
Parallel Computing
Exercise sheet 2 + Reference Solution

June 3, 2019

Disclaimer

This document contains the assignments from exercise-sheet 2 of the lecture 184.710
Parallel Computing 2019S, the reference solution as well as my personal solution.

The reference solution is given directly in the assignments in italics, my personal
solution is always located in the Solution subsection of an exercise.

I cannot guarantee the correctness of any solution provided in this document.

Exercise 1

We have seen the three-nested-loop implementation of matrix-matrix multiplication in
the lecture. You are now given two n × n matrices A and BT , where the matrix BT is
the transpose of B. The transposed matrix B is stored in the variable BT. The matrices
A, BT , and C are stored in row-major (C-like) order. We assume that all rows are
contiguously stored in memory.

a) Reference: c(n, l) = 2n/l (n/l for A and BT), or precisely 2 dn/le+ 1

1 for (i=0; i<n; i++) {

2 for (j=0; j<n; j++) {

3 for (k=0; k<n; k++) {

4 C[i][j] += A[i][k] * BT[j][k];

5 }

6 }

7 }

b) Reference: c(n, l) = n/l + n or n + dn/le+ 1

1 for (i=0; i<n; i++) {

2 for (k=0; k<n; k++) {

3 for (j=0; j<n; j++) {

4 C[i][j] += A[i][k] * BT[j][k];

5 }
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6 }

7 }

c) Reference: c(n, l) = 2n (n for C and A), or 2n + 1

1 for (j=0; j<n; j++) {

2 for (k=0; k<n; k++) {

3 for (i=0; i<n; i++) {

4 C[i][j] += A[i][k] * BT[j][k];

5 }

6 }

7 }

1. Examine the three possible variants (a-c) of the triple-nested loop. For each loop
variant, give the number of cache misses c over all iterations of the first execution
of the innermost loop as a function of n and the cache-line size l, l < n (in number of
matrix elements that can be stored per line), e.g., c(n, l) = n + l. We also assume
that data is never evicted from the cache (we count only compulsory misses).
Explain your answer in each case.

Solution

1. a)

c(n, l) =
2n

l
+ 1

This variant has high locality as each iteration accesses only consecutive el-
ements. That means if we partition the input elements into line-sized block
we get miss for each block of the n

l blocks the two input array and only one
miss for the output-array.

b)

c(n, l) =
n

l
+ n + 1

This variant has a fixed input-array-value for A (for the first execution) and
therefore A produces only one miss. The output-array access consecutive
values so it uses locality and produces only n

l misses, while the input array
BT jumps row-wise (n-elements) and because l < n always produces a miss
(n misses).

c)
c(n, l) = 2n + 1

This variant has fixed input-array BT 2(for the first iteration) so it has 1 miss.
The input-array A and the output-array C jump row-wise and therefore both
produce n misses.
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Exercise 2

Consider this program fragment (a,b are arrays of integers):

1 for (i=0; i<n; i++) {

2 int count = 0;

3 for (j=0; j<n; j++) {

4 if (a[j]<a[i] || (a[j] == a[i] && j < i)) count++;

5 }

6 b[count] = a[i];

7 }

8 for (i=0; i<n; i++) a[i] = b[i];

1. What does the program do?

It sorts array a into array b (by ranking, with elements made different by lexico-
graphic order, as in merge/prefix lecture)

2. What is the asymptotic, sequential work of the code fragment? Give a very short
explanation.

O
(
n2

)
operations, two nested loops à n iterations

3. Parallelize the program with OpenMP. Modify the program by inserting pragmas.

Reference:

1 #pragma omp parallel for

2 for (i=0; i<n; i++) {

3 int count = 0;

4 for (j=0; j<n; j++) {

5 if (a[j]<a[i] || (a[j] == a[i] && j < i)) count++;

6 }

7 b[count] = a[i];

8 }

9 #pragma omp parallel for

10 for (i=0; i<n; i++) {

11 a[i] = b[i];

12 }

4. Given p threads, what is the asymptotic, parallel running time of your paralleliza-
tion as a function of n and p (assuming n ≥ p)?

running time: O
(
n
p

)
, or O

(
n2

p + n
)

(if n < p)

5. What is the relative and absolute speed-up of your implementation? For the ab-
solute speedup, use the best known asymptotic running time for this type of algo-
rithm. (We also assume that the integers stored in array a are much larger than a
reasonable array size.)

relative speed-up: n2

n2

p

∈ O(p) for p ≤ n, absolute speed-up: n logn
n
p
n = p logn

n
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Solution

1. The algorithm sorts the input-array a and uses b as temporary buffer.

2. The algorithm works with O
(
n2

)
instructions because it takes each input element

(n times) and compares it with each input element. The copy of the temporary
array to the input-array can asymptotically dismissed.

3.

1 #pragma omp parallel for

2 for (i=0; i<n; i++) {

3 int count = 0;

4 for (j=0; j<n; j++) {

5 if (a[j]<a[i] || (a[j] == a[i] && j < i)) count++;

6 }

7 b[count] = a[i];

8 }

9 #pragma omp parallel for

10 for (i=0; i<n; i++) a[i] = b[i];

4. The parallelization works in Tpar(p, n) = O

(
n2

p

)
5. The relative speed-up is:

SRelp(n) =
Tpar(1, n)

Tpar(p, n)

=
n2

n2

p

= p

The absolute speed-up is:

Sp(n) =
Tseq(n)

Tpar(p, n)

=
n log n

n2

p

=
p log n

n
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Exercise 3

Consider the following C code, which has been parallelized with OpenMP:

1 int i;

2 int j = 0;

3 int result[n];

4

5 #pragma omp parallel for

6 for (i=0; i<n; i++) {

7 int k;

8 if (predicate(i)) {

9 #pragma omp atomic capture

10 k = j++;

11

12 result[k] = i;

13 }

14 }

The code snippet is supposed to record in the result array the indices for which the
predicate holds.

1. Does the following condition hold after the loop: result [k] <= result [k + 1] for
all k, 0 ≤ k < n? Justify if true or not true.

No; the thread order in which the atomic fetch and increment is executed is not
determined. The k’s computed by the threads are successive, but this is not so for
the loop indices written into the result array.

2. What is the asymptotic work of the program as a function of n, assuming that the
predicate evaluation and the atomic operation both take O(1) steps?

work: O(n)

3. What is the parallel time with p threads, p (much) smaller than n? You can assume
that the atomic operation take O(1) time, independent of the number of threads.

time: O(n/p)

4. How many indices are stored in the result array?

Value of j after the loop. This is the number of indices for which the predicate
holds.

Solution

1. This is not true because the way how the for-loop is split up, doesn’t has to be
sequential.

2. The work is W (n) = O(n).

5



3. Tpar(p, n) = O

(
n

p

)
4. The number of indices for which the predicate returns true.

Exercise 4

Consider the following OpenMP code snippet that is supposed to count the number of
times some event happened.

1 int event[p];

2 #pragma omp parallel

3 {

4 int t = omp_get_thread_num();

5

6 event[t] = 0;

7 while (running) {

8 if (eventhappened()) {

9 event[t]++;

10 }

11 // ...

12 }

13 }

Assume that the number of iterations is large and balanced across the threads (no
load balancing issue), that events are frequent, and that the other computations done
in the loop are fast.

1. What is a potential performance problem with this way of counting events? Ex-
plain. You can also assume that eventhappened() is thread-safe and takes time
O(1).

Performance-problem: False sharing as the counter array resides in one cache line.

2. Propose a better solution. Explain the changes that you would do in order to solve
the potential problem. Modify the code accordingly.

Padding or local variable per thread.

Solution

1. The problem is false sharing. The event counts are updated independently but
they share the same cache line and therefore needs to maintain cache coherence.

2.

6



1 int event[p];

2 #pragma omp parallel

3 {

4 int t = omp_get_thread_num();

5

6 int count = 0;

7

8 while (running) {

9 if (eventhappened()) {

10 count++;

11 }

12 // ...

13 }

14 event[t] = count;

15 }

Exercise 5

You are given the following, manual parallelization of a loop, which should assign
a[i] = i for all values of i between 0 and n-1.

1 int p, n1, n2;

2

3 #pragma omp parallel

4 {

5 int p = omp_get_num_threads();

6 int t = omp_get_thread_num();

7 int i;

8

9 n1 = t*(n/p);

10 if (t<n%p)

11 n1 += t;

12 else

13 n1 += n%p;

14

15 n2 = n1+n/p;

16 if (t<n%p)

17 n2++;

18

19 for (i=n1; i<n2; i++) {

20 a[i] = i;

21 }

22 }

23

24 printf("Threads %d\n", p);
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1. What are the problems with this parallelization? Is it a correct OpenMP paral-
lelization? Find three problems and explain the problems.

Race condition, unguarded updates to n1, n2 (counts as 2 problems!), global vari-
able p is undefined after the parallel region.

2. What is an immediate remedy, e.g. by using OpenMP features?

Possible solution:

1 int p, n1, n2;

2

3 #pragma omp parallel private(n1,n2) shared(p)

4 {

5 #pragma omp single

6 p = omp_get_num_threads();

7 int t = omp_get_thread_num();

8 int i;

9

10 n1 = t*(n/p);

11 if (t<n%p) n1 += t;

12 else n1 += n%p;

13

14 n2 = n1+n/p;

15 if (t<n%p) n2++;

16

17 for (i=n1; i<n2; i++) {

18 a[i] = i;

19 }

20 }

21

22 printf("Threads %d\n", p);

Solution

1. a) n1 and n2 need to be thread private. Because they depend on the thread_num
and are written in every thread and therefore race condition occurs.

b) The variable p is declared outside of the parallel block and is never assigned a
value because it is declared again (and therefore hidden) in the parallel block.
As a result the printf statement tries to access an uninitialized value.

c)

2. a) For n1, n2 the solution is to extend the pragma by a private-clause:

#pragma omp parallel private(n1,n2)

b) The solution for p is to remove the declaration outside of the parallel block
and move the printf statement inside the parallel block guarded by

#pragma omp single nowait
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Exercise 6

The following program gets a matrix x of size n × n as an input and should parallelize
the n row-wise additions into the first element of each row (appeared in lecture).

1 for (i=0; i<n; i++) {

2 #pragma omp parallel for

3 for (j=1; j<n; j++) {

4 x[i][0] += x[i][j];

5 }

6 }

1. Why is the program incorrect? Explain.

Classical race condition, outcome in x[i][0] undefined.

2. How can it made correct by exploiting OpenMP functionality? You are not allowed
to move the pragma. Present the updated code.

Use parallel reduction clause

1 for (i=0; i<n; i++) {

2 v = &x[i][0];

3 #pragma omp parallel for reduction(+:v[0])

4 for (j=1; j<n; j++) {

5 v[0] += x[i][j];

6 }

7 }

3. What is the asymptotic running time of your updated, corrected code (as a function
of n and p, where p is the number of threads)?

running time O
(
n2/p

)
Solution

1. The program contains a race condition on the element x[i][0].

2. By using the openMP reduction Feature:

#pragma omp parallel private(j) reduction(+:x[i][0])

3. The asymptotic running time is Tpar(p, n) = O

(
n2 − n

p

)
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Exercise 7

You are given the following code snippet. The sleep_s function takes a value w[i] as
input and waits as long as specified by w[i].

1 int w[] = {1, 10, 3, 1, 5, 12, 2, 7, 1, 6, 2};

2 int n = sizeof(w)/sizeof(int);

3

4 #pragma omp parallel for schedule(runtime)

5 for (i=0; i<n; i++) {

6 sleep_s(w[i]);

7 }

1. We assume OMP_NUM_THREADS=4 (thus p = 4). For example, iteration 0 has weight
1 and therefore the length of the loop iteration is 1s. Draw Gantt charts of the
resulting schedules for each of the three scheduling policies listed below. If multiple
threads are ready at the same time, assign the loop iteration(s) to the thread with
the smaller thread identifier. We assume, that threads are identified ba a unique
number t, 0 ≤ t < p.

a) static

b) static(4)

c) dynamic

Note that for static we make following assumptions. The OpenMP 5.0 standard
(page 105) states:

”
For a team of p threads and a loop of n iterations, let dn/pe

be the integer q that satisfies n = p · q − r, with 0 ≤ r < p. One compliant
implementation of the static schedule (with no specified chunk_size) would behave
as though chunk_size had been specified with value q.“In this exercise, you need
to use this compliant implementation specification given above when drawing the
Gantt chart for static.

Reference solutions are the same diagrams as in the personal solution.

Solution

1. a) static: Gantt chart in figure 1 on the following page

b) static(4): Gantt chart in figure 2 on the next page

c) dynamic: Gantt chart in figure 3 on the following page

Exercise 8

Consider the following parallel code, which computes each pixel of a Julia set (taken and
adapted from https://people.sc.fsu.edu/~jburkardt/c_src/julia_openmp/julia_
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Figure 1: Gantt-chart for static scheduling.
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Figure 2: Gantt-chart for static(4) scheduling.
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Figure 3: Gantt-chart for dynamic scheduling.
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openmp.html). For each pixel in the height (h) and width (w) dimension of an RGB im-
age, the code computes one juliaValue. The computation of this value (line 13) is
highly heterogeneous in term of running-time, as a maximum of 200 iterations in a com-
putational loop are performed (in case of a red pixel). However, if in some iteration a
given threshold is exceeded, then the corresponding pixel does not belong to the Julia
set and the loop is terminated earlier. Thus, a line containing only white pixels should
have a smaller running time than a line containing many red pixels.

1 rgb = (unsigned char *) malloc(w * h * 3 * sizeof(unsigned char));

2

3 # pragma omp parallel \

4 shared (h, w, xl, xr, yb, yt) \

5 private (i, j, k, juliaValue)

6 {

7 # pragma omp for collapse(2) schedule(runtime)

8 for (j=0; j<h; j++) {

9 for (i=0; j<h; j++) {

10 juliaValue = julia(w, h, xl, xr, yb, yt, i, j);

11

12 k = 3 * (j * w + i);

13

14 rgb[k] = 255 * (1 - juliaValue);

15 rgb[k + 1] = 255 * (1 - juliaValue);

16 rgb[k + 2] = 255;

17 }

18 }

19 }

1. We ran this Julia application on one compute node of hydra (which has a maximum
of 32 cores) to generate a Julia image of size 10 000× 10 000, as shown in figure 4
on page 16. We used three different configurations to obtain the same image of
a Julia set. When we executed the program on a compute node and used only
1 core (1 thread), the program completed its execution in 35 s. Now, we set
OMP_NUM_THREADS=32 and start with either:

a) OMP_SCHEDULE="static"

b) OMP_SCHEDULE="dynamic,100"

c) OMP_SCHEDULE="dynamic,1"

We have measured the following running times for the latter configurations: 6.9s,
2.73s, 1.04s. Assign each running time to one of the configurations and explain
your reasoning (hint: scheduler overhead, workload distribution).

dynamic,100 = 1.04 s, dynamic,100 has a good granularity and dynamic can bal-
ance the heterogeneous workload.
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static = 2.73 s, static has almost no scheduler overhead but suffers from uneven
workload distributions.

dynamic,1 = 6.9 s, dynamic,1 is too fine grained and the scheduler is the bottleneck.

Note: Was graded according to reasoning NOT the correct order (as the order can
change per system (hydra vs. PC) and even in-between runs)!

Solution

1. a) OMP_SCHEDULE="static": 6.9 s

Because each pixel is allocated to a thread beforehand and the computation
time is highly heterogeneous a thread can have

”
bad luck “ and receive many

high load pixels which results in severe load in-balance.

b) OMP_SCHEDULE="dynamic,100": 1.04 s

Because the chunk size is much less than the overall values (100 << 100 000 000)
the scheduling is very dynamic, meaning that a finished thread gets new work
instead of idling, but has less overhead than a dynamic scheduling with chunk-
size 1.

c) OMP_SCHEDULE="dynamic,1": 2.73 s

The dynamic scheduling is much faster than static scheduling because while a
thread is occupied with a high workload the other threads can calculate mul-
tiple less intensive calculation, but they need to fetch a new value very often
which results in a higher scheduler-overhead compared to dynamic scheduling
with a greater chunk size.

Exercise 9

You are given the following OpenMP program:

1 int max = 0;

2 int col_start, col_end;

3

4 #pragma omp parallel

5 {

6 int i, j;

7 int p = omp_get_num_threads();

8 int tid = omp_get_thread_num();

9 col_start = tid * (n/p);

10 col_end = (tid+1) * (n/p);

11 if (tid == p - 1)

12 col_end += n%p;

13

14 for (i=0; i<n; i++) {
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15 for (j=col_start; j<col_end; j++) {

16 #pragma omp critical

17 if (max < a[i][j])

18 max = a[i][j];

19 }

20 }

21 // we are done

22 printf("maximum is: %d\n", max);

23 }

The program should compute the maximum values of all cells in the matrix a with
n × n elements. All numbers in a are strictly greater than 0. The code contains three
problems, which are either correctness or performance problems. (That the remainder
is given to the last thread is not one of those problems. For large n, this problem is
irrelevant.)

1. Identify the three problems and explain why these lines are problematic.

race on col start and col end, race on max in printf (needs barrier), critical
section called too often (performance problem)

2. Present the updated code that fixes the problems.

No reference

Solution

1. a) col_start and col_end in line 2 are shared in the parallel region and there-
fore have a race condition and need to be thread private.

b) The critical region in line 16 poses a performance problem, because all threats
have to wait even if the maximum has not been found.

c)

2.

1 int max = 0;

2 int col_start, col_end;

3

4 #pragma omp parallel private(col_start, col_end) reduction(max:max)

5 {

6 int i, j;

7 int p = omp_get_num_threads();

8 int tid = omp_get_thread_num();

9 col_start = tid * (n/p);

10 col_end = (tid+1) * (n/p);

11 if (tid == p - 1)

12 col_end += n%p;

13
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14 for (i=0; i<n; i++) {

15 for (j=col_start; j<col_end; j++) {

16 if (max < a[i][j])

17 max = a[i][j];

18 }

19 }

20 // we are done

21 printf("maximum is: %d\n", max);

22 }
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Figure 4: Julia set of size 10 000 × 10 000 pixels. The white area within the bounding
box belongs to the computed image.
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