⋅ 𝑡L3 + (1 − ℎL3) ⋅ 𝑡main)) = 6.95ns

• speed up with L1: 500
51.35 = 9.737

• speed up with L1+L2: 500
12.55 = 39.841

• speed up with L1+L2+L3: 500
6.95 = 71.942

• relative speed up L1 to L2: 
𝑡effL1
𝑡effL2

= 51.35ns
12.55ns = 4.092

• relative speed up L1 to L3: 
𝑡effL1
𝑡effL3

= 51.35ns
6.95ns = 7.388

• relative speed up L2 to L3: 
𝑡effL2
𝑡effL3

= 12.55ns
6.95ns = 1.806
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From this we can see, that more cache levels are more effective (no shit sherlock…)

c) Assume a 2-level cache hierarchy where the L2 cache has significantly greater capacity than the L1 

cache. Can the hit rate of the L1 cache even be higher than that of the L2 cache?

If so, explain elaborate multiple reasons.

Solution: Yes this is possible.

For example: Build a program, that runs in a loop and completely fits into the L1 cache. At some points 

in the program, it jumps to a random address and returns back into the loop.

This means, that the L1 cache has a hitrate of almost 1, except for the random jumps. If they are rare 

enough, they can be neglected.

The hitrate of the L2 cache only counts with the misses from the L1 cache. Since the jumps are to 

random positions, the data is also not in the L2 cache, which leads to a miss rate of 100%.

This example assumes, that the random jump does not kick any instruction from the L1 cache. But it 

can be safely assumed, that it is possible to construct such a program.

From solution document:

• Data patterns access far distant entries (Program fow)

• Sub-optimal Global Cache Configuration (Exclusive/Inclusive filling)

• Sub-optimal Local Cache Configuration (Direct/Full/Different associativity would be more beneficial)
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8 RISC-V Vector (RVV) Instruction Set
8.1 Vector Pipeline Diagrams
A RISC-V Vector Unit is configured as follows:

• VLEN = 256 bits (register length)

• LMUL = 2 (number of registers per vector)

• SEW = 32 bits (selected element width – width of one element in the vector)

• VL = VLMAX (number of elements in one vector)

Vector Functional Units are designed with:

• VADD: 128 bits wide (4 32-bit lanes), pipelined, 3 cycles latency

• VMUL: 128 bits wide (4 32-bit lanes), pipelined, 5 cycles latency

• VLSU: 128 bits wide (4 32-bit lanes), pipelined, 4 cycles latency for loads, 2 cycles latency stores

• 1 Vector Register Write Port, 2 Vector Register Read Ports. On conflict, oldest instruction gets priority.

Given the following RISC-V Vector Code:

1 vle32.v v0, (a1) asm

2 vmul.vx v2, v0, t0

3 vadd.vv v4, v0, v2

4 vse32.v v4, (a2)

Draw the pipeline state of the vector unit for this code. Assume this vector unit allows for chaining results 

between vector functional units.

VLMAX = LMUL ⋅ VLEN
SEW

= 16
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Solution:

Instruction Register 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

vle32.v v0, (a1) v0[0-3] R VLSU VLSU W

vle32.v v0, (a1) v0[4-7] R VLSU VLSU W

vle32.v v0, (a1) v1[0-3] R VLSU VLSU W

vle32.v v0, (a1) v1[4-7] R VLSU VLSU W

vmul.vx v2, v0, t0 v0[0-3] R VMULVMULVMUL W

vmul.vx v2, v0, t0 v0[4-7] R VMULVMULVMUL W

vmul.vx v2, v0, t0 v1[0-3] R VMULVMULVMUL W

vmul.vx v2, v0, t0 v1[4-7] R VMULVMULVMUL W

vadd.vv v4, v0, v2 v0[0-3] R VADD stall W

vadd.vv v4, v0, v2 v0[4-7] R stall VADD W

vadd.vv v4, v0, v2 v1[0-3] stall R VADD W

vadd.vv v4, v0, v2 v1[4-7] R VADD W

vse32.v v4, (a2) v0[0-3] stall R VLSU

vse32.v v4, (a2) v0[4-7] R VLSU

vse32.v v4, (a2) v1[0-3] R VLSU

vse32.v v4, (a2) v1[4-7] R VLSU
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8.2 RISC-V Vector Configuration
The RISC-V vector unit configuration is as follows:

• Vector Register Parameters:

‣ VLEN: 256 Bits

‣ LMUL: 4

‣ SEW: 32 Bits

• Input Data:

‣ Array a

‣ Data Type: int (32 Bits)

‣ Data Length n: 122

Solve the following problems:

a) Calculate VLMAX

Solution:

VLMAX = VLEN ⋅ LMUL
SEW

= 32

b) Determine the number of iterations required to process 122 elements.

Solution:

⌈ 122
VLMAX

⌉ = 4

c) In the last iteration, illustrate the data layout in the vector registers based on the given configuration 

and dynamic vector length (vl). Label the key parameters (SEW, LMUL, VLEN, VLMAX, vl).

Solution:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
v0
v1
v2
v3

All the orange entries are filled with data, the white ones are not.

• SEW is 4, which is the width of one entry (one cell of the table)

• LMUL is 4, which is the number of bundled registers, here the number of lines in the table.

• VLEN is the register width, which is 256 bit or 32 bytes, here the width of the table

• VLMAX is the maximum number of entries that fit into one vector. Here the number of cells 

(including the not-colored ones)

• vl is the current number of entries that fit into one vector, which is 26. Here the number of colored 

cells.

8.3 Vectorized Assembly Code
Given the following assembly code:
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1   addi t0, x0, 100 asm

2 loop:

3   lw t1, 0(a0)

4   lw t2, 0(a1)

5   mul t3, t1, t2

6   sw t3, 0(a2)

7   addi t0, t0, -1

8   addi a0, a0, 4

9   addi a1, a1, 4

10   addi a2, a2, 4

11   bne x0, t0, loop

12   ret

Write a version of this code using scalable RISC-V Vector assembly instructions.

Solution:

1 for (int i = 0; i < 100; ++i) { C

2   a2[i] = a0[i] * a1[i];

3 }

Therefore this can be parallelized with vectorized assembly instructions.

1   addi t0, x0, 100 asm

2 loop: 

3   vsetvli t1, t0, e32, m2, ta, ma

4   slli t3, t1, 2    // new loop handles VLMAXx2 elements

5   vle32.v v0, (a0)

6   vle32.v v2, (a1)

7   vmul.vv v4, v0, v2

8   vse32.v v4, (a2)

9   sub t0, t0, t1

10   add a0, a0, t3

11   add a1, a1, t3

12   add a2, a2, t3

13   bne x0, t0, loop

14   ret

How could this code be improved to make use of interleaving on the vector unit? Modify your written 

code to use this principle.

Solution: Yes, it can be improved:
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1   vsetvli t2, x0, 32, m2, ta, ma #Get VLMAX asm

2   slli t2, t2, 1        // new loop handles VLMAXx2 elements

3   addi t0, x0, 100

4 loop: 

5   blt t0, t2, tail

6   vsetvli t1, t0, e32, m2, ta, ma

7   slli t3, t1, 2

8   vle32.v v0, (a0)

9   add a0, a0, t3

10   vle32.v v2, (a1)

11   add a1, a1, t3

12   vmul.vv v4, v0, v2

13   vle32.v v6, (a0)      //interleave 2nd load with 1st multiply

14   add a0, a0, t3

15   vle32.v v8, (a1)

16   add a1, a1, t3

17   vmul.vv v10, v6, v8

18   vse32.v v4, (a2)      // interleave 1st store with 2nd multiply

19   add a2, a2, t3

20   vse32.v v10, (a2)

21   add a2, a2, t3

22   sub t0, t0, t2

23   bne x0, t0, loop

24   tail: beq t0, x0, exit // if vector fits perfectly in loop

25   vsetvli t1, t0, e32, m4, ta, ma // use old code here

26   slli t3, t1, 2

27   vle32.v v0, (a0)

28   vle32.v v2, (a1)

29   vmul.vv v4, v0, v2

30   vse32.v v4, (a2)

31   sub t0, t0, t1

32   add a0, a0, t3

33   add a1, a1, t3

34   add a2, a2, t3

35   bne x0, t0, tail

36 exit:

37   ret
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9 HLS Basics
Given is the following function to compute the estimate the square root of the input parameter x. If the 

input parameter is negative, then the function should first multiply the input x with −1 to make it positive.

1 double mysqrt(double x) { c

2   if (x < 0) {

3     x = x * -1;

4   }

5   double y = 0.22222 + 0.888889 * x;

6   int i = 0;

7   while (i < 3) {

8     y = 0.5 * (y + x / y);

9     i = i + 1;

10   }

11   return y;

12 }

a) Give an intermediate code representation using three-address code notation.

Solution:

1   if x>=0 goto endif1

2   x := x * -1

3 endif1:

4   t1 := 0.888889 * x

5   y := 0.22222 + t1

6   i := 0;

7 whilestart:

8   t2 := x / y

9   t3 := t2 + y

10   y  := 0.5 * y

11   i  := i + 1

12   if i < 3 goto whilestart

13   return y

b) Give the sequencing graph for your intermediate code representation.

Solution:
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nop

br

nop

*

nop

nop

nop

*

+

:=

loop

nop

/

+* +

nop return

nop
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10 HLS Scheduling
We look at the following code line of the XTEA encryption algorithm:

1   y = y +(z<<4 ^ z>>5) + z ^ sum + k[sum & 3]; c

The code line should be implemented in hardware. An ALU is used, which can execute shift operations 

(SL,SR), logic operations (XOR,AND) and additions (+). The array k is stored in local memory. The access to 

the memory is done by a READ operation.

Given is the intermediate code representation using three-address code notation:

1 t1 := z << 4

2 t2 := z >> 5

3 t3 := sum & 3

4 t4 := t1 ^ t2

5 t5 := k[t3]

6 t6 := y + t4

7 t7 := sum + t5

8 t8 := t6 + z

9 y  := t7 ^ t8

The resulting Sequencing Graph is:

nop

&>><<

xor

+

+

Read

+

xor

nop

v0

v1 v2 v3

v4 v5

v6 v7

v8

v9

v10
0

1

4

5

6

4

7

8

9 9

2

22

3

4

7

10

11

5

6

7

• red values are priorities (just bottom up times how long it takes, starting from 0)

• blue values are the ALAP times for the nodes
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• The ALU supports multi-cycle operations.

• The shift and logical operations have a delay of one clock cycle

• The add operation (+) has a delay of three clock cycles

• The READ operations takes the array index as input to compute a memory address and outputs the 

value of the array element after one clock cycle on the memories’ read bus.

a) Schedule the sequencing graph for a resource constrained (2 ALUs, 1 decoder) with the list scheduling 

method.

Solution:

2 × ALU 1 decoder (for READs) Start time

𝑡act 𝑈akt,alu 𝑇akt,alu 𝑆akt,alu 𝑈akt,dec 𝑆akt,dec 𝑡𝑖
1 {v1, v2, v3} {} {v1, v2} {} {} 𝑡1 = 𝑡2 = 1
2 {v3, v4} {} {v3, v4} {} {} 𝑡3 = 𝑡4 = 2
3 {v6} {} {v6} {v5} {v5} 𝑡6 = 𝑡5 = 3
4 {v7} {v6} {v7} {} {} 𝑡7 = 4
5 {} {v6, v7} {} {} {}
6 {v8} {v7} {v8} {} {} 𝑡8 = 6
7 {} {v8} {} {} {}
8 {} {v8} {} {} {}
9 {v9} {} {v9} {} {} 𝑡9 = 9
10 {v10} {} {v10} {} {} 𝑡10 = 10

b) Schedule the sequencing graph with the ASAP schedule and give the number of required resources.

Solution:

• 𝑡1 = 𝑡2 = 𝑡3 = 1
• 𝑡4 = 𝑡5 = 2
• 𝑡6 = 𝑡7 = 3
• 𝑡8 = 6
• 𝑡9 = 9
• 𝑡10 = 10

Λ𝑆 = 9 (latency)

Resources: 3 ALUs, 1 decoder

c) Schedule the sequencing graph with the ALAP schedule for a latency of 10 clock cycles.

Solution:

• 𝑡10 = 11
• 𝑡9 = 10
• 𝑡8 = 𝑡7 = 7
• 𝑡5 = 6
• 𝑡3 = 5
• 𝑡6 = 4
• 𝑡4 = 3
• 𝑡1 = 𝑡2 = 2
• 𝑡0 = 2
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d) Give the mobility of the operations and the critical path for a latency of 10 clock cycles.

Solution:

• 𝜇3 = 𝜇5 = 𝜇7 = 4
• 𝜇0 = 𝜇1 = 𝜇2 = 𝜇4 = 𝜇6 = 𝜇8 = 𝜇9 = 𝜇10 = 1

Critical path: v0 ⟶ v1 | v2 ⟶ v4 ⟶ v6 ⟶ v8 ⟶ v9 ⟶ v10
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e) Schedule the sequencing graph with the list scheduling method and a timing constraint (maximal 10 clock cycles latency).

Solution:

1 ALU 1 decoder (for READs) Start time

𝑡act 𝑈akt,alu Slack 𝑇akt,alu 𝑆akt,alu 𝑅akt,alu 𝑎alu 𝑈akt,dec Slack 𝑆akt,dec 𝑅akt,alu 𝑎dec 𝑡𝑖
1 {v1, v2, v3} 𝑠1 = 𝑠2 = 1; 𝑠3 = 4 {} {} {v1} 1 {} {} {} {} {} 𝑡1 = 1
2 {v2, v3} 𝑠2 = 0; 𝑠3 = 3 {} {v2} {} 1 {} {} {} {} {} 𝑡2 = 2
3 {v3, v4} 𝑠3 = 2, 𝑠4 = 1 {} {} {v4} 1 {} {} {} {} {} 𝑡4 = 3
4 {v3, v6} 𝑠3 = 1, 𝑠6 = 0 {} {v6} {} 1 {} {} {} {} {} 𝑡6 = 4
4 {v3} 𝑠3 = 0 {v6} {v3} {} 2 {} {} {} {} {} 𝑡3 = 5

The last line is not possible with one ALU, since v6 is running and we need to add v3. By the algorithm, we would now restart with 2 ALUs. We already did 

that in point a) and proved that it is possible to remain below 10 cycles of latency, so we do not have to continue here.

• 𝑡act current time

• 𝑈akt,alu Candidates to schedule

• Slack: 𝑡ALAP − 𝑡act
• 𝑇akt,alu currently running

• 𝑆akt,alu now starting (with slack 0)

• 𝑅akt,alu now starting (with not slack 0)

• 𝑎alu number of availible ALUs

• 𝑡𝑖 starting time of vi
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11 HLS Binding and RTL Generation
Given is the following c-program:

1 int32_t calc2(int32_t a, int32_t b, int32_t c) { c

2   int32_t d;

3   d = a * a + b * b - 3 * a * c;

4   return d;

5 }

The three address code for this code line is given as follows:

1 calc2:

2   t1:=a*a

3   t2:=b*b

4   t3:=a*c

5   t4:=3*t3

6   t5:=t1+t2

7   d:=t5-t4

8   return d

a) Draw the sequencing graph for this three address code.

Solution:

nop

*

*

**

+

-

return

nop

v0

v1 v2 v3

v4 v5

v6

v7

v8
0

1

2

43

5 5 6

6

b) Compute the start times for all operations using the list schedule method for a resource constraint of 

one ALU that can execute additions and subtractions and two multipliers that can execute 

multiplications. The delay of the ALU is one clock cycle and the delay of the multiplier is two clock 

cycles.
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Solution:

2 MUL 1 ALU Start time

𝑡act 𝑈akt,mul 𝑇akt,mul 𝑆akt,mul 𝑈akt,alu 𝑆akt,alu 𝑡𝑖
1 {v1, v2, v3} {} {v1, v3} {} {} 𝑡1 = 𝑡3 = 1
2 {v2} {v1, v3} {} {} {}
3 {v2, v5} {} {v2, v5} {} {} 𝑡2 = 𝑡5 = 3
4 {} {v2, v5} {} {} {}
5 {} {} {} {v4} {v4} 𝑡4 = 5
6 {} {} {} {v6} {v6} 𝑡6 = 6
7 {} {} {} {v7} {v7} 𝑡7 = 7
8 {} {} {} {} {} 𝑡8 = 8

c) Find a valid binding of the multiplications to the multipliers using the left edge algorithm.

Solution: Find the multiplication intervals:

• 𝐼1 = [1, 2]
• 𝐼2 = [3, 4]
• 𝐼3 = [1, 2]
• 𝐼5 = [3, 4]

Sort by left sides of the intervals (the starting points): 𝐼1, 𝐼3, 𝐼2, 𝐼4
• 𝑎act = 0 ⟶ 𝑙𝑖 ≥ 𝑎act: choose 𝐼1
• 𝑎act = 𝑟1 = 2 ⟶ 𝑙𝑖 ≥ 𝑎act: choose 𝐼2
• 𝑎act = 𝑟2 = 4 ⟶ 𝑙𝑖 ≥ 𝑎act: there is none left

Try again for the other multiplier with set {𝐼3, 𝐼4}:

• 𝑎act = 0 ⟶ 𝑙𝑖 ≥ 𝑎act: choose 𝐼3
• 𝑎act = 𝑟3 = 2 ⟶ 𝑙𝑖 ≥ 𝑎act: choose 𝐼4
• 𝑎act = 𝑟4 = 4 ⟶ 𝑙𝑖 ≥ 𝑎act: there is none left

So the bindings are {𝐼1, 𝐼2} on the first multiplier and {𝐼3, 𝐼4} on the second one.

d) Give the lifetime of all compiler temporary variables tx. Draw the register conflict graph for these 

variables tx.

Solution:
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Reg 1 𝑡1, 𝑇5, 𝑑
Reg 2 𝑡2, 𝑡3
Reg 3 𝑡4

e) Find a valid binding of the compiler temporary variables to registers using the left edge algorithm. 

How many registers are required? Color the register conflict graph accordingly.

Solution:

t1

t2

t3

t4

t5

d

Figure 8: Conflict graph

f) Draw the data flow graph with schedule and binding.

g) Draw a structural view of the data path.
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h) Give the activation signals for all operations.

Solution:

Note Operation Binding Cycle MX1 MX2 MX3 MX4 MX5 MX6 MX7 ALU_OP

v1 t1 := a*a MUL1 1 0 - - - - - -

v1 t1 := a*a MUL1 2 0 - - - 00 - -

v2 t2 := b*b MUL1 1 1 - - - - - -

v2 t2 := b*b MUL1 2 1 - - - - 00 -

v3 t3 := a*c MUL2 1 - 0 0 - - - -

v3 t3 := a*c MUL2 2 - 0 0 - - 01 -

v4 t5 := t1+t2 ALU 1 - - - 0 01 - - +
v5 t4 := 3*t3 MUL2 1 - 1 1 - - - -

v5 t4 := 3*t3 MUL2 2 - 1 1 - - - 0

v6 d := t5-t4 ALU 1 - - - 1 01 - - −

i) Give the hold signals for all variables, for which they are required.

Solution:

Operation Binding MX1 MX2 MX3 MX4 MX5 MX6 MX7

hold t1 R1 - - - - 10 - -

hold t3 R2 - - - - - 10 -

hold t4 R3 - - - - - - 1

hold d R1 - - - - 10 - -
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j) Draw the FSM with data specification to control the data path. Apply a start, ready, acknowledge 

control scheme. The value of d should be kept at its output port for readout until the acknowledge 

signal is high.

Solution:

CC0

CC1

CC2

CC3

CC4

CC5

rdy

start = 0

start = 1

ack = 0

ack = 1

v1(CC1)

v3(CC1)

v1(CC2)

v3(CC2)

v2(CC1), v5(CC1)

hold t3, hold t1

v2(CC2), v5(CC2)

hold t1

v4

hold t4

v6

hold d

ℹ️ Note

• The state transitions that are not given explicitly are done on every clock edge.

• There should be a state transition from each state to CC0 if reset is high.

• The syntax v1(CC1) means that in this state, the multiplexer signals from state v1 in clock cycle 1 

should be applied.

k) Conduct a state assignment for your FSM applying binary encoding.

Solution:
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State Binary encoding One-hot encoding Almost-one-hot encoding

CC0 000 0000001 000000

CC1 001 0000010 000001

CC2 010 0000100 000010

CC3 011 0001000 000100

CC4 100 0010000 001000

CC5 101 0100000 010000

rdy 110 1000000 100000

l) Give the truth table for the output logic of your FSM.

Solution:

State MX1 MX2 MX3 MX4 MX5 MX6 MX7 ALU_OP ready

CC0 (000) 0 0 0 - - - - 0

CC1 (001) 0 0 0 - 00 01 - 0

CC2 (010) 1 1 1 - 10 10 - 0

CC3 (011) 1 1 1 - 10 00 0 0

CC4 (100) - - - 0 01 - 1 + 0

CC5 (101) - - - 1 01 - - − 0

rdy (110) - - - - 10 - - 1

m) Give the truth table for the next state logic of your FSM. Include a reset signal that brings the FSM 

from any state to its initial state.

Solution:

State start ack reset next State

000 0 X 0 000

000 1 X 0 001

001 X X 0 010

010 X X 0 011

011 X X 0 100

100 X X 0 101

101 X X 0 110

110 X 0 0 110

110 X 1 0 000

XXX X X 1 000
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12 HLS Loop Optimization
A FIR filter with an input sample vector x, coefficient vector c and output vector y should be designed. 

Given is the following C-function that implements the FIR filter:

1 void fir(int x[703], int c[64], int y[640]) { c

2   int i, j;

3   for (j = 0; j < 640; j++){

4     y[j] = 0;

5     for (i=0;i<64;i++){

6       y[j] = y[j] + c[i] * x[i + j];

7     }

8   }

9 }

The arrays x,c and y are all stored in local dedicated memories. Read operations to the memories take two 

cycles, write operations one cycle. The multiplication takes six cycles. All other operations take one cycle.

Attention: the first cycle of a read operation can be chained in one cycle together with an add operation! The 

read operation is pipelined, such that one can use the read port every cycle, but the result is returned in the 

next cycle.

12.1 Solution 1:
At first we implement the FIR filter without any loop optimization: Its intermediate representation in 

three-address code notation is as follows:

1 fir:

2   j:=0

3 Loop1:

4   y[j]:=0

5   i:=0

6 Loop2:

7   t1:=i+j

8   t2:=x[t1]

9   t3:=c[i]

10   t4:=t2*t3

11   t5:=y[j]

12   t6:=t5+t4

13   y[j]:=t6

14   i:=i+1

15   if (i<64) goto Loop2

16   j:=j+1

17   if(j<640) goto Loop1

18   return

a) Can this three-address code further be optimized? If yes, give the optimized code.

b) Draw the sequencing graph for this intermediate representation of the fir function.

c) Schedule the Sequencing Graph using ASAP Scheduling. Compute the latency for the whole fir 

function. Give the number of adders, multipliers, read ports for x and c as well as write ports for y.

Solution:
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12 Solution - HLS Loop Optimization

a) Optimized code:

1 fir:

2 j:=0 // v1

3 Loop1:

4 t1:=j // v6

5 t2:=0 // v7

6 i:=0 // v8

7 Loop2:

8 t3:=i+t1 //v15

9 t4:=x[t3] //v17

10 t5:=c[i] //v16

11 t6:=t4*t5 //v20

12 t2:=t2+t6 //v21

13 i:=i+1 //v18

14 if (i<64) goto Loop2 //v19

15 y[t1]:=t2 //v10

16 j:=j+1 //v11

17 if(j <640) goto Loop1 //v12

18 return //v3

b) Sequencing Graph

NOPv0

:=v1

LOOPv2

returnv3

NOPv4

NOPv5

:=v6 :=v7 :=v8

LOOPv9

Writev10

+v11

<v12

NOPv13

NOPv14

+v15 Readv16

Readv17 +v18

<v19∗v20

+v21

NOPv22

Figure 16: Sequencing graph
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c) ASAP Scheduling (Most Inner Loop 2)
t̂S14=1
t̂S15=1, t̂S16=1
t̂S17=1 (chained with v15)
t̂S20=3, t̂S18=3
t̂S19=4
t̂S21=9
t̂S21=10

ΛLoop2 = 9
Execution time of Loop node: d9= ΛLoop2· #iterations = 9 · 64 = 576

ASAP Scheduling (Most Inner Loop 1)
t̂S5=1
t̂S6=1, t̂S7=1, t̂S8=1
t̂S11=2, t̂S9=2
t̂S12=3
t̂S10=578
t̂S13=579
ΛLoop1 = 578
Execution time of Loop node: d9= ΛLoop1· #iterations = 578 · 640 = 369920

ASAP Scheduling of top FIR SGU
t̂S0=1
t̂S1=1
t̂S2=2
t̂S3=369922
t̂S4=369923
ΛFIR =369922

We need ΛFIR =369922 cycles and one resource of each type (two ADD as v11
and v15 would run in same cycle in this schedule).

48

12.2 Solution 2
We unroll the inner loop completely to optimize the FIR filter for a resource constrained case: at maximum 

two read ports may be used for x and two read ports may be used for c.

1 void firUnrolled1(int x[703], int c[64], int y[640]) { c

2   int j;

3   for (j = 0; j < 640; j++) {

4     y[j] = 0;

5     y[j] = y[j] + c[0] * x[0 + j];

6     y[j] = y[j] + c[1] * x[1 + j];

7     y[j] = y[j] + c[2] * x[2 + j];

8     (...)

9     y[j] = y[j] + c[63] * x[63 + j];

10   }

11 }
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d) Draw the sequencing graph for this case. Assume the same optimization as in the previous solution.

e) Compute the latency of the fir function.

Solution:

d) Unroll the inner loop: Three-address code

1 fir:

2 j:=0 // v1

3 Loop1:

4 t1:=j // v6

5 // block: i=0,i=1

6 t2:=x[t1] //v7

7 t3:=c[0] //v8

8 t4:=t2*t3 //v9

9 t5:=1+t1 //v10

10 t6:=x[t5] //v11

11 t7:=c[1] //v12

12 t8:=t6*t7 //v13

13 t9:=t4+t8 //v14

14 // block i=2,i=3

15 t10 :=2+t1 //v15

16 t11:=x[t10] //v16

17 t12:=c[2] //v17

18 t13:=t11*t12 //v18

19 t14 :=3+t1 //v19

20 t15:=x[t14] //v20

21 t16:=c[3] //v21

22 t17:=t15*t16 //v22

23 t18:=t13+t17 //v23

24 t19:=t9+t18 //v24

25 // block: i=4,i=5

26 (...)

27
28 y[t1]:= t319 //v332

29 j:=j+1 //v333

30 if(j <640) goto Loop1 //v334

31 return //v3

49

Simplified Sequencing Graph for only four iterations (i=0,1,2,3) of the inner
loop The real sequencing graph has 32 blocks for i = 0..64!

NOPv0

:=v1

LOOPv2

returnv3

NOPv4

NOPv5

:=v6

Readv7 Readv8

∗v9

+v10

Readv11 Readv12

∗v13

+v14

+v15

Readv16 Readv17

∗v18

+v19

Readv20 Readv21

∗v22

+v23

+v24

Writev332

+v333

<v334

NOPv335

Block for iteration i=0,i=1 Block for iteration i=2,i=3

Figure 17: Sequencing graph
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12.3 Solution 3
In the following, the inner loop should be pipelined. There needs to be only a single ramp-down phase at 

the end of the last iteration of the outer loop NOT at every iteration of the outer loop.
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f) Draw the sequencing graph including the cross-carried data dependency edges.

g) What is the possible initialization interval 𝑇𝑝?

h) What is the latency for this schedule for the complete function with the smallest initialization interval? 

What are the number of required resources?

Solution:

e) Scheduling with max. two read ports for x and two read ports for y. We
can schedule two blocks at the same time with the available read ports.
Hence, there are 32 blocks for the 64 inner loop iterations.
Each block has a latency of ΛBlock=9 cycles (2 for read, 6 for mult, 1 for add).
As the read port is pipelined, we can start each block one cycle after the pre-
vious one, leading to a quasi-pipelined schedule: The latency for all 32 blocks is
hence 32 cycles to start all blocks plus 8 cycles to finsh the last block (ramp down):

ΛAllBlocks = #blocks + (ΛBlock-1) = 32 + 9 -1 = 40

Finally, these is one more cycle required to add the output of the last two
blocks and one cycle for the write operation.

ΛLoop=ΛAllBlocks +2 = 42

With this we can compute the latency of the LOOP node v2:
d2 = ΛLoop· #iterations = 42 · 640 = 26880

The latency of the FIR filter adds 2 for node v1 and node v3.
ΛFIR,unrolled= 26882
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f) Add the cross-loop dependencies in the sequencing graph

NOPv0

:=v1

LOOPv2

returnv3

NOPv4

NOPv5

:=v6 :=v7 :=v8

LOOPv9

Writev10

+v11

<v12

NOPv13

NOPv14

+v15 Readv16

Readv17 +v18

<v19∗v20

+v21

NOPv22

1

1
1
1

Figure 18: Sequencing graph

The pipelining starts each operation again after the initialization interval:

t
(l+1)
i = t

(l)
i + Tp

The cross-loop dependencies at new constraints:

t
(l+1)
21 ≥ t

(l)
21 + d21

t
(l)
21 + Tp ≥ t

(l)
21 + d21

Tp ≥ d21
Tp ≥ 1

t
(l+1)
18 ≥ t

(l)
18 + d18

t
(l)
18 + Tp ≥ t

(l)
18 + d18

Tp ≥ d18
Tp ≥ 1

t
(l+1)
15 ≥ t

(l)
18 + d18

t
(l)
15 + Tp ≥ t

(l)
18 + d18 with t

(l)
15 = 1, t

(l)
18 = 3

1 + Tp ≥ 3 + 1
Tp ≥ 3

t
(l+1)
16 ≥ t

(l)
18 + d18

t
(l)
16 + Tp ≥ t

(l)
18 + d18 with t

(l)
16 = 1, t

(l)
18 = 3

1 + Tp ≥ 3 + 1
Tp ≥ 3

52So with the schedule and three address code of a) + b), we can only select an initialization interval of 𝑇𝑝 ≥
3.
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13 Multicore Synchronization Challenges
13.1 Iterative Stencil Loops (ISLs)
Numerical data processing with a fixed pattern, called a stencil, is most commonly used in computer 

simulations. ISLs perform their calculations in so-called timesteps within a given array, where each 

element or cell is updated. The stencil describes the access pattern to the neighboring cells utilized. We 

investigate in the following task the 5-Point 2D stencil to calculate the average over 4 neighbors + cell 

itself:

𝑍𝑥,𝑦 = 1
5

× (𝑈𝑥,𝑦 + 𝑈𝑥−1,𝑦 + 𝑈𝑥+1,𝑦 + 𝑈𝑥,𝑦−1, 𝑈𝑥,𝑦+1)

Figure 3a depicts the pattern for each cell in each timestep. Figure 3b illustrates a simple application 

designed solely for visualization purposes, demonstrating why such an access pattern might be reasonable. 

We assume for the following questions, that U and Z are both implemented as 2-D arrays (x and y-axis).

𝑈𝑥,𝑦+1

𝑈𝑥−1,𝑦 𝑈𝑥,𝑦 𝑈𝑥+1,𝑦

𝑈𝑥,𝑦−1

Subfigure 18.1: 5 Point 2D Stencil Pattern Subfigure 18.2: HeatMap for visualization

Figure 18: 5-Point 2D stencil pattern and a simplified application example

a) Is this a do-all or do-across loop? Is there any data shared between computations?

Solution: This is an do-all loop with U and its elements as shared data.

b) Write pseudo-code for this task and indicate which parts can be parallelized?

1 offsets = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)] python

2 for x in range(width): # can be parallelized

3   for y in range(height): # can be parallelized

4     sum = 0

5     count = 0

6     for offset in offsets:

7       sum += U[x + offset.x, y + offset.y]

8       count += 1

9     Z[x, y] = sum / count

c) Considering multi-core synchronizations, is a parallelization always correct?

Solution: Yes, since U and Z are different buffers. Therefore there are no race conditions.

d) Can there be performance bottlenecks when doing the parallelization? How can these be mitigated?
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Solution: No. Since each thread/processor writes to its own memory address without having to fetch the 

data that is in there, there are no cache problems like false sharing.

from solution document: There can be a performance bottleneck as caches operate on blocks of data. 

Hence two threads on different cores writing to nearby indices in Z may both invalidate the cache line 

requiring many cache refills. Ideally parallelization is done in a way that threads on different cores 

work on output data that is located in different cache lines, e.g, thread 1: x = 1 to X/2 and thread 2: x = 

X/2 + 1 to X.

13.2 SoC Memory Hierarchies
Modern multi-core processors feature increasingly specialized architectures. Typically, each core has its 

own dedicated L1 and L2 caches, while the L3 cache is shared among all cores. Smaller chips often use 

different internal structures.

Figure 19: RISC-V K1 CPU diagram

a) Examine the cache hierarchy in the diagram (see Figure 19) for the SPacemit K1 RISC-V octa-core 

processor (see https://www.spacemit.com/en/key-stone-k1/) and explain the overall structure.

Solution: Each of the processor (the X60-AI cores) has its own dedicated 32K L1 instruction and 32K L1 

data cache. Each compute cluster (consisting of 4 cores) then has its own 512K cache, not split into instr. 

and data. There is no L3 cache here.

from solution document:

• The 16 GB eMMC storage is accessible only through the connectivity subsystem.

• A shared L2 cache per cluster can cause contention → serializing eMMC memory accesses.

• Inter-cluster communication incurs additional latency due to the coherent interconnect bus.

b) What might be an undesired effect of having a shared vector unit per cluster?

Solution: from solution document:
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Since vector units typically transfer much larger amounts of data than scalar cores, they generate 

significantly higher bandwidth demands, which can monopolize the L2 cache and interconnect bus, 

leading to resource starvation for the simpler cores.
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14 Multicore Cache Coherency
3 CPUs with 3 write-back Caches (C0/C1/C2) have a shared bus system and a snooping-based Cache 

Coherency protocol, which is depicted in Subfigure 20.1. Assume for the task that each memory access 

uses the same memory address and each cache entry is invalid at the beginning.

Subfigure 20.1: Memory structure Subfigure 20.2: MSI Protocol without BusUpgr

Figure 20: Memory system and MSI Protocol for task 1

14.1 MSI Protocol
a) Fill the following table with all corresponding states, bus requests and data transfer using the MSI 

protocol w/o BusUpgr(ade). Fill each line with the states after the operation is executed.

t Operation C0 C1 C2 Bus Request data transfer

Initial - - -

1 R2 - - S BusRead M → C2

2 W2 - - M BusRdX M → discard

3 R1 - S S BusRead C2 → M → C1

4 W0 M I I BusRdX M → C0

5 R2 S I S BusRead C0 → M →C2

6 R1 S S S BusRead M → C1

7 W0 M I I BusRdX M → discard

Table 6: Cache after (R/W)-operations for the MSI protocol

ℹ️ Note

Without the BusUpgr(ade) protocol, each BusRead and BusRdX request initiates a data transfer, but 

the data from BusRdX requests gets discarded.

b) Would BusUpgr(ade) impact the data transfer?

Solution: Yes, it would save the two data transfers that get discarded, which saves data bandwidth.
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14.2 MESI Protocol

Figure 21: MESI Protocol

a) Now fill the table for the MESI protocol: Distinguish explixitly between Flush and FlushOpt and its 

impact on the data transfer. This also includes the direction from which it is flushed (e.g., Flush (C0)).

t Operation C0 C1 C2 Bus Request data transfer

Initial - - -

1 R2 - - E BusRead !C M → C2

2 W2 - - M -

3 R1 - S S BusRead C C2 → M → C1

4 W0 M I I BusRdX C1/C2 → C0

5 R2 S I S BusRead C C0 → M → C2

6 R1 S S S BusRead C C0/C2 → C1

7 W0 M I I BusUpgrade -

Table 7: Cache states after (R/W)-operations with the MESI protocol

14.3 MOESI Protocol

Figure 22: MOESI Protocol

a) Now fill the table for the MOESI protocol: Distinguish explixitly between Flush and FlushOpt and its 

impact on the data transfer. This also includes the direction from which it is flushed.
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t Operation C0 C1 C2 Bus Request data transfer

Initial - - -

1 R2 - - E BusRead !C M → C2

2 W2 - - M - -

3 R1 - S O BusRead C C2 → C1 (with Flush)

4 W0 M I I BusRdX C2 → C0 (with Flush)

5 R2 O I S BusRead C C0 → C2 (with Flush)

6 R1 O S S BusRead C C0 → C1 (with Flush)

7 W0 M I I BusUpgrade -

Table 8: Cache states after (R/W)-operations with the MOESI protocol
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15 Atomic Data Types and Memory Models
15.1 Synchronisation – Blocking und Nonblocking
Given the following program fragment that updates two variables A and B with new values. Access is 

protected from concurrent access using Lock/Unlock.

1 : Lock(S);

2 : A := A + 1;

3 : B := B - 1;

4 : Unlock(S);

Write alternative code with the same functionality, but which should be non-blocking, using:

a) RMW (Read-Modify-Write) operations.

Solution:

1 // initialize S with 0 pseudo

2

3 while_start:

4   if !read-modify-write(S, 0, 1) goto while_start; // acquire lock

5   A := A + 1;

6   B := B - 1;

7   S := 0; // release lock

ℹ️ Note

read-modify-write(A, B, C):

• A: variable to change

• B: what we expect

• C: what to set A to, if A matches B

• returns true if set was successful

b) LL/SC (Load-Linked / Store-Conditional)

In addition to the statements already given above, you may also use if-statements, loops, labels, and 

gotos. The function Address(V) returns the address at which the variable V is stored.

What problems can occur in the RMW and LL/SC implementations?

Solution:

ℹ️ Note

LL(addr):

• loads data from addr

• remembers that this thread loaded the variable

• returns the read value

SC(addr, data):

• stores data to addr, if nobody wrote something since the corresponding LL(addr) call

• returns if write was successful

🆙
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1   // initialize S with 0 pseudo

2   s_addr = Address(S)

3

4 check_start:

5   if LL(s_addr) != 0 then goto check_start;

6   if not SC(s_addr, 1) then goto check_start;

7

8   // lock acquired

9   A := A + 1;

10   B := B - 1;

11

12   S = 0;

• Problems with RMW implementation:

‣ Needs hardware support

‣ is vulnerable to ABA problem

• Problems with LL/SC:

‣ Needs hardware support

15.2 Release-Acquire Model
Given are the two threads Th1 und Th2 with their respective instructions to be executed. The initial 

variable assignment before the execution of the threads is

1 B := 24

2 X := 4

3 Y := 2

4 Z := 3

5 V1 := 0

6 V2 := 0

7 E := 0

Th1:

1 1a: V1 := atomic_load(B, Acquire);

2 1b: X := X + 1;

3 1c: V1 := V1 * X;

4 1d: V1 := V1 - 1;

5 1e: atomic_store(B, V1, Release);

6 1f: atomic_store(E,1, Release);

7 1g: ift1: if atomic_load(E, Acquire) = 1

8   then goto ift1;

9 1h: X := X * X;

10 1i: Y := Z + 1;

11 1j: V1 := V1 + 1;

12 1k: Z := atomic_load(B, Acquire);

Th2:
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1 2a: ift2: if atomic_load(E, Acquire) != 1

2   2 then goto ift2

3 2b: V2 := atomic_load(B, Acquire);

4 2c: V2 := V2 / 7;

5 2d: X := X * Z

6 2e: Z := Z + 1;

7 2f: Y := Y + V2;

8 2g: atomic_store(B, V2, Release);

9 2h: atomic_store(E, 0, Release);

a) Calculate the final values of each variable after execution of both threads. Justify your answer.

Solution:

Th1 Th2 B X Y Z V1 V2 E

– – 24 4 2 3 0 0 0
1a 2a 24 4 2 3 24 0 0
1b 2a 24 5 2 3 24 0 0
1c 2a 24 5 2 3 120 0 0
1d 2a 24 5 2 3 119 0 0
1e 2a 119 5 2 3 119 0 0
1f 2a 119 5 2 3 119 0 1
1g 2b 119 5 2 3 119 119 1
1g 2c 119 5 2 3 119 17 1
1g 2d 119 15 2 3 119 17 1
1g 2e 119 15 2 4 119 17 1
1g 2f 119 15 19 4 119 17 1
1g 2g 17 15 19 4 119 17 1
1g 2h 17 15 19 4 119 17 0
1h – 17 225 19 4 119 17 0
1i – 17 225 5 4 119 17 0
1j – 17 225 5 4 120 17 0
1k – 17 225 5 17 120 17 0

b) Specify all release and acquire operations in the example above that can be made relaxed without 

affecting the final values of the variables. Justify your answer.

Solution:

• 1a: can be Relaxed as 1c has RAW dependency

• 1e: can be Relaxed as it has RAW dependency on 1d, 1f is Release such that it cannot move behind 1f

• 1k: can be Relaxed because 1g is Acquire such that it cannot move before 1g

• 2b: can be Relaxed as 2a is Acquire such that it cannot move before 2a, 2c has RAW dependency

• 2g: can be Relaxed as it has RAW dependency on 2c, 2h is Release such that it cannot move behind 2h

Correct synchronization is provided by variable E, here we need to keep Acquire and Release to fence 

the critical sections.

c) Is it necessary that the variable B is atomic qualified? Justify your answer.
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Solution: No, B does not have to be atomic. Since Th1 and Th2 each access B exclusively through 

synchronization via E, the accesses to B are exclusive anyway.
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16 On-chip Buses
Given is the following architecture for a shared layered bus:

• There are two initiator components, CPU and DMA.

• There are three target components, MEM, HWacc and IO.

‣ The MEM, is on layer 1

‣ The Hwacc and IO component is on layer 2.

a) Draw the bus architecture. It is sufficient to show the directed connections between components and 

arbiters/decoders.

Solution:

b) Assume that the CPU wants to read access the IO slave component in the bus cycle 1 and that the DMA 

wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and 

address bus of the two bus masters as well as the control request and grant signals for the two layers 

assuming that the bus does not support pipelining. The IO component inserts two wait cycles. The 

HWacc component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no 

pipelining.

Solution:
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c) Now assume there is pipelining. Draw the bus access diagram again.

Solution:
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17 Network-on-chip
17.1 NoC - Routing
Given is the following on-chip interconnection network (4-ary 2-cube):

a) Show a path from E to P using Dimension-order Routing for

1) the variant XY

ℹ️ Note

Dimension-order routing:

• XY: first go in X, then go in Y direction

• YX: first go in Y, then go in X direction

Solution: E → F → G → H → L → P

2) the variant YX

Solution: E → I → M → N → O → P

b) Are there other minimal paths from E to P? If yes, provide an example, if no give a reason.

Solution: Yes, all paths that go up and left in any combination have equal length and are minimal.

e.g.: E → I → J → N → O → P

c) Give an example of a minimum path from E to P that is not used in the minimum version of Valiant’s 

Algorithm in conjunction with XY dimension-order routing, even if all possible nodes are considered as 

intermediate nodes 𝑑′. Justify your solution.

ℹ️ Note

Valiant’s algorithm:

• To diversify the routes, choose any random node that has to be visited before the goal.

Minimum version:

• chose this random node to be in the bounding box of the start and end point

Solution: E → F → J → K → O → P

No matter which point of those to chose as 𝑑′, it is not possible to get this path with XY routing.
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d) To avoid deadlocks, one option is to prohibit turning in certain directions during routing, thereby 

preventing abstract cycles (see “turn model”). Is the selection of prohibited direction changes (gray) 

listed below promising in this regard? Justify your assessment.

Solution: No, since it is possible to get a cycle once again with this rules by doing the following:

17.2 NoC - Channel Dependency Graph
Given is the following on-chip interconnection network:

D C H G

A B E F

a) Compared to previously presented topologies (such as meshes), not all neighboring routers are 

connected to each other here:

What arguments could be made in favor of choosing this topology?

Solution:

• less hardware needed

• This is almost equally effective as the mesh if the two clusters rarely communicate with each other, 

but there is much traffic in each of the clusters.

b) Create the CDG (Channel Dependence Graph) for the network (assume that 180° turns are not 

allowed).

Solution:
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c) Based on the CDG: Is there a possibility of deadlocks here, and how can this be determined using the 

CDG? Justify your assessment based on the CDG.

ℹ️ Note

If there are cycles in the CDG, there is a possibility for deadlocks.

Solution: There are cycles in the CDG:

d) If deadlocks can occur: Propose a solution using the CDG and the results from task part (c). Show the 

resulting CDG.

Solution: Remove a few edges (prohibit turns) to remove all the cycles in the CDG:
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18 ML on GPUs, Systolic Arrays and 

CGRAs
a) What is the challenge for executing ANNs with nonlinear operators, on Edge compute platforms?

Solution: Many nonlinear operators require to call math library functions with complex algorithms to 

compute results (e.g. tanh, softmax needs exp() computations). As this has to be done many times, it is 

computational expensive. Fast implementations may, e.g., use look up tables or specialized hardware 

blocks.

b) Why are MAC units a key building block of AI systems/ML platforms?

Solution: Fully-connected layers and convolution layers require to multiply activation with weights and 

accumulate the result (fully connected: row times column, convolution: all values in kernel window) , 

which basically results in many required MAC operations.

c) Assume an embedded ML platform that can execute 24 parallel MAC operations per cycle on 4-byte 

integer inputs (activations and weights). Assume that activations and weights are streamed in a straight 

forward fashion from memory. How many bytes have to be loaded per cycle (read memory bandwidth)? 

Is storing data a challenge (write memory bandwidth)?

Solution: 24 MAC → 24 × 4 byte for activation +24 × 4 byte for weights = 48 × 4 byte = 192 byte / 

cycle. Storing data usually not a challenge as we accumulate many values first locally and only store the 

result, not the intermediate sum.

🆙
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