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In this talk

▶ What is SMT?
▶ Theories

▶ equality logic
▶ uninterpreted functions
▶ linear arithmetic

▶ Solving simple SMT instances
▶ removing constants
▶ checking equality logic
▶ reducing uninterpreted functions to equality logic

▶ How SMT deals with propositional structure
▶ Example

▶ solver Z3
▶ http://rise4fun.com/z3
▶ https://github.com/Z3Prover/z3

http://rise4fun.com/z3
https://github.com/Z3Prover/z3


What is SMT?

recall SAT:
▶ given a Boolean formula, e.g., (¬a∨¬b∨ c)∧ (¬a∨b∨d ∨e)
▶ is there an assignment of true and false to variables a, b, c, d ,

e such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT):
▶ given a formula, e.g.,

x = y ∧ y = z ∧ u ̸= x ∧ P(x ,G(y , z)) ∧ G(y , z) = G(x , u)

with
▶ equality
▶ functions such as G
▶ predicates such as P

▶ is there an assignment of values to u, x , y , z such that
formula evaluates to true?
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Example theories we discuss in this lecture

▶ Equality logic:
▶ x = y ∧ y = z ∧ u ̸= x ∧ z = u
▶ variables are of arbitrary domain (e.g., integers, reals, strings)

▶ Equality logic with uninterpreted functions
▶ x = y ∧ y = z ∧ u ̸= x ∧ z = G(x , u) ∧ G(y , z) = G(x , u)
▶ variables of arbitrary domain, and functions are unrestricted

▶ (Linear) arithmetic
▶ (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3
▶ variables are numbers
▶ symbols have the standard interpretation of arithmetic
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Other theories

▶ Arithmetic in general
▶ e.g., (x · y ≤ 1 ∧ 2x + y = 1) ∨ y2 ≥ 3

▶ Bit vectors
▶ reduces essentially to SAT

▶ Quantifiers (QBF)
▶ ∀x∃y . x + y = 0

. . . for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.
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SMT and software engineering

C code fragment

int n = input();

int x = input();

int m = n;

int y = x;

int z = 0;

assume(n >= 0);

/* loop invariant:

m * x == z + n * y */

while (n > 0) {

if (n % 2) {

z += y;

}

y *= 2;

n /= 2;

}

assert (z == m * x);

encoding in Z3 (loop.smt)
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SMT Encoding: Declare Variables

▶ Declare all program variables as SMT constants:

(declare -const n Int)

(declare -const x Int)

(declare -const m Int)

(declare -const y Int)

(declare -const z Int)

▶ . . . and copies for variables that are modified:

(declare -const n2 Int)

(declare -const y2 Int)

(declare -const z2 Int)



SMT Encoding: Loop Body

▶ Define transition relation for loop body:

(define -fun loopcond () Bool (> n 0))

(define -fun loopbody () Bool

(if loopcond

(and (if (= 1 (mod n 2))

(= z2 (+ z y))

(= z2 z))

(= y2 (* y 2))

(= n2 (/ n 2)))

(and (= z2 z)

(= y2 y)

(= n2 n))))



SMT Encoding: Loop Invariant

▶ Now we’d like to check our inductive loop invariant
▶ Let’s define it first; wee need a copy for before the loop:

(define -fun invariant () Bool (and

(>= n 0)

(>= m 0)

(= (* m x) (+ z (* n y)))))

▶ . . . and for afterwards:

(define -fun invariantpost () Bool (and

(>= n2 0)

(>= m 0)

(= (* m x) (+ z2 (* n2 y2)))))



SMT Encoding: Base Case

▶ Let’s check whether the precondition implies the invariant:

(push)

(assert (not (=>

(and (= m n) (= x y) (= z 0) (>= n 0) )

invariant

)))

(check -sat)

(pop)



SMT Encoding: Induction Step

▶ Let’s check whether consecution holds:

(push)

(assert (not (=>

(and invariant loopbody)

invariantpost)))

(check -sat)

(pop)



SMT Encoding: Check Property

▶ Does the invariant imply the property?

(push)

(assert (not (=>

(and invariant (not loopcond))

(= z (* m x)))))

(check -sat)

(pop)



Why can’t we do that in SAT?

If size of integers is fixed
▶ we can use boolean representation

(recall bit-blasting from a previous lecture)

If bit precision of integers is not fixed
▶ required to reason about arithmetic in general
▶ for certain data types, decision procedure can use specifics

Alert:
▶ if code should run on fixed-size integers

then verification should not be done for general arithmetic:

a > b + 2 ∧ a ≤ b

{a 7→ 2, b 7→ 2}

(if we assume 2-bit integers)
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Simple decision procedures



Equality logic

logical connectives ∧,∨,¬
atoms term = term

term variable name, or constant

domain can be reals, integers, etc.



Equality logic — replace constants

▶ replace constants by variables
▶ add constraints imposed by the inequality of distinct constants

e.g., 4 ̸= 5

E.g. x1 = x2 ∧ x1 = x3 ∧ x1 = 5 ∧ x2 = 4 ∧ x3 = 5

▶ replace each constant Ci with a variable ci

e.g. replace 5 with c1 and 4 with c2

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1

▶ for each pair of constants Ci and Cj with i ̸= j add ci ̸= cj

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 ̸= c2
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Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 ̸= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a ̸= b in
original formula return unsat else return sat
e.g., since c1 ̸= c2, unsat
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x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 ̸= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a ̸= b in
original formula return unsat else return sat
e.g., since c1 ̸= c2, unsat



Equality logic with uninterpreted functions EUF

logical connectives ∧,∨,¬
atoms term = term, predicate with parameters

term variable name, or function symbol with parameters

domain can be reals, integers, etc.



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2
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Uninterpreted functions

Functional consistency. Instances of the same function return the
same value if given equal arguments, that is, for all
functions f :

if x = y then f (x) = f (y)

Motivation
▶ check satisfiability of a formula ϕ that has a concrete

function g
▶ replace g with uninterpreted function f to obtain ϕUF

▶ check validity of ϕUF .
▶ if valid ϕ is valid
▶ else: more refined analysis using g necessary



Other axioms can be added

▶ functional consistency is just the basic property

▶ if additional axioms are known, they can be added
▶ commutativity f (x , y) = f (y , x)
▶ associativity f (f (x , y), z) = f (x , f (y , z))
▶ neutral element x = f (x , 0)

▶ Alert: the formula is growing larger. . .
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Reducing EUF to equality logic

(x1 ̸= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) ̸= F (x3))

▶ idea: replace functions by variables
▶ F (x1) with f1, F (x2) with f2, F (x3) with f3

▶ capture functional consistency constraints
▶ F (x1) = F (x2) must be true if x1 = x2
▶ F (x1) ̸= F (x3) must be false if x1 = x3
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Reducing EUF to equality logic (cont.)

(x1 ̸= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) ̸= F (x3))

functional constraints more general:

FC ≡ (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

flattening of function:

flat ≡ (x1 ̸= x2) ∨ (f1 = f2) ∨ (f1 ̸= f3)

FC ∧ flat
▶ is in equality logic
▶ is valid if and only if the original formula is valid
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Arithmetic



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, are there values for x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

geometric interpretation?

. . . but not only conjunctions

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3
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Propositional Structure



How does SMT deal with disjunction?

▶ Decision procedues we encountered so far work for ∧ only
▶ SMT cleverly combines SAT and theory reasoning:

▶ SAT for efficient case splitting
▶ Theory solvers for conjunctive reasoning



How SMT deals with disjunction

▶ SMT constructs a propositional skeleton; for

(¬(x = y)∨((x&2) = 2))∧ (y = z+z)∧(x = z ≪ 1)∧((z&1) = 0)

we get

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 .

▶ Note: second formula is satisfiable, first one is not!



How SMT deals with disjunction (continued)

▶ Get satisfying assignment

{e1 7→ 0, e2 7→ 0, e3 7→ 1, e4 7→ 1, e5 7→ 1} ,

encode it as conjunction:

¬e1 ∧ ¬e2 ∧ e3 ∧ e4 ∧ e5

▶ Map back to original terms:

(x ̸= y) ∧ ((x&2) ̸= 2) ∧ (y = z+z)∧ (x = z ≪ 1)∧ ((z&1) = 0)



How SMT deals with disjunction (continued)

▶ Now we can use a theory-specific solver for

(x ̸= y)∧ ((x&2) ̸= 2)∧ (y = z+z)∧(x = z ≪ 1)∧((z&1) = 0)

x = z ≪ 1 z ≪ 1 = z+ z

x = z+ z

y = z+ z

z+ z = y

x = y
x ̸= y

false

▶ Now we can block (x ̸= y) ∧ (y = z+ z) ∧ (x = z ≪ 1)
by adding clause (e1 ∨ ¬e3 ∨ ¬e4)
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How SMT deals with disjunction (continued)
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by adding clause (e1 ∨ ¬e3 ∨ ¬e4)



How SMT deals with disjunction (continued)

▶ Now SAT solver continues with clauses

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 ∧ (e1 ∨ ¬e3 ∨ ¬e4)

▶ . . . which is still satisfiable:

{e1 7→ 1, e2 7→ 1, e3 7→ 1, e4 7→ 1, e5 7→ 1} ,

▶ But we know that e2 ∧ e4 ∧ e5 corresponds to

((x&2) ̸= 2) ∧ (x = z ≪ 1) ∧ ((z&1) = 0)

which is unsatisfiable (using bit-vector arithmetic)
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How SMT deals with disjunction (continued)

▶ We obtain:

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5

∧ (e1 ∨ ¬e3 ∨ ¬e4)

∧ (¬e2 ∨ ¬e4 ∨ ¬e5)

which is unsatisfiable (by unit propagation)!

▶ Hence, the original formula is unsatisfiable.



How SMT deals with disjunction (continued)

▶ We obtain:

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5

∧ (e1 ∨ ¬e3 ∨ ¬e4)

∧ (¬e2 ∨ ¬e4 ∨ ¬e5)

which is unsatisfiable (by unit propagation)!
▶ Hence, the original formula is unsatisfiable.



Things to take away

▶ sometimes applying SAT not possible

▶ closer to first order logic
and sometimes beyond

▶ efficient procedures for specific theories

▶ extensive tool support
▶ similar to SAT, there are competitions
▶ agreed-upon input language smtlib2


