PLANNING-BASED SCHEDULING

Many real-time applications are deployed in dynamic environments and hence
require support for scheduling jobs as they arrive. Dynamic scheduling allows
more flexibility in dealing with problems faced in practice, such as the need to
alter scheduling decisions based on the occurrence of overloads, e.g., when

m  the environment changes,
m  there is a burst of job arrivals, or

m  a part of the system fails.

If system overloads are assumed to be impossible, then schedulability analysis
based on EDF can be used. If overloads do not occur, when a job is preempted
there is an implicit guarantee that the remainder of the job will be completed
before its deadline. Unfortunately, EDF can rapidly degrade system perfor-
mance during overloads [23]. The arrival of a new job may result in all the
previous jobs missing their deadlines. Such an undesirable phenomenon, called
the Domino Effect, is depicted in Figure 5.1.

In particular, Figure 5.1a shows a feasible schedule of a job set executed under
the EDF scheduling algorithm. However, if at time to job Jy is executed,
all previous jobs miss their deadlines (see Figure 5.1b). In such a situation,
EDF does not provide any type of guarantee on which jobs meet their timing
constraints. This is a very undesirable behavior in those control applications
in which a guarantee of minimum level of performance is necessary. In order to
avoid domino effects, the operating system and the scheduling algorithm must
be explicitly designed to handle overloads in a more controlled fashion, so that
the damage due to a deadline miss can be minimized.
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Figure 5.1 (a) Feasible schedule with Earliest Deadline First, in normal load
condition. (b) Overload with domino effect due to the arrival of job Jj.
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One possibility is to design a system for the worst case loads. Taking this
approach it is usually assumed that worst case times are known and, therefore,
overloads and failures never occur. Unfortunately, even with this assumption
it is often inefficient to determine schedulability or to a priori construct a
schedule for such a system. Also, in a dynamic system it is not possible to
guarantee a priori that all job arrivals will be able to meet their deadlines: if
the arrival times of jobs are not known, the schedulability of all the jobs cannot
be guaranteed.

Dynamic planning algorithms are motivated by these practical considerations
of dynamic real-time systems. What planning-based algorithms attempt to do
is to give assurances to arriving jobs concerning the ability of the system to
meet the time constraints associated with the jobs. Generally speaking, plan-
ning to determine schedulability is akin to admission control. Depending on the
requested Quality of Service (QoS), a planning algorithm can be designed to
work with different types of information, from worst case assumptions needed
to provide “absolute guarantees” regarding the delivered QoS (even under the
most pessimistic assumptions) to guarantees based on the satisfaction of spe-
cific conditions. For example, when jobs with different levels of importance
are considered, the notion of “conditional guarantee” appears to be applicable
whereby a job’s guarantee is predicated upon the non-arrival of jobs with higher
importance. This is in contrast with absolute guarantees whereby once a job
is accepted, its schedulability remains intact under all circumstances.

Independent of the nature of guarantees, the construction of a plan may re-
quire assigning priorities to jobs; this raises the question of how priorities are
assigned. A simple method is to assign priorities based on EDF: the closer a
job’s deadline, the higher its priority. For scheduling independent jobs with
deadline constraints on single processors, EDF is optimal, so if any assignment
of priorities can feasibly schedule such jobs, then so can EDF.

For a given job set, if jobs have the same arrival times but different deadlines,
EDF generates a non-preemptive schedule. If both arrival times and deadlines
are arbitrary, EDF schedules may require preemptions. EDF uses the timing
characteristics of jobs and is suitable when the processor is the only resource
needed and jobs are independent of each other.

Of more practical interest is the scheduling of jobs with timing constraints,
precedence constraints, resource constraints and arbitrary importance on multi-
processors. Unfortunately, most instances of the scheduling problem for real-
time systems are computationally intractable. Non-preemptive scheduling is
desirable as it avoids context switching overheads, but determining such a
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schedule is an NP-hard problem even on uni-processors when jobs can have
arbitrary ready times [14]. The presence of other constraints exacerbates the
situation.

This makes it clear that it serves no effective purpose to try to obtain an
optimal schedule, especially when decisions are made dynamically. Dertouzos
and Mok studied multi-processor on-line scheduling of real-time jobs [27, 12]
noting that for most real-world circumstances, optimal dynamic algorithms do
not exist (19, 8, 28]. With multi-processors, no dynamic scheduling algorithm
is optimal and can guarantee all jobs without prior knowledge of job deadlines,
computation times, and arrival times [27]. Such knowledge is not available in
dynamic systems so it is necessary to resort to approximate algorithms or to
use heuristics to construct the schedules.

Any real-time system must exhibit ‘graceful degradation’ under failures and
overloads. To achieve this, not only must the fact that a job did not meet its
deadline be detected, but the fact that this is going to occur must be detected
as soon as possible and, by signaling this exception, make it possible for the
job to be substituted by one or more contingency jobs. Thus on-line schedu-
lability analysis must have an early warning feature which provides sufficient
lead time for the timely invocation of contingency jobs, making it possible for
the scheduler to take account of a continuously changing environment.

An advantage of dynamic scheduling is that fairly complex priority assignment
policies can be used. This gives dynamic algorithms a lot of flexibility and aids
in their ability to deal with a wide variety of job and resource characteristics.
But a priority-based scheduler may incur substantial overheads in calculating
the priorities of jobs and in selecting the job of highest priority. When dynamic
priorities are used, the relative priorities of jobs can change as time progresses,
as new jobs arrive, or as jobs execute. Whenever one of these events occurs,
the priority of all the remaining jobs must be recomputed. This can make the
use of dynamic priorities more expensive in terms of run-time overheads and
in practice these overheads must be kept as small as possible.

Trying to minimize scheduling overheads conflicts with the goal of providing for
the early warning feature. The earlier an arriving job is checked for feasibility,
the sooner it can be known whether it will meet its deadline. However, if
it is scheduled early but remains in the system for too long, say because its
deadline is far away, then scheduling costs can be high for subsequent scheduling
decisions since they must ensure the schedulability of this and other previously
accepted jobs.
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How practical planning-based approaches address these issues is discussed in
subsequent sections. In preparation for this, the definitions of load in dynamic
systems and the metrics relevant for dynamic real-time systems are discussed.

5.1 PRELIMINARIES: LOAD, METRICS,
VALUE FUNCTIONS

5.1.1 Definition of Load in Dynamic Systems

In a real-time system, the definition of computational workload depends on the
temporal characteristics of the computational activities. For non real-time or
soft real-time jobs, a commonly accepted definition of workload refers to the
standard queuing theory definition. Here the load p, also called traffic intensity,
is:

p=XC.
where C is the mean service time and A is the average arrival rate of the jobs.

Notice that this definition does not take deadlines into account, hence it is
not particularly useful to describe real-time workloads. In a hard real-time
environment, a system is overloaded when, based on worst case assumptions,
there exists an interval during which the work exceeds capacity, so one or more
jobs might miss their deadline.

If the job set consists of n independent preemptable periodic tasks, whose
relative deadlines are equal to their period, then the system load p is equivalent
to the processor utilization factor:

n Ci
Uzg'ﬁ,

where C; and T; are the computation time and the period of job 7; respectively.
In this case, a load p > 1 means that the total computation time requested by
the periodic activities in their hyperperiod H = lem(T1,T5,...,T,) exceeds the
available time on the processor, therefore the job set cannot be scheduled by
any algorithm.
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A general method for calculating the load in an aperiodic real-time environment
has been proposed in [6]. According to this method, the load is computed
at each job activation time (r;), and the number of intervals in which the
computation of load is done is limited by the number of job deadlines (d;).
The method for computing the load is based on the consideration that, for a
single job J;, the load is given by the ratio of its computation time C; and its
relative deadline D; = d; — r;. For example, if C; = D, i.e., the job does not
have slack time, the load in the interval [r;, d;] is one. When a new job arrives,
the load can be computed from the last request time, which is also the current
time ¢, and the longest deadline, say d,,. In this case, the intervals that need to
be considered for the computation are [t,d,], [t,d2], ...[t,dn]). In general, the
processor load in the interval [t,d;] is given by

2 dy<d; k(1)

pl(t) = (d1 i t) 3

where c(t) refers to the remaining execution time of job Ji at time t. Hence,
the total load in the interval [t,d,] can be computed as the maximum among
all p;(t), that is:

p = max pi(t).

5.1.2 Performance Metrics under Overloads

When a real-time system is underloaded and dynamic activation of jobs is not
allowed, there is no need to consider job’s importance in the scheduling policy,
since there exist optimal scheduling algorithms that can guarantee a feasible
schedule under a given set of assumptions. For example, Dertouzos [11] proved
that EDF is an optimal algorithm for preemptive, independent jobs when there
is no overload.

On the contrary, when jobs can be activated dynamically and an overload
occurs there are no algorithms that can guarantee a feasible schedule of the
Jjob set. Since one or more jobs may miss their deadlines, it is preferable, from
the viewpoint of achieving graceful degradation, that the less important jobs
are the ones that get delayed. Hence, in overload conditions it is important to
distinguish between time constraints and importance of jobs. In general, the
importance of a job is not related to its deadline or its period, thus a job with a
long deadline could be much more important than another one with an earlier
deadline. For example, in a chemical process, monitoring the temperature every
ten seconds is certainly more important than updating the clock picture on the
user console every second. This means that, during an overload involving these
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two tasks, it is better to skip one or more clock updates rather than missing

the deadline of a temperature reading, since this could have a major impact on
the controlled environment.

In order to specify importance, an additional parameter is usually associated

with each job, its value, that can be used by the system to make scheduling
decisions.

5.1.3 Value/Utility Functions

The value associated with a job reflects its importance with respect to the other
jobs in the set. The specific assignment depends on the particular application.
For instance, there are situations in which the value is set equal to the job
computation time; in other cases it is an arbitrary integer number in a given
range; in other applications it is set equal to the ratio of an arbitrary number

(which reflects the importance of the job) and the job computation time (this
ratio is called value density).

In a real-time system, however, the actual value of a job also depends on the
time at which the job is completed, hence the job’s importance can be better
described by an utility function. Figure 5.2 illustrates some utility functions
that can be associated with a job in order to describe its importance. According
to this view, a non-real-time job, which has no time constraints, has a constant
(low) value, since it always contributes to the system value whenever it com-
pletes its execution. On the contrary, a hard real-time job contributes to a
value only if it completes within its deadline and, since a deadline miss would
Jeopardize the behavior of the whole system, the value after its deadline can be
considered minus infinity in many situations. A job with a soft deadline can
still give a value to the system if executed after its deadline, although this value
may decrease with time. Firm real-time activities are those that do not unduly
Jjeopardize the system, but give zero value if completed after their deadline.

Once the importance of each job has been defined, the performance of a schedul-
ing algorithm can be measured by accumulating the values of the job utility
functions computed at their completion time. Specifically, the cumulative value
of a scheduling algorithm A is defined as the following quantity:

Fa= Z v(fi)

|
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Figure 5.2 Utility functions that can be associated with a job to describe its
importance.

Given this metric, a scheduling algorithm is optimal if it maximizes the cumu-
lative value achievable for a job set.

Notice that if a job with a hard constraint misses its deadline, the cumulative
value achieved by the algorithm is minus infinity, even though all other jobs
are completed before their deadlines. For this reason, all activities with hard
time constraints should be guaranteed a priori by assigning them dedicated
resources (included processors). If all hard deadlines are guaranteed a priort,
the objective of a real-time scheduling algorithm for soft and firm jobs should
be to guarantee a feasible schedule in underload conditions and maximize the
cumulative value during overloads. If more general utility functions are possible
then it may also be a requirement for soft and firm jobs in underload conditions
to maximize the cumulative value.

Given a set of n jobs J(C;, D;, V;), where Cj is the worst case computation time,
D; the relative deadline, and V; the importance value gained by the system when
the job completes within its deadline, the maximum cumulative value achievable
on the job set is equal to the sum of all values V;, i.e., ['pmae = Z:‘sl Vi. In
overload conditions, this value cannot be achieved since one or more jobs will
miss their deadlines. Hence, if I'* is the maximum cumulative value that can be
achieved by any algorithm on a job set in overload conditions, the performance
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(b)

Figure 5.3 No optimal on-line optimal algorithms exist in overload condi-
tions, since the schedule that maximizes I depends on the knowledge of future
arrivals.

of a scheduling algorithm A can be measured by comparing the cumulative
value I' 4 obtained by A with the maximum achievable value I'*.

Consider for example the job set shown in Figure 5.3, consisting of three jobs
J1(10,11,10), J»(6,7,6), J3(6,7,6).

Without loss of generality, assume that the importance values associated with
the jobs are equal to their execution times (V; = C;) and that jobs are firm,
so no value is accumulated if a job completes after its deadline. If J; and
Jy simultaneously arrive at time ¢, = 0, there is no way to maximize the
cumulative value without knowing the arrival time of J;. In fact, if J3 arrives
at time ¢ = 4 or before, the maximum cumulative value is I'* = 10 and can
be achieved by scheduling job J; (Figure 5.3a). However, if J; arrives between
time ¢t = 5 and time t = 8, the maximum cumulative value is I'* = 12 and
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can be achieved by scheduling job J> and J; and discarding J, (Figure 5.3b).
Notice that if J; arrives at time t = 9 or later, then the maximum cumulative
value is I'* = 16 and can be accumulated by scheduling jobs J; and J3.

In this brief section on value based real-time scheduling only simple situations
were described, In general, the value of a job may be dependent on many things
such as system mode, sets of other jobs, the availability of input data, the
presence of faults, etc. Little is known about scheduling under such situations.
Normally, system designers approximate all these complicated issues with a
simple value function.

5.1.4 On-line vs. Clairvoyant Scheduling

What the previous example shows is that without an a priori knowledge of the
job arrival times no on-line algorithm can guarantee the maximum cumulative
value I'*. This value can only be achieved by an ideal clairvoyant scheduling
algorithm which knows the future arrival time of any job. Although the optimal
clairvoyant scheduler is a pure theoretical abstraction, it can be used as a ref-
erence model to evaluate the performance of real on-line scheduling algorithms
in overload conditions.

Definition 1 A scheduling algorithm A has a competitive factor ¢, if and
only if it can guarantee a cumulative value

La 2 wal™

where I'* is the cumulative value achieved by the optimal clairvoyant scheduler.

From the above definition (given in [1]), it is noticed that the competitive
factor is a real number 4 € [0,1]. If an algorithm A has a competitive factor
%4 it means that A can achieve a cumulative value I'4 at least @4 times the
cumulative value achievable by the optimal clairvoyant scheduler on any job
set.

If the overload has an infinite duration, then no on-line algorithm can guarantee
a competitive factor greater than zero. In real situations, however, overloads
are intermittent and usually have a short duration, hence it is desirable to use
scheduling algorithms with a high competitive factor.

-
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Figure 5.4 Situation in which EDF has an arbitrarily small competitive fac-
tor.

Unfortunately, without any form of guarantee, the basic EDF algorithm has a
zero competitive factor. To show this fact it is sufficient to find an overload
situation in which the cumulative value obtained by EDF can be arbitrarily re-
duced with respect to that one achieved by the clairvoyant scheduler. Consider
the example shown in Figure 5.4, where jobs have a value proportional to their

computation time. This is an overload condition because both jobs cannot be
completed by their deadline.

When job J; arrives, EDF preempts J; in favor of J; which has an earlier
deadline, so it gains a cumulative value of C,. On the other hand, the clairvoy-
ant scheduler always gains C; > Cs. Since the ratio C2/C) can be arbitrarily
small, it follows that the competitive factor of EDF is zero.

An important theoretical result found in [1] is that there is an upper bound
on the competitive factor of any on-line algorithm. In particular the following
theorem has been proved.

Theorem 1 If the job’s value is proportional to its computation time, then no
on-line algorithm can guarantee a competitive factor greater than 0.25.

The proof is done by using an adversary argument, in which the on-line schedul-
ing algorithm is identified as a player and the clairvoyant scheduler as the ad-
versary. In order to propose worst case conditions, the adversary dynamically
generates the jobs depending on the player decisions. At the end of the game,
the adversary shows its schedule and the two cumulative values are computed.
Since the player tries to do its best in worst case conditions, the ratio of the cu-
mulative values gives the upper bound of the competitive factor for any on-line
algorithm.

Baruah et. al. [1] also showed that, when using value density metrics (where
the value density of a job is its value divided by its computation time), the best
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that an on-line algorithm can guarantee is

1

where £ is the important ratio between the highest and the lowest value density
job in the system.

Koren and Shasha [20] also found an on-line scheduling algorithm, called D°v¢",
having the best possible competitive factor.

It is worth pointing out, however, that the above bounds are achieved under
very restrictive assumptions, such as all jobs have zero laxity, the overload
can have an arbitrary (but finite) duration, and job’s execution time can be
arbitrarily small. In most real world real-time applications, however, jobs’
characteristics are much less restrictive and a lot is known about the actual
job set. Therefore, the 1/4th bound has only a theoretical validity and more
work is needed to derive other bounds based on more knowledge of the actual
real-time job set of a given system.

5.2 STEPS IN A DYNAMIC
PLANNING-BASED SCHEDULING

APPROACH

In general, dynamic scheduling has three basic steps: feasibility checking,
schedule construction, and dispatching. Dynamic planning based scheduling
combines these steps in various ways. Depending on the kind of application
for which the system is designed, the programming model adopted, and the
scheduling algorithm used, all these steps may not be needed. Often, the bound-
aries between the steps may also not always be clearly delineated. The basic
steps are described first and then how they are combined into planning based
scheduling follows.

Feasibility Analysis

Feasibility, or schedulability, analysis is the process of determining whether the
timing requirements of a set of jobs can be satisfied, usually under a given set of
resource requirements and precedence constraints. Dynamic systems perform
feasibility checking on-line, as jobs arrive.
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Feasibility checking using schedulability formulae is most suited for periodic 1
activities. Here, a dynamically arriving periodic task is accepted for execution &
if the utilization bound for the new job as well as the currently existing jobs E
is not exceeded. Planning-Based approaches provide similar support for aperi-
odic tasks. In dynamic planning-based approaches, execution of a job is begun {
only if it passes a feasibility test. The feasibility can be based on a model of {
executing jobs according to the EDF scheduling discipline. Often, a result of
the feasibility analysis is a schedule or plan that determines when a job should
begin execution. i

Schedulability analysis is especially important for activities for which recov-
ery following an abortion after partial execution can be complicated. Error
handlers are complicated in general and abnormal termination may produce
inconsistent system states. This is likely to be the case especially if the activity
involves inter-process interaction. In such situations, it is better to allow an
activity to take place only if it can be guaranteed to complete by its deadline. If
such a guarantee cannot be provided, then the program can perform an alter-
native action. To provide sufficient time for executing the alternative action,
a deadline may be imposed on the determination of schedulability. This can
be generalized so that there are N versions of the activity and the algorithm
attempts to guarantee the execution of the best possible version. ‘Best’ refers
to the value of the results produced by a particular version; typically, the better
the value of the result, the longer the execution time.

Schedule Construction i

e

Schedule construction is the process of ordering the jobs to be executed and
storing this in a form that can be used by the dispatching step. Whereas ’3
approaches that perform schedulability analysis by checking utilization bounds !
do not construct explicit schedules, for planning-based approaches, schedule Y
construction is usually a direct consequence of feasibility checking. In the i

§

|

former case, priorities are assigned to jobs and at run time, the job in execution
has the highest priority. Planning-Based approaches also can be considered to
assign priorities to jobs. These are used to decide which job must be placed b

next in the plan being constructed. However, the resultant schedule may or g
may not rely on priorities. For example, it is possible that the final plan is a i
priority ordered list of jobs, or it may be that the final schedule is a list of start
and finish times for each job without any explicit priority identified. In the rest |

of this chapter the terms plan and schedule are used interchangeably.
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Dispatching

Dispatching is the process of deciding which job to execute next. The complex-
ity and requirements for the dispatching step depend on

1. the scheduling algorithm used in the feasibility checking step;

2. whether a schedule is constructed as part of the schedulability analysis
step;

3. the kinds of jobs, e.g., whether they are independent or with precedence
constraints, and whether their execution is preemptive or non-preemptive;
and

4. the nature of the execution platform, e.g., whether it has one processor or
more and how communication takes place.

For example, with non-preemptive scheduling a job is dispatched exactly once;
with preemptive scheduling, a job is dispatched once when it first begins exe-
cution and again whenever it is resumed.

These three steps are combined in a dynamic planning-based approach as fol-
lows. When a job arrives, an attempt is made to guarantee the job by con-
structing a plan for this new job execution to meet its timing constraints and
where all previously guaranteed jobs continue to meet their timing constraints.
A job is guaranteed subject to a set of assumptions, for example, about its
worst case execution time and resource needs, overhead costs and the nature of
the faults in the system. If these assumptions hold, once a job is guaranteed it
will meet its timing requirements. Thus, feasibility is checked with each arrival.

If the attempt to guarantee fails, the job is not feasible and a timing fault
is forecast. If this is known sufficiently ahead of the deadline, there may be
time to take alternative actions. For example, it may be possible to trade off
quality for timeliness, by attempting to schedule an alternative job which has
a shorter computation time or less resource needs. In a distributed system, it
may be possible to transfer the job (or an alternative job) to a less-loaded node.
The alternative job must itself be guaranteed to avoid its impacting previously
guaranteed work.

In the rest of this chapter, issues underlying planning-based scheduling are
discussed followed by the details of plan construction. Since the run-time cost of
a dynamic approach is an important practical consideration, several techniques
are discussed for efficient dynamic scheduling.
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5.3 ALGORITHMS FOR DYNAMIC
PLANNING

Most of the scheduling algorithms proposed in the literature use one of the
following scheduling schemes, also illustrated in Figure 5.5. Out of these, the

second and third schemes predict and handle overloads by controlling the entry
of new jobs and are the subject of this section.

1. Best Effort Scheme. This scheme includes those algorithms with no
prediction for overload conditions. At its arrival, a new job is always
accepted into the ready queue, so the system performance can only be
controlled through a proper priority assignment.

2. Admission Control Scheme. This scheme includes those algorithms
in which the load on the processor is controlled by an acceptance test
executed at each job arrival. Typically, whenever a new job enters the
system, a guarantee routine verifies the schedulability of the job set based
on worst-case assumptions. If the job set is found schedulable, the new job
is accepted in the ready queue; otherwise, it is rejected.

3. Robust Scheme. This scheme includes those algorithms that separate
timing constraints and importance by considering two different policies:
one for job acceptance and one for job rejection. Typically, whenever a
new job enters the system, an acceptance test verifies the schedulability of
the new job set based on worst-case assumptions. If the job set is found
schedulable, the new job is accepted in the ready queue; otherwise, one or
more jobs are rejected based on a different policy.

The admission control scheme is able to avoid domino effects by sacrificing the
execution of newly arriving jobs. Basically, the acceptance test acts as a filter
that controls the load on the system. Once a job is accepted, the algorithm
guarantees that it will complete by its deadline (assuming that no job will ex-
ceed its estimated worst-case computation time). Admission control schemes,
however, do not take job’s importance into account and, during overloads,
always reject the newly arrived job, regardless of its value. In certain condi-
tions (such as when jobs have very different importance levels), this scheduling
strategy may exhibit poor performance in terms of cumulative value, whereas
a robust algorithm can be much more effective.

In this section, two algorithms based on a dynamic planning approach are
described. The first deals with jobs having deadline constraints and where
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each job also has a deadline tolerance. This algorithm incorporates features to
select and reject less important tasks when an important job arrives but cannot
be admitted because of current load conditions. The second algorithm deals
with jobs having deadline and resource constraints. Other related algorithms
together with their simulation results and performance comparisons can be
found in [5].

5.3.1 The RED Algorithm

RED (Robust Earliest Deadline) [6] is a robust scheduling algorithm for deal-
ing with firm aperiodic tasks in overloaded environments. The algorithm syner-
gistically combines many features including graceful degradation in overloads,
deadline tolerance, and resource reclaiming. It operates in normal and overload
conditions and is able to predict not only deadline misses, but also the size of
the overload, its duration, and its overall impact on the system.

In RED, each job instance J;(C;, D;, M;,V;) is characterized by four param-
eters: a worst case execution time (C;), a relative deadline (D;), a deadline
tolerance (M;), and an importance value (V;). The deadline tolerance is the
amount of time by which a job is permitted to be late, i.e., the amount of
time that a job may execute after its deadline and still produce a valid result.
This parameter can be useful in many real applications, such as robotics and
multimedia systems, where the deadline timing semantics is more flexible than
scheduling theory generally permits.

Deadline tolerances also provide a sort of compensation for the pessimistic
evaluation of the worst case execution time. For example, without tolerance, it
could be that a job set is not feasibly schedulable, and hence the job is rejected.
But, in reality, the jobs could have been scheduled within the tolerance levels.
Another positive effect of tolerance is that various jobs could actually finish
before their worst case times, so a resource reclaiming mechanism could then
compensate and the jobs with tolerance could actually finish on time.

In RED, the primary deadline plus the deadline tolerance (which provides a
sort of secondary deadline), are used to run the acceptance test in overload
conditions. Notice that having a tolerance greater than zero is different than
having a longer deadline. In fact, jobs are scheduled based on their primary
deadline, but accepted based on their secondary deadline. In this framework, a
schedule is said to be strictly feasible if all jobs complete before their primary
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deadline, while is said to be tolerant if there exists some job that executes after
its primary deadline, but completes within its secondary deadline.

The acceptance test performed in RED is formulated in terms of residual laxity.
The residual laxity L; of a job is defined as the interval between its estimated
finishing time ( f;) and its primary (absolute) deadline (d;). Each residual laxity
can be efficiently computed using the result of the following lemma.

Lemma 5.1 Given a set J = {J1,J3,...,J,} of active aperiodic tasks ordered
by increasing primary (absolute) deadline, the residual lazity L; of each job J;
at time t can be computed as:

Li = Li_; +(d; - di_1) — ei(t). (51)

where Lo = 0, dg = t (i.e., the current time), and c;(t) is the remaining worst
case computation time of job J; at time t.

Proof. By definition, a residual laxity is L; = d;— f;. Since jobs in the set J are
ordered by increasing deadlines, job J; is executing at time ¢, and its estimated
finishing time is given by the current time plus its remaining execution time
(fi = t+e¢;). As a consequence, L, is given by:

L1 - d[“fl = dl —t—Cl.
Any other job J;, with ¢ > 1, starts as soon as J;_; completes and finishes after
¢; units of time from its start (f; = fi—1 + ¢;). Hence,
Ly = di—-fi = di—fi-r~¢ = di—(dic1—-Liy) -0 =
= Li +(di—di1) — ¢

and the lemma follows. O

Notice that if the current job set J is schedulable and a new job J, arrives
at time ¢, the acceptance test of the new job set J' = J U {J,} requires the
computation of only the residual laxity of job J, and one of the jobs J; such
that d; > d,. This is because the execution of .J, does not influence those jobs
having deadlines less than or equal to d,, which are scheduled before J,. It
follows that the acceptance test has O(n) complexity in the worst case.

To simplify the description of the RED acceptance test, the Ezceeding Time E;
is defined as the time that job J; executes after its secondary deadline!:
E; = max(0, =(L; + My)). (5.2)
1If M; = 0, the Ezceeding Time is also called Tardiness.
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Algorithm RED _acceptance_test(J, Jnew)

{
E =0; /* Maximum Exceeding Time */
L(] = O;
dp = current_time();

Joim dddil dasaiki
k = <position of Jy., in the job set J'>;

for each job J! such that i > k do {
/* compute the maximum exceeding time */
Li=L;y + (d; — di—1) — ¢
if (L, + Mi < =-E) then F = —(Li + Mi);
}

if (E >0) {
<select a set J* of least value jobs to be rejected>;
<reject all job in J*>;

Figure 5.6 The RED acceptance test.

The Mazimum Ezceeding Time E,,,, is defined as the maximum among all
E;’s in the jobs set, that is: Ep.; = max;(E;). Clearly, a schedule is strictly
feasible if and only if L; > 0 for all jobs in the set, while it is tolerant if and
only if there exists some L; < 0, but E,,,; = 0.

The RED algorithm uses the acceptance test (shown in Figure 5.6) to determine
if a job Jpew is likely to miss its deadline. If so, it computes the amount of
processing time required above the capacity of the system — the maximum

exceeding time. Otherwise, the job is accepted and executes according to the
EDF policy.

The global view provided by the maximum exceeding time allows the planning
of an action to recover from the overload condition that would occur if the job
is accepted. Many recovering strategies can be used to solve this problem [2].
The simplest one is to reject the least value job that can remove the overload
situation. In general it is assumed that, whenever an overload is detected, some
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rejection policy searches for a subset J* of least value jobs that are rejected to
maximize the cumulative value of the remaining subset.

A resource reclaiming mechanism can [35] be used to take advantage of those
jobs that complete before their worst case finishing time. To reclaim the spare
time, rejected jobs are not removed, but temporarily parked in a queue, called
the Reject Queue, ordered by decreasing values. Whenever a running job com-
pletes its execution before its worst case finishing time, the algorithm tries to
reaccept the highest value jobs in the Reject Queue having positive laxity. Jobs
with negative laxity are removed from the system.

5.3.2 The Spring Algorithm

This section describes an admission control algorithm that can also accom-
modate resource requirements of jobs beyond CPU resources. Admission is
granted if a schedule can be constructed, that is, execution can be planned for
a given set of jobs [32, 3] such that they meet their deadlines.

Schedule construction can be viewed as a search for a feasible schedule in a
tree in which the leaves represent schedules, some of which may be feasible.
The root is the empty schedule. An internal node is a partial schedule for
a job set with one more job than that represented by its parent. Given the
NP-completeness of the scheduling problem, it would serve little purpose to
search exhaustively for a feasible schedule. So heuristics are used to direct
the search. A planning algorithm [32, 41] starts at the root of the search tree
and repeatedly tries to extend the current partial plan (with one more job) by
moving to one of the vertices at the next level in the search tree until a full
feasible schedule is derived.

The rest of the section examines the details of this planning-based admission
control algorithm, as implemented in the Spring Kernel [38], given the arrival
or release time r, deadline d, and worst case computation time C of jobs. Jobs
require one CPU. For generality we assume a multi-processor system with m
processors and for simplicity, first consider the provision of absolute guaran-
tees. In subsequent chapters when precedence and resource constraints are
examined, the basic search algorithm is extended to deal with these additional
considerations. Also, jobs are scheduled to execute non-preemptively.

The algorithm computes the earliest start time, est;, at which job J; can begin
execution after accounting for processor availability given jobs scheduled thus
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far. Given a partial schedule, the earliest available time for a resource (which
is cpu; in this case) is given as, erat;. This time can be determined after each
job is assigned to a resource for its worst case duration. Then the earliest time
that a job J; that is yet to be scheduled can begin execution is

est; = maz(r;, min;j=1. merat;)

Even though for jobs which need just the cpu, EDF is a good priority as-
signment policy, later when resources beyond the cpu are considered, a more
sophisticated priority assignment policy becomes necessary. Hence, for gener-

ality it is assumes that each job J; has a priority computed dynamically and
denoted by Pr(J;).

At each level of the search, Pr is computed for all the jobs that remain to be

scheduled. The job with the highest priority is selected to extend the current
partial schedule.

While extending the partial schedule at each level of search, the algorithm
determines if the current partial schedule is strongly-feasible or not. A partial
feasible schedule is said to be strongly-feasible if all the schedules obtained by
extending this current schedule with any one of the remaining jobs are also
feasible. Thus, if a partial feasible schedule is found not to be strongly-feasible
because, say, job J misses its deadline when the current partial schedule is
extended by J, then it is appropriate to stop the search since none of the future
extensions involving job J will meet its deadline. In this case, a set of jobs
cannot be scheduled given the current partial schedule. (In the terminology
of branch-and-bound techniques, the search path represented by the current

partial schedule is bounded or pruned since it does not lead to a feasible complete
schedule.)

However, it is possible to backtrack to continue the search even after a non-
strongly-feasible schedule is found. Backtracking is done by discarding the cur-
rent partial schedule, returning to the previous partial schedule, and extending
it with a different job, e.g., the job with the second highest priority. When
backtracking is used, the overheads can be restricted either by restricting the

maximum number of possible backtracks or the total number of re-evaluations
of priorities.

The fact that priority is computed for all remaining jobs at each level makes it
a
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search algorithm where n is the number of jobs in the set. The complexity can
be reduced to O(n) if only a maximum of k jobs that remain to be scheduled
at each level of search are considered [32]. These k jobs can be selected by
taking the k jobs with the earliest deadlines. k is a constant (in practice it is
small when compared to n). In both cases, the job with the highest priority is
selected to extend the current schedule.

Here is a description of the complete algorithm (see Fig. 5.7). Besides Pr,
introduced earlier, the following variables are useful in precisely describing the
algorithm’s steps.

- TR, the jobs that remain to be scheduled, in order of increasing deadline;

- N(TR), the number of jobs in TR;

- M(TR), the maximum number of jobs considered by each step of schedul-
ing;

- Nrpg, the actual number of jobs in TR considered at each step of schedul-
ing, where
Nrr = M(TR), if N(TR) > M(TR)
Nrr = N(TR), otherwise
and

- TC, the first N7g jobs in TR.

The algorithm starts with an empty partial schedule. At each step, the est for
each job is first computed. To determine the job with the highest priority the
priority value for each job is computed next. As a prerequisite for extending
the partial schedule with the job with the highest priority, strong-feasibility is
determined with respect to all the jobs in TC. After a job J is selected to
extend the current partial schedule, its scheduled start time sst is set equal to
est of J and resource availability vectors are updated.

So far, the jobs were assumed to be independent and had just deadline and
release time specifications. The extensions necessary to deal with periodic tasks
are considered now. Extensions to the basic planning-based approach needed
to deal with resources other than CPUs are discussed in Chapter 6, precedence
constraints are considered in Chapter 7, and for distributed systems in Chapter
10.
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TR := job set to be scheduled;
partial schedule := empty;
Result := Success;

while TR # empty A Result # Failure do
TC := first Nyr jobs in TR;
Given a partial schedule
est calculation:
for each job J in TR Compute est;
Priority value generation:
for each job J in TR Compute Pr(J);
Job selection:
find job miny with highest priority in 7'C}
Update partial schedule or backtrack: g
if (partial schedule @ min) is feasible and strongly feasible
partial schedule := (partial schedule & miny);
TR:=TR © ming;
Update resource availability vector;
else if backtracking is allowed and possible
backtrack to a previous partial schedule;
choose a job not yet chosen;
else Result:=Failure

Figure 5.7 Basic guarantee algorithm.
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There are several ways of guaranteeing periodic tasks when they are executed
together with aperiodic tasks. Assume that when a periodic job is guaranteed,
every instance of the task is guaranteed.

Consider a system with only periodic tasks. A schedule can be constructed us-
ing the basic planning algorithm; given n periodic tasks with periods T3 ... T,

length of the schedule = LCM(T\,...,T,).

The earliest start time of the j* release of the it" jobis (j = 1) x T; and its
deadline is j x 7;. In other words, all instances of the periodic tasks are created
with release times and deadlines and the entire set is handed to the planning

algorithm at once.

If a periodic task arrives dynamically, an attempt can be made to construct
a new template. The new task is guaranteed if the attempt succeeds. This
new template begins execution at the end of the current LC'M of the previous
periodic tasks. If this is too long to wait, it is possible to modify this algorithm
to handle a quicker mode change between the two templates. This is not
discussed further in this book.

Suppose there are periodic and aperiodic tasks in the system. If the resources
needed by the two sets of tasks are disjoint then the processors in the system
can be partitioned, with one set used for the periodic tasks. The remaining
processors are used for aperiodic tasks guaranteed using the dynamic planning
algorithm.

If however, periodic and aperiodic tasks need common resources, a more com-
plicated scheme is needed. If a periodic task arrives in a system consisting of
previously guaranteed periodic and aperiodic tasks, an attempt is made to con-
struct a new schedule. If the attempt fails, the new task is not guaranteed and
its introduction has to be delayed until either the guaranteed aperiodic tasks
complete or its introduction does not affect the remaining guaranteed jobs.

Suppose a new aperiodic task arrives. Given a schedule for periodic tasks, the
new task can be guaranteed if there is sufficient time in the idle slots of the
template. Alternatively, applying the dynamic guarantee scheme, an aperiodic
task can be guaranteed if all releases of the periodic tasks and all previously
guaranteed aperiodic tasks can also be guaranteed.

So far all jobs had been assumed to have the same level of importance. In
Biyabani et. al. [2] the planning-based algorithm was extended to deal with

jobs having different values, and various policies were studied to decide which
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jobs should be dropped when a newly arriving job could not be guaranteed.

This referenced work extends the algorithm described thus far to become more
robust.

5.4 TIMING OF THE PLANNING

As the number of jobs increases, so does the cost of planning and there is
less time available for planning. Needless to say, planning-based schemes must
be cognizant of time available for planning. So when a system overload is
anticipated, use of a method that controls scheduling overheads is essential.
Thus, it is important to address the issue of when to plan the execution of a
newly arrived job. Two simple approaches are:

1. when a job arrives, attempt to plan its execution along with previously
scheduled jobs: this is scheduling-at-arrival-time and all jobs that have
not yet executed are considered for planning when a new job arrives;

2. postpone the feasibility check until a job is chosen for execution: this is
scheduling-at-dispatch time and can be done very quickly for non-preemptive
job execution by checking whether the new job will finish by its deadline.

The second approach is less flexible and announces job rejection very late.
Consequently, it does not provide sufficient lead time for considering alternative
actions when a job cannot meet its timing constraints. Both avoid resource
wastage since a job does not begin execution unless it is known that it will
complete before its deadline.

To minimize scheduling overhead while giving enough lead time to choose al-
ternatives, instead of scheduling jobs when they arrive or when they are dis-
patched, they should be scheduled somewhere in between — at the most op-
portune time. They can be scheduled at some punctual point which limits the
number of jobs to be considered for scheduling and avoids unnecessary schedul-

ing (or rescheduling) of jobs that have no effect on the order of jobs early in
the schedule.

Choice of the punctual point must consider the fact that the larger the mean
laxity and the higher the load, the more jobs are ready to run. The increasing
number of jobs imposes growing scheduling overhead for all except a scheduler
with constant overheads. The punctual point is the minimum laxity value,
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i.e., the value to which a job’s laxity must drop before it becomes eligible for
scheduling. In other words, the guarantee of a job with laxity larger than
the punctual point is postponed at most until its laxity reaches the punctual
point. Of course, if the system is empty a job becomes eligible for scheduling by
default. By postponing scheduling decisions, the number of Jjobs scheduled at
any time is kept under control, reducing the scheduling overhead and potentially
improving the overall performance.

The main benefit of scheduling using punctual points is the reduced schedul-
ing overhead when compared to scheduling at arrival time. This is due to the
smaller number of relevant jobs (the jobs with laxities smaller than or equal
to the punctual point) that are scheduled at any given time. Clearly, when
the computational complexity of a scheduling algorithm is higher than the
complexity of maintaining the list of relevant jobs, the separation into rele-
vant /irrelevant jobs reduces the overall scheduling cost; that is, the scheduling
becomes more efficient.

Consider the following scheme for jobs with deadlines that are held on a dis-
patch queue, @, (n), maintained in minimum laxity order, and a variant of the
FCFS queue. When a job arrives, its laxity is compared with that of the n
jobs in the queue Q;(n) and the job with the largest laxity among the n + 1
jobs is placed at the end of the FCFS queue. When a job in Q1 is executed,
the first job on the FCFS queue is transferred to Q;. Analysis [15, 18, 29, 30]
shows that performance to within 5% of the optimal LLF algorithm is achieved
for even small values of n.

A more experimental way to limit the number of scheduled jobs is to have a
HIT queue and a M1SS queue [17]: the number of scheduled jobs in the HIT
queue is continuously adjusted according to the the ratio of jobs that complete
on time (the ‘hit’ ratio). This method is adaptive, handles deadlines and values,
and is easy to implement. However, it does not define a punctual point.

The weakness of both of these approaches is the lack of analytical methods to
adjust the number of scheduled jobs. The parameters that control the number
of schedulable jobs must be obtained through simulation and a newly arrived
job can miss its deadline before it gets considered for execution. In contrast,
if the punctual point is derived analytically, then it can be ensured that every
arrived job will be considered for execution [42].

The number of schedulable jobs must be controlled using timing constraints,
rather than by explicitly limiting the number of schedulable jobs; this ensures
that every job is considered for scheduling when its laxity reaches the most
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opportune moment, the punctual point. The approach is especially ben:eﬁcial
for systems where jobs have widely different values and rejecting a job 'w1thou,t
considering it for scheduling might result in a large value loss, something that
can happen easily when the number of schedulable jobs is fixed.

The features of a ‘well-timed scheduling framework’ are summarized below.

m  Newly arrived jobs are classified as relevant or irrelevant, depending on
their laxity.

»  Irrelevant jobs are stored in a D-queue (the delay queue), where they are
delayed until their laxity becomes equal to the punctual point, at which
time they become relevant.

®  Relevant jobs are stored in an S-pool (the scheduling pool) as jobs eligible
for immediate scheduling.

=  When a job is put into the S-pool, a feasibility check is performed; if t'his
is satisfied, it is transferred into the current feasible schedule. Other“{lse,
it can be placed in the reject queue to await possible resource reclamation.

It is important to observe that apart from reducing the scheduling c9st, the sep-
aration of relevant and irrelevant jobs also contributes to the re‘du.cmg schedu.l-
ing overhead due to queue handling operations. A simple ar.lalytlcal model is
developed in [42], but a formally derived punctual point awaits further work.

5.5 IMPLEMENTING PLANNING-BASED
SCHEDULING

In implementing planning-based scheduling, there are two main considerations:
feasibility checking and schedule construction. In a multl-processor! system,
feasibility checking and dispatching can be done independently, allowing tl}ese
system functions to run in parallel. The dispatcher work‘s. with a set of _!Cbe
that have been previously guaranteed to meet their deadlines and fea.L51b111ty
checking is done on the set of currently guaranteed jobs plus any newly mvoke.d
jobs. See the Spring kernel [38] for a discussion on how‘t‘o implement this
parallelism in a predictable manner and to avoid race conditions.

One of the crucial issues in dynamic scheduling is t}.le cost of schedl.ll'mg: the
more time that is spent on scheduling the less there is for job executions.
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In a single processor system, feasibility checking and job executions compete
for processing time. If feasibility checking is delayed, there is less benefit from
the early warning feature. However, if feasibility checking cannot be performed
immediately after a job arrives it may lead to guaranteed jobs missing their
deadlines. Thus, when jobs are guaranteed, some time must be set aside for
scheduling-related work and a good balance must be struck depending on job
arrival rates and job characteristics such as computation times.

One way is to provide for the periodic execution of the scheduling activity.
Whenever invoked, the scheduler attempts to guarantee all pending jobs. In
addition, if needed, the scheduler could be invoked sporadically whenever these
extra invocations affect neither guaranteed jobs nor the minimum guaranteed
periodic rate of other system jobs.

Another alternative, applicable to multi-processor systems, is to designate a
scheduling processor whose sole responsibility is to deal with feasibility check-
ing and schedule construction. Guaranteed Jobs are executed on the remaining
‘application’ processors. In this case, feasibility checking can be done concur-
rently with job execution. Recall that a job is guaranteed as long as it can
be executed to meet its deadline and the deadlines of previously guaranteed
jobs remain guaranteed. Guaranteeing a new job might require re-scheduling
of previously guaranteed jobs and so care must be taken to ensure that cur-
rently running jobs nor jobs that might execute prior to the guarantee algorithm
completing are not re-scheduled.

These considerations suggests that scheduling costs should be computed based
on the total number of jobs in the schedule plus the newly arrived jobs, the
complexity of the scheduling algorithm and the cost of scheduling one job.
Jobs with scheduled start times before the current time plus the scheduling
cost are not considered for rescheduling; the remaining jobs are candidates for
re-scheduling to accommodate new jobs.

9.6 DISPATCHING JOBS IN A
PLANNING-BASED SCHEDULE

Planning-based schedulers typically use non-preemptive schedules. Dispatching
depends on whether the jobs are independent and whether there are resource

constraints.
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If the jobs are independent and have no resource constraints, dispatching can
be extremely simple: the job to be executed next is the next job in the schedule,
and this job can always be executed immediately even if its scheduled start time
has not arrived. Note that a scheduled start time (when the job is actually
scheduled to run) is not the same as a job release time (which is the earliest
time a job is eligible to run).

On the other hand, precedence constraints and resource constraints may in-
crease the complexity of dispatching. If jobs have resource constraints and/or
precedence constraints, the dispatching process must take these into account.
When the actual computation time of a job differs from its worst case com-
putation time in a non-preemptive multi-processor schedule with resource con-
straints, run time anomalies [13, 14] may occur, causing some of the scheduled
Jobs to miss their deadlines. There are two possible kinds of dispatchers.

1. Dispatch jobs exactly according to the given schedule. In this case, upon
the completion of one job, the dispatcher may not be able to immediately
dispatch another job because idle time intervals may have been inserted by
the scheduler to conform to the precedence constraints, release times, or
resource constraints. One way to construct a correct dispatcher is to use a
hardware (count down) timer in order to enforce the start time constraint.

2. Dispatch jobs taking into consideration the fact that, given the variance
in jobs’ execution times, some jobs complete earlier than expected. The
dispatcher tries to reclaim the time left by early completion and uses it to
execute other jobs.

Clearly, non-real-time jobs which do not use resources needed by the real-time
jobs can be executed in idle time slots. More valuable is an approach that im-
proves the guarantees of jobs that have time constraints. Complete rescheduling
of all remaining jobs is an available option, but given the complexity of schedul-
ing, it is usually expensive and ineffective. Resource reclaiming algorithms used
in systems that do dynamic planning-based scheduling must maintain the fea-
sibility of guaranteed jobs, must have low overheads as a resource reclaiming
algorithm is invoked whenever a job finishes, and must have costs that are in-
dependent of the number of jobs in the schedule. They must also be effective
in improving the performance of the system. Simple but effective resource re-
claiming algorithms are described in [35] for independent jobs having resource
requirements and in [25] for jobs having, in addition, precedence constraints.
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5.7 SUMMARY

While utilization bounds analyses support predictable job executions, their
applicability is restricted to jobs whose release times are known a priori. Best-
effort approaches are applicable to jobs with arbitrary needs, but do not offer
predictability. Planning-based scheduling offers the best of both worlds. It
must be mentioned that the predictability they offer is on a per-job basis.
What is needed is a definition and determination of a global system-wide formal
schedulability notion based on individual guarantees.

This Chapter presented a planning-based paradigm for scheduling jobs and pre-
sented two different algorithms: the RED algorithm and the Spring algorithm.
Since overload handling is such an important issue, this Chapter ends with a
brief look at other work related to overloads.

In 1986, Locke [23] developed an algorithm which makes a best effort at schedul-
ing jobs based on earliest deadline with a rejection policy based on removing
jobs with the minimum value density. He also suggested that removed jobs
remain in the system until their deadline has passed. The algorithm computes
the variance of the total slack time in order to find the probability that the
available slack time is less than zero. The calculated probability is used to
detect a system overload. If it is less than the user prespecified threshold, the
algorithm removes the jobs in increasing value density order. Real-time Mach
[40] uses an approach similar to this: jobs are ordered by EDF and overload
was predicted using a statistical guess. If overload is predicted, jobs with least

value are dropped.

In other related work, Sha and his colleagues [37] showed that the rate mono-
tonic algorithm has poor properties under overload. Thambidurai and Trivedi
[39] studied overloads in fault tolerant real-time systems, building and analyz-
ing a stochastic model for such a system. However, they provided no details on
the scheduling algorithm itself.

Finally, Haritsa, Livny and Carey [17] presented the use of a feedback controlled
EDF algorithm for use in real-time database systems. The purpose of their work
was to obtain good average performance for transactions even in overload. Since
they were working in a database environment they assumed no knowledge of
transaction characteristics and they considered jobs with soft deadlines that
are not guaranteed.
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