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» What is SMT?
» Theories
» equality logic
> uninterpreted functions
» linear arithmetic
» Solving simple SMT instances

» removing constants
» checking equality logic
» reducing uninterpreted functions to equality logic

» How SMT deals with propositional structure
> Example
» solver Z3

> http://rised4fun.com/z3
» https://github.com/Z3Prover/z3


http://rise4fun.com/z3
https://github.com/Z3Prover/z3

What is SMT?

recall SAT:
» given a Boolean formula, e.g., (—aV —bVc)A(-aVvbvdVe)

> is there an assignment of true and false to variables a, b, c, d,
e such that the formula evaluates to true?



What is SMT?

recall SAT:
» given a Boolean formula, e.g., (—aV —bVc)A(-aVvbvdVe)

> is there an assignment of true and false to variables a, b, c, d,
e such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT):
» given a formula, e.g.,

XxX=y Ny=zANu#xANP(x,G(y,z)) N G(y,z) = G(x,u)

with
> equality
» functions such as G
» predicates such as P
> is there an assignment of values to u, X, y, z such that
formula evaluates to true?
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> x=y AN y=zANUuU#xX Nz=u
» variables are of arbitrary domain (e.g., integers, reals, strings)
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Example theories we discuss in this lecture

> Equality logic:
> x=y AN y=zANUuU#xX Nz=u
» variables are of arbitrary domain (e.g., integers, reals, strings)

» Equality logic with uninterpreted functions
> x=y AN y=zAu#£xANz=G(x,u) A G(y,z)=G(x,u)
» variables of arbitrary domain, and functions are unrestricted

» (Linear) arithmetic
> (x+y<1A2x+y=1)V 3x+2y>3
» variables are numbers
» symbols have the standard interpretation of arithmetic
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> eg,(x-y<1t A2x+y=1) Vv y2>3



Other theories

> Arithmetic in general
> eg,(x-y<1t A2x+y=1) Vv y2>3

> Bit vectors
» reduces essentially to SAT



Other theories

> Arithmetic in general
> eg,(x-y<1t A2x+y=1) Vv y2>3

> Bit vectors
» reduces essentially to SAT

» Quantifiers (QBF)
> Vxdy.x+y=0



Other theories

> Arithmetic in general
> eg,(x-y<1t A2x+y=1) Vv y2>3

> Bit vectors
» reduces essentially to SAT

» Quantifiers (QBF)
> Vxdy.x+y=0

... for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



SMT and software engineering

C code fragment

int n = input();
int x = input () ;

int m = n;
int y = x;
int z = 0;

assume (n >= 0);

/* loop invariant:
m* x ==z +n *xy */

while (n > 0) {

if (n % 2) {
z += y,;

}

y o*= 2

n /= 2;

assert (z == m * x);



SMT and software engineering

C code fragment

int n = input();
int x = input () ;

int m = n;
int y = x;
int z = 0;

assume (n >= 0);

/* loop invariant: encoding in Z3 (Loop. smt)
m* x ==z +n *xy */

while (n > 0) {

if (n % 2) {
z += y,;

}

y o*= 2

n /= 2;

assert (z == m * x);



SMT Encoding: Declare Variables

» Declare all program variables as SMT constants:

(declare-const n Int)
(declare-const x Int)
(declare-const m Int)
(declare-const y Int)
(declare-const z Int)

> ...and copies for variables that are modified:

(declare-const n2 Int)
(declare-const y2 Int)
(declare-const z2 Int)



SMT Encoding: Loop Body

> Define transition relation for loop body:

(define-fun loopcond () Bool (> n 0))

(define-fun loopbody () Bool
(if loopcond
(and (if (= 1 (mod n 2))
=z2 (+ z y))
(= 22 z))
(= y2 (x y 2))
(= n2 (/ n 2)))

(= n2 n))))



SMT Encoding: Loop Invariant

> Now we'd like to check our inductive loop invariant
> Let’s define it first; wee need a copy for before the loop:

(define-fun invariant () Bool (and
(>= n 0)
(>=m 0)
(= (*xmx) (+ z (*x ny))))

» ...and for afterwards:

(define-fun invariantpost () Bool (and
(>= n2 0)
(>= m 0)
(= (*x m x) (+ z2 (*x n2 y2)))))



SMT Encoding: Base Case

> Let’'s check whether the precondition implies the invariant:

(push)

(assert (mnot (=>
(and (= mn) (= xy) (=2 0) (>=n 0) )
invariant

)))
(check-sat)

(pop)



SMT Encoding: Induction Step

» Let's check whether consecution holds:

(push)
(assert (not (=>
(and invariant loopbody)
invariantpost)))
(check-sat)

(pop)



SMT Encoding: Check Property

» Does the invariant imply the property?

(push)
(assert (mot (=>
(and invariant (not loopcond))

(= 2z (x m x)))))

(check-sat)
(pop)



Why can’t we do that in SAT?
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Why can’t we do that in SAT?

If size of integers is fixed

P we can use boolean representation
(recall bit-blasting from a previous lecture)

If bit precision of integers is not fixed
» required to reason about arithmetic in general
> for certain data types, decision procedure can use specifics

Alert:

» if code should run on fixed-size integers
then verification should not be done for general arithmetic:

a>b+2Na<b {a—2b—2}

(if we assume 2-bit integers)



Simple decision procedures



Equality logic

logical connectives A,V, =
atoms term = term
term variable name, or constant
domain can be reals, integers, etc.
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Equality logic —replace constants

» replace constants by variables

» add constraints imposed by the inequality of distinct constants
eg.,4#5

Egxi=x AXxy=x3 AN X3=5 AN Xx=4 AN x3=5

> replace each constant C; with a variable ¢;
e.g. replace 5 with ¢y and 4 with ¢,

X1 =Xo AN X{=X3 N Xy =0C N Xo=0C N Xz = Cy

» for each pair of constants C; and C; with / # j add ¢; # ¢;

X1:X2/\X1:X3/\X1:C1/\X2:C2/\X3:C1/\C1?é02



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}
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Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{X‘I sy X2, X3}7 {X'I , C1 }a {X2a 02}5 {X37 C'I}
{x1,x2,x3, ¢1}, {x2, C2}, {x3, C1}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}
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Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:
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Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}

{x1,x2,x3,¢1,C2}

Step 2: if there are two equivalent variables a, b, with a # bin
original formula return unsat else return sat
e.g., since ¢y # ¢, unsat



Equality logic with uninterpreted functions EUF

logical connectives A,V, =
atoms term = term, predicate with parameters
term variable name, or function symbol with parameters
domain can be reals, integers, etc.



Example for EUF: equivalence of programs

x = (z % z) *x z;
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(z *x z) * z;
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Example for EUF: equivalence of programs

(z *x z) * z;

o]
]

A = x=F(F(z,2),2)
vy o= z;
vy =y o*z;
y =y *z;

B = y=zAy1=FW,2) N yo=F(y1,2)



Example for EUF: equivalence of programs

(z *x z) * z;

o]
]

A = x=F(F(z,2),2)
vy o=z
y =y *z;
y =y *z;

B = y=zAy1=FW,2) N yo=F(y1,2)

program fragments equivalent if

AANB — x=y»



Uninterpreted functions

Functional consistency. Instances of the same function return the
same value if given equal arguments, that is, for all
functions f:

if x =y then f(x) = f(y)

Motivation

» check satisfiability of a formula ¢ that has a concrete
function g

> replace g with uninterpreted function f to obtain ¢YfF
» check validity of ¢¥F.

» if valid ¢ is valid

> else: more refined analysis using g necessary



Other axioms can be added

» functional consistency is just the basic property

» if additional axioms are known, they can be added
> commutativity f(x, y) = f(y, x)
> associativity f(f(x,y), z) = f(x, f(y, 2))
> neutral element x = f(x, 0)



Other axioms can be added

» functional consistency is just the basic property

» if additional axioms are known, they can be added
> commutativity f(x, y) = f(y, x)
> associativity f(f(x,y), z) = f(x, f(y, 2))
> neutral element x = f(x, 0)

> Alert: the formula is growing larger. ..



Reducing EUF to equality logic

(1 #x2) V (F(xa) = FOx)) Vv (F(x1) # F(xs))

> idea: replace functions by variables
> F(xq) with i, F(x2) with £, F(x3) with f3



Reducing EUF to equality logic

(1 #x2) V (F(xa) = FOx)) Vv (F(x1) # F(xs))

> idea: replace functions by variables
> F(xq) with i, F(x2) with £, F(x3) with f3

» capture functional consistency constraints
> F(x1) = F(x2) must be true if x; = x2
> F(x1) # F(x3) must be false if x; = x3



Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))
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Reducing EUF to equality logic (cont.)
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Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))

functional constraints more general:

FC = (X1 =X — f = f2) VAN
(X1 =x3 — f = f3) VAN
(Xg = X3 — f2 = f3)

flattening of function:
flat = (X1 75 X2) \Y (f1 = fg) V (f1 #+ f3)

FC A flat
> is in equality logic

> is valid if and only if the original formula is valid



Arithmetic



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3
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Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3

...Gaussian elimination

In other words, are there values for x and y satisfying
xX+y=1AN2x+y=1AN3x+2y=3
geometric interpretation?

...but not only conjunctions

(x+y=1A2x+y=1) V 3x+2y=3



Propositional Structure



How does SMT deal with disjunction?

> Decision procedues we encountered so far work for A only
» SMT cleverly combines SAT and theory reasoning:

» SAT for efficient case splitting
» Theory solvers for conjunctive reasoning



How SMT deals with disjunction

» SMT constructs a propositional skeleton; for
(~(x = P)V((x&2) = 2)) A (y = z+2)A(x = z < 1)A((z&1) = 0)
we get

(—|e1Ve2)/\e3/\e4/\e5.

» Note: second formula is satisfiable, first one is not!



How SMT deals with disjunction (continued)

» Get satisfying assignment
{e1—~ 0,e0—> 0,63+ 1,e4—1,e5— 1},
encode it as conjunction:
—-e1 A—ex AezANeg N es
» Map back to original terms:

(x£y)N((x&2) £ 2) AN (y=z+2z)A(x=2z < 1)A((z&1) = 0)



How SMT deals with disjunction (continued)

> Now we can use a theory-specific solver for

(x Zy) A ((x&2) #2) A (y = z+z)A(x = z < 1)A((2&1) = 0)



How SMT deals with disjunction (continued)

> Now we can use a theory-specific solver for

(x Zy) A ((x&2) #2) A (y = z+z)A(x = z < 1)A((2&1) = 0)

x=z<1 zL1l=2z+2 y=z+z
xX=z+z z+z=y
X=Yy
false

x#y




How SMT deals with disjunction (continued)

> Now we can use a theory-specific solver for

(x #y) AN ((x&2) #2) A (y = z+2)A(x = z < 1)A((2z&1) = 0)

x=z<K1 zL1=2z+z y=z+z
xX=z+z z+z=y
X=Y
false

x#y

» Nowwecanblock (x #y) A (y=z+2)A(x=z< 1)
by adding clause (e1 V —e3 V —e4)



How SMT deals with disjunction (continued)

» Now SAT solver continues with clauses

(ﬁe1 V eg) Nez/NegNesg A (e1 V —ez V ﬁe4)
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How SMT deals with disjunction (continued)

» Now SAT solver continues with clauses

(ﬁe1 V eg) Nez/NegNesg A (e1 V —ez V ﬁe4)

» ...which is still satisfiable:

{e1 +—>1,e2r—>1,e3»—>1,e4»—>1,e5»—>1},

> But we know that e> A e4 A e corresponds to
(x&2) #2) N (x=z < 1) A ((2z&1) =0)

which is unsatisfiable (using bit-vector arithmetic)



How SMT deals with disjunction (continued)

> We obtain:

(—|e1 \Y e2) ANe3zg/Neqg/N\es
A (e1 V —esz V ﬂe4)
A (—|62 V —eq V —\e5)

which is unsatisfiable (by unit propagation)!



How SMT deals with disjunction (continued)

> We obtain:

(—|e1 \Y eg) ANe3zg/Neqg/N\es
A (e1 V —esz V ﬂe4)
A (—|62 V —eq V —\e5)

which is unsatisfiable (by unit propagation)!
» Hence, the original formula is unsatisfiable.



Things to take away

» sometimes applying SAT not possible

> closer to first order logic
and sometimes beyond

> efficient procedures for specific theories

> extensive tool support

» similar to SAT, there are competitions
» agreed-upon input language smt1ib2



