
1

©Jesper Larsson TräffSS23

Introduction to Parallel Computing
Introduction, motivation, problems, models

Jesper Larsson Träff

TU Wien

Institute of Computer Engineering

Parallel Computing

2

©Jesper Larsson TräffSS23

Parallel Computing

Premise:

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them

efficiently?

Octa-core mobile

(2016, Samsung

Galaxy 7)

GPU

appliances

Octa-core laptop, Intel Xeon

Processor E5-2690, 2012

3

©Jesper Larsson TräffSS23

Parallel Computing

Premise:

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them

efficiently?

Intel “Skylake”: 4-28 cores

AMD “Naples”: 8-32 cores

The processors

in our new

cluster/server to

be used in this

lecture

Another server,

perhaps in later

courses

4

©Jesper Larsson TräffSS23

Parallel Computing

Premise:

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them

efficiently?

June 2012: IBM

BlueGene/Q,

1,572,864 cores,

16 PFLOPS

June 2016:

Sunway

TiahuLight,

10,649,600 cores,

93 PFLOPS

June 2011: Fujitsu K, 705,024 cores,

11 PFLOPS

November 2018:

IBM/Nvidia,

2,397,824 cores,

143.5 PFLOPS

November 2012: Cray Titan, 560,640

cores, 17.5 PFLOPS

June 2020: Fujitsu

Fugaku, 7,630,848

cores, 442,010

TFLOPS

5

©Jesper Larsson TräffSS23

Parallel Computing

Premise:

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them

efficiently?

Fact: Since ca. 2010, there are (next to) no sequential computer

systems anymore (multi-core, GPU accelerated, …)

How to use these parallel computers?

a) Parallelize the applications (efficiently)

b) Have enough independent applications that can run at the same

time (concurrently) to keep system busy

Wide range: From a few to >1,000,000 processors

6

©Jesper Larsson TräffSS23

Fact: Since ca. 2010, there are (next to) no sequential computer

systems anymore (multi-core, GPU accelerated, …)

Premise:

“We” want to solve larger, more complex problems faster (better,

cheaper, …)

Challenge a): Parallelizing individual applications to exploit parallel

hardware (multiple cores)

Why?

7

©Jesper Larsson TräffSS23

The Free Lunch Is Over

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter

The biggest sea change in software development since the OO revolution is

knocking at the door, and its name is Concurrency.

This article appeared in Dr. Dobb's Journal,30(3), March 2005

Exponential increase in single-core performance: No software

changes needed to exploit the faster processors, no reason to

bother with exploiting parallelism

Lot’s of similar hype/panic

around 2005-2010 and still

“Free lunch” (as in “There is no such thing as a free lunch”)

…and no reason to produce

good, efficient code

Parallel Computing challenge

8

©Jesper Larsson TräffSS23

Concurrent programming, the expression of a program as a

composition of several autonomous activities, has never been more

important than it is today. … use concurrency … to exploit a

modern computer’s many processors, which every year grow in

number but not in speed.

… reasoning about concurrent programs is inherently harder

than about sequential ones, and intuitions acquired from

sequential programming may at times lead us astray.

10 years later (Donovan, Kernighan: The GO

Programming language, Addison-Wesley, 2016):

9

©Jesper Larsson TräffSS23

Concurrent Parallel programming, the expression of a program as

a composition of several autonomous parallel activities, has never

been more important than it is today. … use concurrency

parallelism … to exploit a modern computer’s many processors

efficiently, which every year grow in number but not in speed.

… reasoning about concurrent the performance of parallel

programs is inherently harder than about sequential ones, and

intuitions acquired from sequential programming may at times lead

us astray.

But parallel computing is concerned with efficiency and performance:

10

©Jesper Larsson TräffSS23

Processor performance:

Number of (some kind of) instructions that can be carried out per unit

of time

Examples:

• FLOPS: FLoating-Point OPerations per Second (IEEE 64-bit)

• IPS: Instructions per Second

Measuring/accounting for performance:

• Which kinds of operations matter most in

application? Which correspond best to, e.g.,

running time

• Which kind of operations are most expensive?

• Count number of these per time unit (seconds)

Why FLOPS? Historically, floating-point operations

were expensive. And accountedS for most of the

work in numerical applications.

Floating-point?

Integer? Branches?

Memory accesses?

Cache misses?

Comparisons?

• Measure

(empirical)?

• Specification?

11

©Jesper Larsson TräffSS23

prefix factor

Mega 106 (Million)

Giga 109 (Billion)

Tera 1012 (Trillion)

Peta 1015

Exa 1018

Zetta 1021

Yotta 1024

Metric prefixes (SI)

MegaFLOPS, MIPS

ExaFLOPS

GigaFLOPS Parallel and

High-

Performance

Computing

Gr.

Ital.

Lat.

Gr.
Current HPC systems: 10-100

PetaFLOPS, see

www.top500.org

http://www.top500.org/

12

©Jesper Larsson TräffSS23

Moore‘s “law” (popular version):

Sequential processor performance doubles every 18 months

Gordon Moore: Cramming more components onto integrated circuits.

Electronics, 38(8), 114-117, 1965

Exponential growth in processor performance often referred to as

Moore’s “Law” is (only) an empirical observation/extrapolation.

“Free Lunch” aka Moore’s “law”

Source: Wikipedia.org, co-founder of Intel

Not to be confused with physical “law of nature” or “mathematical

law” (e.g., Amdahl’s Law, see later)

13

©Jesper Larsson TräffSS23

2006:

Factor 103-104

increase in

integer

performance

(SPECint) over

1978 high-

performance

processor

From: Hennessy/Patterson, Computer Architecture, A Quantitative Approach

Measured: SPEC

log-scale

14

©Jesper Larsson TräffSS23

Some reasons for Moore’s “law” phenomenon

1. Increased clock frequency (4MHz ca. 1975 to 4GHz ca. 2005;

factor 1000, 3 orders of magnitude)

2. Miniaturization, smaller features sizes, more transistors

(“technology”)

3. Inventions in computer architecture, increased processor

complexity: Deep pipelining requiring branch prediction and

speculative execution; processor ILP extraction (need

transistors)

4. Multi-level caches (need transistors)

15

©Jesper Larsson TräffSS23

• Deep pipelining

• Branch prediction

• Caches

• Superscalar execution (>1 instruction/clock) through multiple-

functional units, ILP (Instruction Level Parallelism), …

• Out-of-order execution, speculative execution

• Simplified/better instruction sets (for compiler)

• Data parallelism through SIMD units (same instruction on multiple

data/clock)

• SMT/Hyperthreading

Increase in clock-frequency alone (factor 100-1000?) alone does not

explain performance increase:

Mostly fully transparent, at most compiler needs to care: “free lunch”

Programmer and compiler have to care

But you can write much more

efficient/better programs if you understand

these things

16

©Jesper Larsson TräffSS23

Processor performance:

Number of (some kind of) instructions that can be carried out per unit

of time

(Number of Instructions per Clock) x (Clock Frequency)

Superscalar processor: ≥ 1

SIMD/vector processor: ≥ 1 (e.g., 512-bit SIMD = 8 64-bit

operations/clock)

Caveat:

Processor’s point of view. Memory system must be able to deliver

data fast enough to keep processor busy

17

©Jesper Larsson TräffSS23

Memory system performance:

Latency: Number of clock cycles to deliver one unit of data (Byte,

Word, …)

Bandwidth: Number of units that can be delivered per unit of time

(second, clock cycle)

Latency and bandwidth determined by the structure of the memory

system (caches, banks, ports, controllers, …), and where the data

are in memory

18

©Jesper Larsson TräffSS23

Moore‘s “law” (“Free lunch”) effectively killed parallel computing in

the 90ties: To increase performance by an order of magnitude (factor

10 or so), just wait 3 processor generations, that is 4.5 to 6 years

Parallel computers, typically relying on processor technologies a few

generations old, and taking years to develop and market, could not

keep up

Also: Steep increase in performance/€

Performance/€ ??

Parallel computers were not commercially viable in the 90ties

…and not only commercially

19

©Jesper Larsson TräffSS23

Intel iPSC

IBM SP

INMOS

Transputer

MasPar

Thinking

Machines CM2

Thinking

Machines CM-5

SB-PRAM

90ties: Companies went out of

business, systems disappeared

C
o
m

m
e
rc

ia
l
a
c
ti
v
it
y

1985 1992 20061979

Still commercially tough

20

©Jesper Larsson TräffSS23

Intel iPSC

IBM SP

INMOS

Transputer

MasPar

Thinking

Machines CM2

Thinking

Machines CM-5

PRAM: Parallel RAM

SB-PRAM

Parallel computing

disappeared from

mainstream CS

90ties: Companies went out of

business, systems disappeared

The lost decade: A

lost generation

R
e
s
e
a
rc

h
 a

c
tiv

ity

C
o
m

m
e
rc

ia
l
a
c
ti
v
it
y

1985 1992 20061979

TU Wien 2011

21

©Jesper Larsson TräffSS23

“Rather than becoming something that chronicled the progress of the

industry, Moore's Law became something that drove it.”

Gordon Moore, according to wikipedia.org

Peter Hofstee, IBM Cell co-designer

„…a self-fulfilling prophecy… nobody can afford to put a

processor or machine on the market that does not follow it“,

HPPC 2009

What is an empirical “law”?

• Observation

• Extrapolation

• Forecast

• Prediction

• Self-fulfilling prophecy

• (Political) dictate

but can become a real Law when reasons

behind are understood (mechanism)

Observed correlations are not Laws

22

©Jesper Larsson TräffSS23

What is an empirical “law”?

• Observation

• Extrapolation

• Forecast

• Prediction

• Self-fulfilling prophecy

• (Political) dictate

Two types of Laws:

• Mathematical Law (aka Theorem, Proposition, …): Necessary

relationship that can be derived analytically from premises/axioms

(e.g.: Amdahl’s Law, see later)

• Non-analytic, empirical law: Explained, necessary relationship

with predictive power, with supporting, explanatory theory,

empirically falsifiable (but not falsified) and supportable

23

©Jesper Larsson TräffSS23

Moore’s “law” in the “Free lunch” version ended ca. 2005:

• Clock speed reached limit around 2003 (no 4GHz processors)

• Power consumption limit from 2000

• Instructions/clock limit late 90ties

Single-core performance has not increased (and will most likely not

increase) significantly (= exponentially) since ca. 2005

Moore’s “law” (popular version) was no Law

“Free lunch” over: End of a certain business model Panic

24

©Jesper Larsson TräffSS23

“Free lunch” was over…

ca. 2005

• Clock speed limit

around 2003

• Power consumption

limit from 2000

• Instructions/clock limit

late 90ties

But:

Numbers of

transistors/chip can

continue to increase

(>1Billion)

Hz

ILP

W

Kunle Olukotun (Stanford), ca. 2010

25

©Jesper Larsson TräffSS23

Moore‘s “law” (what Moore originally observed):

Transistor counts double roughly every 12 months (1965 version);

every 24 months (1974 version)

What are all these

transistors used for?

Gordon Moore: Cramming more components onto integrated circuits.

Electronics, 38(8), 114-117, 1965

So few transistors (in

the thousands) needed

for full microprocessor

Computer Architecture challenge:

What is the best way to use

transistors? The art of tradeoffs(!)

26

©Jesper Larsson TräffSS23

Kunle Olukotun, 2010, Karl Rupp (TU Wien), 2015

27

©Jesper Larsson TräffSS23

Intel i7

Since early 2000’s: Transistors used for

• More cache

• More cores

• More threads (hyperthreading, SIMD)

Computer architecture challenge

Moore’s “law” (exponential growth in number of transistors version)

can continue for some time

How to use all these transistors efficiently?

Performance increase must come through parallelism

28

©Jesper Larsson TräffSS23

How to use all these transistors efficiently?

A different tradeoff/answer: GPU architecture (here: nvidia Turing)

From www.tomshardware.com

Design decisions:

• Many (many)

simple cores

• Hardware support

for extremely large

number of threads

• Lower clock

frequency

(~1.5GHz)

• Complex,

hierarchical

memory system

http://www.tomshardware.com/

29

©Jesper Larsson TräffSS23

NEC SX-Aurora (ca. 2019) traditional

vector processor:

• Powerful SIMD vector processors,

many, parallel pipelines

• Banked, on-chip memory system

• Lower clock frequency (1.6GHz)

How to use all these transistors efficiently?

A different tradeoff/answer: vector co-processor

Will this take off?

Hot Chips 2018, www.hotchips.org

Computer architecture

is an open area of

research (should be)

But (commercially)

tough!!

Much is possible

with FPGA, ASIC

http://www.hotchips.org/

30

©Jesper Larsson TräffSS23

Single-core performance does still increase, somewhat, but much

slower… Henk Poley, 2014, www.preshing.com

Average, normalized, SPEC benchmark numbers, www.spec.org

http://www.preshing.com/
http://www.spec.org/

31

©Jesper Larsson TräffSS23

Moore’s law (exponential growth in number of transistors version)

can continue for some time (but exponential growth cannot continue

forever!?)

Computer Architecture challenge: How to use these transistors

efficiently?

Tradeoff:

Simpler (less complexity, fewer transistors, less power) and slower

(less power) cores in order to get more cores on chip

Even better parallel computing solutions required

32

©Jesper Larsson TräffSS23

Terminology…

Core: The smallest unit capable of executing instructions according

to a program (used to be called “processor”, “processing unit”)

Processor: Collection of one or more cores on a single chip (as in

“multi-core processor”)

Sometimes used:

Multi-core: handful of (standard CPU) cores (2-32)

Many-core: a lot of cores, often in special-purpose processors (GPU)

33

©Jesper Larsson TräffSS23

Parallel (multi-core) processor performance:

Number of (some kind of) instructions that can be carried out per unit

of time

(Number of cores) x (Number of Instructions per Clock) x (Clock

Frequency)

Superscalar processor: ≥ 1

SIMD/Vector processor: ≥ 1 (e.g., 512-bit SIMD = 8 64-bit

operations/clock

Multi-core: > 1 core/processor, possibly many processors

Caveat:

Processor’s point of view. Memory and communication system must

be able to deliver data fast enough to keep processor busy

34

©Jesper Larsson TräffSS23

Parallel Computing challenge, concrete, practical

Solve some problems faster on p cores than on just one…

Issues:

• Parallel computers are diverse, very

different architectures

• No commonly agreed upon

“bridging” model for designing,

analyzing and implementing

algorithms

Many different paradigms (models),

many different programming languages

& interfaces

35

©Jesper Larsson TräffSS23

Problem P on input I:

• How much faster can P(I) be solved with p processor-cores

instead of 1 processor-core? Can P(I) be solved better with p

processor-cores?

• How? New algorithms? New techniques?

• Can all problems be solved faster? How much faster?

• Are there problems that cannot be solved faster with more

processors?

• Which assumptions are reasonable?

• Does parallelism give new insights into nature of computation?

Parallel Computing challenge, theoretical, model-driven

Informal model: p processor-cores, some means for exchanging

information (memory, communication network, …) and coordination

36

©Jesper Larsson TräffSS23

“Bridging models”, from theory to practice

Leslie G. Valiant: A Bridging Model for Parallel Computation.

Commun. ACM 33(8): 103-111 (1990)

Computational/Architecture/Machine model (formally) describes

components of processor (ALU, memory, interconnect), and defines

how programs are executed and at what costs

• Design and analysis algorithms, account for costs (Example:

Worst-case asymptotic complexity)

• Objectifies costs (good algorithm has low model costs, best

algorithm has lowest possible model costs)

bridge

Model costs translate reasonably into/predicts performance on wide

range of actual hardware

37

©Jesper Larsson TräffSS23

Model costs translate reasonably into/predicts performance on wide

range of actual hardware

Minimum requirement for a good bridging model:

If Algorithm A performs better than Algorithm B in model, then the

implementation of Algorithm A performs better than the

implementation of Algorithm B on the applicable hardware

38

©Jesper Larsson TräffSS23

Computational/Architecture/Machine model (formally) describes

components of processor (ALU, memory, interconnect), and defines

how programs are executed and at what costs

Good model

• abstracts unnecessary detail,

• accounts for the essentials,

• leads to interesting results, algorithms and lower bounds,

• and “bridging” works

Sometimes “just” informal mental model (“intuition”) that guides

design choices (“this loop is better than that, because…”)

Tim Roughgarden (ed): Beyond worst-case analysis of

algorithms. Cambridge University Press, 2021.

39

©Jesper Larsson TräffSS23

Algorithm in model

Concrete program (C,

C++, Java, Haskell,

Fortran,…)

Sequential computing

Concrete architecture

Model gap:

Predicted

performance

corresponds (to

some degree) to

“real” performance

Implementation

Compilation

40

©Jesper Larsson TräffSS23

Algorithm in model

Concrete program (C,

C++, Java, Haskell,

Fortran,…)

Sequential computing

Concrete architecture

Implementation

Compilation

vs. Parallel computing

Algorithm

in model A

Concrete program: different

paradigms (MPI, OpenMP, Cilk,

OpenCL, MapReduce, Go, Java, …)

Conc. Arch. A Conc. Arch. Z

Algorithm

in model B

Algorithm

in model Z

41

©Jesper Larsson TräffSS23

Parallel computing challenges

Algorithm

in model A

Concrete program: different

paradigms (MPI, OpenMP, Cilk,

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm

in model B

Algorithm

in model Z

Model(s) gap:

• Many different

models, no single,

agreed upon model

• Many different

paradigms,

languages and

frameworks

• Many different

architectures, highly

diverse

• No good “bridging”

properties

Multi-core/many-core, shared-

memory, distributed memory, GPU, …

42

©Jesper Larsson TräffSS23

Parallel computing challenges

Algorithm

in model A

Concrete program: different

paradigms (MPI, OpenMP, Cilk,

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm

in model B

Algorithm

in model Z
Predicted parallel

performance often

does not correspond

to measured parallel

performance

Designing,

analyzing and

benchmarking

parallel algorithms is

a skill (“The Art

of…”) that requires

experience Multi-core/many-core, shared-

memory, distributed memory, …

43

©Jesper Larsson TräffSS23

Parallel computing challenges

Algorithm

in model A

Concrete program: different

paradigms (MPI, OpenMP, Cilk,

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm

in model B

Algorithm

in model Z

Portability problem:

Program written in

language A for

architecture A may not

work for architecture Z

Performance portability

problem:

Well performing

algorithm/program for

architecture A designed

in model A may not

perform well on

architecture Z
Multi-core/many-core, shared-

memory, distributed memory, …

45

©Jesper Larsson TräffSS23

Parallel computing: Definitions

Challenge a): Parallelizing single applications to exploit parallel

hardware (multiple cores)

“single applications”: Focus on computational problems

“exploit”: Solving faster/better (than previous best solution), utilizing

the parallel hardware well

“Parallel Computing” is

46

©Jesper Larsson TräffSS23

Parallel computing:

The discipline of efficiently utilizing dedicated parallel resources

(processors, memories, …) to solve individual, given computational

problems.

Specifically:

Parallel resources with significant inter-communication capabilities,

for problems with non-trivial communication and computational

demands

Typical keywords: Tightly coupled, dedicated parallel system; multi-core

processor, GPGPU, High-Performance Computing (HPC), …

Typical concerns:

Solving (difficult) problems faster!

47

©Jesper Larsson TräffSS23

Distributed computing:

The discipline of making independent, non-dedicated resources

available and cooperate toward solving specified problem

complexes.

Typical keywords/areas: Grid, cloud, internet, agents, autonomous

computing, mobile computing, IoT, …

Typical concerns:

Correctness, availability, progress, security, integrity, privacy,

robustness, fault tolerance, …

Specifically/typically:

No centralized control

48

©Jesper Larsson TräffSS23

Concurrent computing:

The discipline of managing and reasoning about interacting

processes that may (or may not) progress simultaneously

Typical keywords: Operating systems, synchronization, interprocess

communication, locks, semaphores, autonomous computing, process

calculi, CSP, CCS, pi-calculus, lock/wait-freeness, …

Typical concerns:

Correctness (often formal), e.g. deadlock-freedom, starvation-

freedom, mutual exclusion, fairness, …

49

©Jesper Larsson TräffSS23

The three disciplines Parallel computing, Distributed computing, and

Concurrent computing are intimately related:

• The same problem can often be viewed from all three

perspectives, a matter of degree and focus.

• Methods and solutions from one discipline very often relevant to

the others

Our focus: Problem and performance oriented parallel computing!

50

©Jesper Larsson TräffSS23

Parallel vs. Concurrent computing

Process

ResourceProc

Process ProcessProcess …

Concurrent computing: Focus on coordination of access to/usage of

shared resources (to solve given, computational problem)

Proc

Memory (locks, semaphores, data

structures), device, …

Given problem: Specification, algorithm, data

51

©Jesper Larsson TräffSS23

Subproblem

Proc

Subproblem SubproblemSubproblem

Problem
Specification,

algorithm, data

Parallel computing: Focus on dividing given problem (specification,

algorithm, data) into subproblems that can be solved by dedicated

processors (in coordination)

Proc Proc Proc

Coordination:

synchronization,

communication

52

©Jesper Larsson TräffSS23

The problem of parallelization

Subproblem Subproblem SubproblemSubproblem

Problem

How to divide given problem into subproblems that can be solved in

parallel?

• Specification

• Algorithm?

• Data?

• How is the computation divided? Coordination necessary? Does

the sequential algorithm help/suffice?

• Where are the data? Which communication is necessary?

53

©Jesper Larsson TräffSS23

The problem of parallelization

Subproblem Subproblem SubproblemSubproblem

Problem

How to divide given problem into subproblems that can be solved in

parallel?

• Specification

• Algorithm?

• Data?

Note:

This does not mean division once and for all time, subproblems are

typically dynamic and diverse

54

©Jesper Larsson TräffSS23

Aspects of parallelization

• Algorithmic: Dividing computation into independent parts that can

be executed in parallel. What kinds of shared resources are

necessary? Which kinds of coordination? How can overheads be

minimized (redundancy, coordination, synchronization)?

• Scheduling/Mapping: Assigning parts of computation to

processors in good order

• Load balancing: (Re)assigning independent parts of computation

to processors such that all resources are utilized to the same

extent (evenly and efficiently)

• Communication: When must processors communicate? How?

• Synchronization: When must processors agree/wait for each

other?

55

©Jesper Larsson TräffSS23

• Linguistic: How are the algorithmic aspects expressed? Concepts

(programming model) and concrete expression (programming

language, interface, library)

• Pragmatic/practical: How does the actual, parallel machine look?

What is a reasonable, abstract (“bridging”) model?

• Architectural: Which kinds of parallel machines can be realized?

How do they look?

56

©Jesper Larsson TräffSS23

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism

(ILP)

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism

57

©Jesper Larsson TräffSS23

Implicit (processor) parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism

(ILP)

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism

Hardware&Compiler, “Free lunch”

58

©Jesper Larsson TräffSS23

Implicit (processor) parallelism:

Large-scale (“coarse-grained”)

parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism

(ILP)

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism

“Trivial” parallelization, distributed computing, …

59

©Jesper Larsson TräffSS23

Implicit (processor) parallelism:

Explicit (“fine-grained”):

parallelism:

Large-scale (“coarse-grained”)

parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism

(ILP)

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism
Parallel computing “parallelism”

60

©Jesper Larsson TräffSS23

Compiler parallelization, automatic parallelization

Why must parallelism be explicit? Can’t we just leave it all to the

compiler?

Efficient code for multi-core processor(s)

• Successful only to a limited extent:

• Compilers cannot invent a different algorithm

• Hardware parallelism (ILP) not likely to go much further

Samuel P. Midkiff: Automatic Parallelization: An Overview of

Fundamental Compiler Techniques. Synthesis Lectures on Computer

Architecture, Morgan & Claypool Publishers 2012

• “High-level” problem specification

• Sequential algorithm/program

Compiler

61

©Jesper Larsson TräffSS23

Explicitly parallel programming (parallel computing today):

• Explicitly parallel code in some parallel language/interface

• Support from parallel libraries

• (Domain Specific Languages)

• Compiler does as much as compiler can do

Lot’s of interesting problems and tradeoffs, active area of research

• Algorithms

• Languages/interfaces

• Compilers

Need for strong

languages and

compilers

62

©Jesper Larsson TräffSS23

Some typical “given, individual problems” for this lecture

Problem 1:

Matrix-vector multiplication: Given (n x m) matrix A, m element

vector v, compute n element vector u = Av

x =
A[i,j] u[i] = ∑A[i,j]v[j]

Dimensions n,m

large: obviously

some parallelism

How to ∑ in parallel?

Access to matrix and vector?

…
…

63

©Jesper Larsson TräffSS23

Problem 1a:

Matrix-matrix multiplication: Given (n x l) matrix A, (l x m) matrix B,

compute (n x m) matrix product C = AB

x =

C[i,j] = ∑A[i,k]B[k,j]

64

©Jesper Larsson TräffSS23

Problem 1b:

Solving sets of linear equations. Given matrix A and vector b, find x

such that Ax = b

Preprocess A such that solution to Ax = b can easily be found for any

b (LU factorization, …)

65

©Jesper Larsson TräffSS23

Problem 1c:

Sparse matrix-matrix multiplication: Given nxk matrix A, kxm matrix

B, compute (n x m) matrix product C = AB

x =

C[i,j] = ∑A[i,k]B[k,j]

“sparse” means: lots of redundant information,

e.g., 0-elements, 1-elements, …

66

©Jesper Larsson TräffSS23

Problem 2:

Stencil computation, given nxm matrix A, update as follows, and

iterate until some convergence criteria is fulfilled

A[i,j]

iterate {

for all (i,j) {

A[i,j] <-

(A[i-1,j]+A[i+1,j]+A[i,j-1]+A[i,j+1])/4

}

} until (convergence)

with suitable handling of matrix border

Looks well-behaved, “embarrassingly parallel”? Data-matrix

distribution? Conflicts on updates?

Use: Discretization and solution of

certain parallel differential equations

(PDEs); image processing; …

5-point

stencil in

2d

67

©Jesper Larsson TräffSS23

Problem 3:

Merge two sorted arrays of size n and m into a sorted array of size

n+m

Easy to do sequentially, but sequential

algorithm looks… sequential

Problem 3a:

Sort by merging

68

©Jesper Larsson TräffSS23

Problem 4:

Computation of all prefix-sums: Given an array A of size n of

elements of some type S with an associative operations +, compute

for all indices 0≤i<n the prefix-sums in array B

B[i] = ∑0≤j<iA[j] Implies solution to problem of

computing just ∑. Parallel?

A: 1 2 3 4 5 6 7 …

B: x 1 3 6 10 15 21 28 …

All prefix-sums

Computing ∑ai for some associative operator

+ on some set of elements ai in some order is

called reduction

69

©Jesper Larsson TräffSS23

Problem 5:

Sorting a sequence of objects (“reals”, integers, objects with order

relation) stored in array

Hopefully parallel merge solution can be of

help. Other approaches? Quicksort? Integers

(counting, bucket, radix)?

70

©Jesper Larsson TräffSS23

Problem 6:

Graph search: Given G=(V,E), given start vertex s in V, compute a

BFS/DFS traversal of G from s

Graph analysis:

a) Given undirected G, find the connected components (CC)

b) Given directed G, find the strongly connected components

(SCC)
All easy (well, almost, SCC) problems for

sequential computing, with n=|V|, m=|E|

solvable in O(n+m) steps. In parallel?

Are the undirected (CC) and the directed

(SCC) problems any different?

0 GFLOPS, integer and bitwise

operations matter

71

©Jesper Larsson TräffSS23

Problem 6a:

Graph analytics:

Given G=(V,E), compute the between-ness centrality for all vertices

of G (or other graph property…)

72

©Jesper Larsson TräffSS23

Problem 6b:

Graph search: Given weighted G=(V,E), given start vertex s in V,

compute a shortest path tree rooted at s (SSSP).

Compute shortest paths between all pairs of nodes in G (APSP).

Are the good, known SP algorithms (Dijkstra, Bellman-Ford, …)

useful?

73

©Jesper Larsson TräffSS23

Models in/of parallel computation

Computational/Architecture/Machine model (formally) describes

components of processor (ALU, memory, interconnect), and defines

how programs are executed and at what costs

Parallel machine model:

• Processor (core) capabilities

• Memory organization

• Communication and synchronization

• Execution and cost (: time)

74

©Jesper Larsson TräffSS23

M

P

Standard sequential model: The RAM (Random-Access Machine)

Processor (ALU, PC, registers) capable of

executing instructions stored in memory on

data in memory

Unit cost RAM model

Execution cost model, first assumption: All

operations (ALU instructions, memory access)

take same (unit) time.

75

©Jesper Larsson TräffSS23

M

P

• Memory: load, store, move

• Arithmetic (integer, real/floating point

numbers)

• Logic: and, or, xor

• Bit/word: bitwise and, or, xor, shift

• Branch, compare, procedure call

Instructions

Realistic?

Useful?

Another useful model of computation: The Turing

machine

Standard sequential model: The RAM (Random-Access Machine)

Useful indeed, basis of much (all?) of

sequential algorithmics

76

©Jesper Larsson TräffSS23

M

P

Standard sequential model: The RAM (Random-Access Machine)

Unit cost RAM model

Not realistic: Memory access time is (much)

slower than instruction execution

Practical consequence: Application performance determined by

• Instruction time

• Memory access time, memory bandwidth

Execution cost model, first assumption: All

operations (ALU instructions, memory access)

take same (unit) time.

77

©Jesper Larsson TräffSS23

M

P

RAM aka “von Neumann architecture”, or stored program computer,

data and program in same memory

“von Neumann bottleneck”: Program and

data separate from CPU, performance

bounded by memory bandwidth.

Standard sequential model: The RAM (Random-Access Machine)

• John von Neumann (1903-57), Report on EDVAC, 1945; also

Eckert&Mauchly, ENIAC

• John W. Backus: Can Programming Be Liberated From the von

Neumann Style? A Functional Style and its Algebra of Programs.

Commun. ACM 21(8): 613-641 (1978)

78

©Jesper Larsson TräffSS23

M

P

Processor (ALU, PC, registers) capable of

executing instructions stored in memory on

data in memory

Cache

Standard sequential model: The RAM (Random-Access Machine)

Cache: Smaller memory with faster access

time for storing frequently used data;

managed by processor (“free lunch”)

Clever architectural idea for hiding von Neumann bottleneck:

Support unit cost RAM illusion by making data access look fast (unit

cost)
Works well for algorithms with high

temporal and spatial locality

79

©Jesper Larsson TräffSS23

M

P

Processor (ALU, PC, registers) capable of

executing instructions stored in memory on

data in memory

Complex, non-uniform memory cost, hierarchy

of different types of memory (caches)
More realistic?

Cache

Standard sequential model: The RAM (Random-Access Machine)

Cache: Smaller memory with faster access

time for storing frequently used data;

managed by processor (“free lunch”)

More difficult for algorithm designer: External memory algorithms,

cache-aware algorithms, cache-oblivious algorithms, …

80

©Jesper Larsson TräffSS23

M

P

(Parallel) RAM variations

M M M…

Overcoming the von Neumann bottleneck:

Increasing memory bandwidth by more complex, banked memory

(also: prefetching)

Processor, (parallel) instructions:

• Vector operations (arithmetic, logical) on multiple or larger words,

single instruction operates on multiple data (SIMD)

Banked, non-

monolithic

memory

81

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

Shared-memory model (bus based). Parallelism through many

processors, communication/coordination through shared memory

• How many processors?

Aggravated

“von Neumann

bottleneck”

82

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

Shared-memory model (multi-ported, memory network)

• What can the memory do?

• How are the processors synchronized?

• What are the costs?

Monolithic memory

83

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

All processors operate under control of the same clock:

Synchronous, shared-memory model

Parallel RAM (PRAM):

• Processors work in lock-step (all same program, or individual

programs), all perform an instruction in each step (clock tick)

• Unit-time instruction and memory access (uniform)

PRAM a unit cost model

Monolithic memory

84

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

PRAM conflict resolution: What happens if several processors in the

same time step access the same memory location?

• A memory location is either read or written in a time step

• EREW PRAM: Not allowed, neither read nor write

• CREW PRAM: Concurrent reads allowed, concurrent writes not

• CRCW PRAM: Both concurrent read and write

Monolithic memory

85

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

CRCW PRAM write conflict resolution:

• COMMON: Conflicting processors must write same value

• ARBITRARY: One write succeeds

• PRIORITY: A priority scheme determines which

Realistic?

Useful?

Monolithic memory

86

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

Realistic?

Useful?

Joseph JáJá: An Introduction to Parallel Algorithms. Addison-Wesley

1992, ISBN 0-201-54856-9

Not realistic! Unit-time, uniform memory access,

synchronous control, … all problematic assumptions

But extremely useful theoretical tool (late 70ties-mid

90ties): Fast algorithms, algorithmic techniques and

ideas, and lower bounds

Monolithic memory

87

©Jesper Larsson TräffSS23

P

Parallel RAM variations

M

PP P

PRAM algorithm design:

• Assume as many processors per step as convenient, dependent

or independent of input size n (dependent: p=f(n) processors)

• How fast can some given problem of size n be solved, how many

parallel steps are needed?

• What is the total number of operations carried out? What is the

(maximum) number of processors required (for a step)?

Monolithic memory

88

©Jesper Larsson TräffSS23

Examples, PRAM pseudo-code

Initializing an array a of n elements:

par (0<=i<n) a[i] = i*i;

“par” construct indicates that some operation is to be performed for

each i in the specified range. If a processor is available for each

such i, the operations can be done in O(1) parallel time steps. There

are O(n) operations to be done in all, n being the size of the range

for (k=1; k<n; k<<=1) {
par (0<=i<n) a[i] = i/k;

}

At most ceil(log2 n) parallel

steps, each in O(1), total

number of operations O(n

log n)

89

©Jesper Larsson TräffSS23

PRAM algorithm design:

• Assume as many processors per step as convenient, dependent

or independent of input size n (dependent: p=f(n) processors)

• Alternatively: Assume fixed number of processors p for input of

(variable size) n

• How fast can some given problem of size n be solved, how many

parallel steps are needed?

• What is the total number of operations carried out? What is the

(maximum) number of processors required (for a step)?

• Is the number of processors (resources) used realistic? How can

we judge this?

• Which PRAM variant is needed (EREW “weaker” than CRCW)

• Are there problems for which no reasonable PRAM algorithm

exist? Yes, probably. But not in this lecture

90

©Jesper Larsson TräffSS23

PRAM Example: Fast maximum finding

Problem: Given n numbers in shared memory array a, find the

maximum

Idea: Perform all n2 comparisons (a[i] vs. a[j]) in parallel, eliminate

those numbers that cannot be maximum. Use p=n2 processors

Input array a

Elimination array b:

b[i]==false means a[i]

is not maximum

…

…

91

©Jesper Larsson TräffSS23

par (0<=i<n) b[i] = true; // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

PRAM Example: Fast maximum finding

Problem: Given n numbers in shared memory array a, find the

maximum

Idea: Perform all n2 comparisons (a[i] vs. a[j]) in parallel, eliminate

those numbers that cannot be maximum. Use p=n2 processors

1.
2.

3.

The algorithm consist of three parallel steps, with different number of

processors in each step, par-construct allocates processors to array

indices

92

©Jesper Larsson TräffSS23

par (0<=i<n) b[i] = true; // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

1.
2.

3.

Three parallel steps, in each the allocated processors perform a

constant number of operations, O(1) time per step with n, n2 and n

PRAM processors, respectively.

CRCW capability needed in Steps 2 and 3

Theorem:

On a Common CRCW PRAM, the maximum of n numbers can be

found in O(1) time steps and O(n2) operations in total

Claim: b[i]==true iff a[i] is maximum among a[0], a[1], …,a[n-1]

93

©Jesper Larsson TräffSS23

Theorem:

On a Common CRCW PRAM, the maximum of n numbers can be

found in O(1) time steps and O(n2) operations in total

Observations:

• Constant time algorithm with polynomial resources (operations,

processors)

• Total number of operations (number of allocated processors over

all steps) is counted as the resource measure

Is this a good algorithm? Answer later

…but it is fast

94

©Jesper Larsson TräffSS23

On constants in PRAM algorithms

If we agree on the cost (number of steps) of individual instructions,

either at PRAM assembly level, or at the pseudo-code level, e.g.,

par (0<=i<n) b[i] = true;
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false;

par (0<=i<n) if (b[i]) x = a[i];

10+1

10+1+1

10+1+1 = 35 steps

Say cost 10, independent of n, for simple processor assignment

we can analyze many simple PRAM programs and give exact

running times (ignoring lower order terms, perhaps). We normally do

not do so. But constants matter!

95

©Jesper Larsson TräffSS23

Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])

96

©Jesper Larsson TräffSS23

Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])

97

©Jesper Larsson TräffSS23

Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])

98

©Jesper Larsson TräffSS23

Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

In each iteration of while loop, the number of elements that can be

maximum is halved. Thus, while loop performs ceil(log2n) iterations

One step with

ceil(nn/2)
processors

k

No Concurrent Read or Write

max(a[i],a[i+k])

CR

99

©Jesper Larsson TräffSS23

Theorem:

On a CREW PRAM, the maximum of n numbers can be found in

O(log n) time steps, and O(n) operations in total

Proof: The number of (sequential) operations in the while loop

outside the parallel part is constant, O(1). The number of processors

per iteration is k, over all iterations n/2+n/4+n/8+… ≤ n, plus at most

log2n where k is odd, thus the number of operations in total is O(n).

All processors read k and nn

In which respects is this a better algorithm

than the fast maximum algorithm?

Answer later
Theorem: Can also be done on an EREW PRAM

Proof: Exercise… (think about this)

100

©Jesper Larsson TräffSS23

Wasting processors: PRAM maximum again

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<n) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

One step with

n processors

Theorem (inferior):

On a CREW PRAM, the maximum of n numbers can be found in

O(log n) time steps, and O(n log n) operations in total using n

processors

101

©Jesper Larsson TräffSS23

Using given, fixed number of processors p: PRAM maximum again

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (i=0, (nn/p), 2*(nn/p), ..., <nn) {

for (j=i, j<i+(nn/p); j++) {
if (j+k<nn) a[i] = max(a[j],a[j+k]);

}
}
nn = k;

}

nn/p steps

with p
processors

Theorem:

On a CREW PRAM, the maximum of n numbers can be found in

O(n/p+log n) time steps, and O(n) operations in total using p

processors

102

©Jesper Larsson TräffSS23

Matrix-matrix multiplication on a PRAM, easy version

par (0<=i<n) {
par (0<=j<m) {

C[i,j] = 0;
for (k=0; k<l; k++) {

C[i,j] += A[i,k]*B[k,j];
}

}
}

Theorem:

On a CREW PRAM, matrix-matrix multiplication can be done in O(l)

steps, and O(nml) operations in total using (nm) processors

(assuming n,m,l known to all processors)

Possible to do better? In what respects?

Not parallel

Nested parallelism

103

©Jesper Larsson TräffSS23

Matrix-matrix multiplication on a PRAM, easy version without nesting

par (0<=i<n, 0<=j<m) {
C[i,j] = 0;
for (k=0; k<l; k++) {

C[i,j] += A[i,k]*B[k,j];
}

}

Theorem:

On a CREW PRAM, matrix-matrix multiplication can be done in O(l)

steps, and O(nml) operations in total using n*m processors

Pseudo-code used liberally and judiciously: It must be possible in

principle to execute the algorithm on the given PRAM

Theorem: Can also be done on an EREW PRAM (think about this…)

104

©Jesper Larsson TräffSS23

PRAM algorithms analyzed and judged on

• Number of parallel time steps needed (ultra-fast, fast, slow, …)

• Number of operations performed by the assigned processors over

the time steps (work)

• Number of processors

What are the criteria for judging whether an algorithm is good or

bad?

• Sequential base line, best-known algorithm (see later)

• Lower bounds

105

©Jesper Larsson TräffSS23

Leslie G. Valiant: A Bridging Model for Parallel Computation.

Commun. ACM 33(8): 103-111 (1990)

Algorithm in model

BSP library/Language

Valiant’s bridging model proposal: Bulk Synchronous Parallel

Conc. Arch. A Conc. Arch. Z

• Coarse-grained synchronous

execution (PRAM-like

thinking)

• Local computation in

supersteps

• Synchronization

• Automatic data exchange

between supersteps

Run-time support

106

©Jesper Larsson TräffSS23

P

M

PP P

M M M…

Shared-memory model, banked, memory-network, processors not

synchronized (asynchronous, not lock-step, no common clock)

Parallel RAM variations

• How to synchronize: Atomic operations, barriers

• Memory consistency: When can some processor “see” what

some other processor has written into memory?

Non-monolithic

memory

Complicated semantics

107

©Jesper Larsson TräffSS23

UMA (Uniform Memory Access):

Access time to memory location independent of location and

accessing processor, e.g., O(1), O(log M), …

NUMA (Non-Uniform Memory Access):

Access time depends on processor and location.

P

M

PP P

P

M

PP P

M M M…

Parallel memory access cost terminology

Examples: RAM is UMA,

PRAM is UMA (unit cost)

(Almost) All

“real”

processors

are NUMA

108

©Jesper Larsson TräffSS23

P

M

PP P

M M M…

Parallel RAM variations

Non-monolithic

memory

LM LM LM LM

Locality: Some memory locations are closer (faster access) to

processor than others; some memory may be entirely local, non-

shared, only accessible by the processor to which it belongs

Challenge: Programming with locality

Realistic?

Closer to how

actual parallel

processors

behave

109

©Jesper Larsson TräffSS23

P

LM

PP P

LM LM LM…

Parallel, distributed memory RAM

Interconnection Network

Memory is distributed over processors, memory is local to the

processors, each processor can directly access only its own, local

memory, communication through dedicated network

• Explicit communication needed

Realistic?

Closer to how

actual parallel

processors are

constructed

and behave

110

©Jesper Larsson TräffSS23

Parallel model summary

• Types/power of processors (instructions, functional units)

• Number of processors (fixed, bounded, unbounded, …)

• Memory organization (shared/distributed/both, cache-

hierarchical), wordsize (fixed, bounded, unbounded)

• Communication (shared memory, network), operations

• Synchronization operations

• Memory behavior, atomic operations

Level of detail and formality depends on purpose:

• Studying (limits to) parallelization, complexity theory

• Designing and analyzing algorithms

• Analyzing and predicting application performance

111

©Jesper Larsson TräffSS23

Execution cost model

• What is the cost (: time) of different types of operations (same unit

cost, or dependent on type of operation, int/float)?

• What is the cost of memory access (UMA, NUMA)?

• Communication and synchronization costs? (latency and

bandwidth)

112

©Jesper Larsson TräffSS23

Yet another parallel architecture model (totally non-RAM):

John on Neumann, Arthur W. Burks: Theory of self-reproducing automata,

1966

H. T. Kung: Why systolic architectures? IEEE Computer 15(1): 37-46, 1982

T. Toffoli, N. Margolus: Cellular Automata Machines: A new environment for

modeling. MIT, 1987

State of cell (i,j) in next step

determined by

• Own state

• State of neighbors in some

neighborhood, e.g., (i,j-1), (i+1,j),

(i,j+1), (i-1,j)

Cellular automaton, systolic array, … : Simple processors without

memory (finite state automata, FSA), operate in lock step on

(unbounded) grid, local communication only

113

©Jesper Larsson TräffSS23

Another architecture classification/taxonomy

• How many instructions can be carried out simultaneously?

• How much data (words) can be accessed simultaneously?

Flynn’s taxonomy:

Instruction stream(s) and data stream(s) in computing system

M. J. Flynn: Some computer organizations and their effectiveness.

IEEE Trans. Comp. C-21(9):948-960, 1972

114

©Jesper Larsson TräffSS23

SISD

Single Instruction Single Data

MISD

Multiple Instruction Single Data

SIMD

Single Instruction Multiple Data

MIMD

Multiple Instruction Multiple Data

M. J. Flynn: Some computer organizations and their effectiveness.

IEEE Trans. Comp. C-21(9):948-960, 1972

Instruction stream

D
a
ta

 s
tr

e
a
m

115

©Jesper Larsson TräffSS23

• SISD: Single processor, single stream of instructions, operates on

single stream of data. Example: Sequential architecture (e.g.

RAM)

• SIMD: Single processor, single stream of operations, operates on

multiple data per instruction. Example: traditional vector

processor, SIMD-extensions, GPU(?) (PRAM, some variants)

• MISD: Multiple instructions operate on single data stream.

Example: Pipelined architectures, streaming architectures(?),

systolic arrays (70ties architectural idea)

• MIMD: Multiple instruction streams, multiple data streams

(PRAM, distributed memory architecture)

Some say: Empty

Flynn computing system organizations

116

©Jesper Larsson TräffSS23

M

P

SISD

M

P

M MM

SIMD

Typical Flynn taxonomy systems

M

P P P P

M M M… M

P P P P

M M M

Communication network

MIMD

M P P P P

…

… MISD (?)

117

©Jesper Larsson TräffSS23

Example: PRAM (also: GPU)

par (0<=i<n) {
if (i+k<nn) {

a[i] = max(a[i],a[i+k]);
} else {

… // something totally different
}

}

Processors do something different depending on the condition:

MIMD, but under control of same program

SIMD restriction: Both branches are executed, for some processors

as noop, depending on condition. On GPU’s this is called

branch/thread divergence, and can cause severe performance loss

118

©Jesper Larsson TräffSS23

Example: Vector processor, the classical SIMD architecture

One instruction controls operation on a vector of data: Vector

addition, …

• “Traditional” vector processor: support for arbitrarily long vectors

• Vector extensions: SSE, AVX, AVX512, smaller vectors of 4-8

double words

a0

a1

…

an-1

b0

b1

…

bn-1

c0

c1

…

cn-1

+=

One vector-

add

instruction

119

©Jesper Larsson TräffSS23

Programming models

Algorithm

in model A

Concrete program: different

paradigms (MPI, OpenMP, Cilk,

OpenCL, MapReduce, …)

Conc. Arch. A

Parallel programming

model for parallel

language or framework:

Mental model for

programming and

implementation of

algorithms in given

language

120

©Jesper Larsson TräffSS23

Parallel programming model:

Abstraction (close to programming language) defining

• parallel resources

• management of parallel resources

• parallelization paradigms

• memory structure, memory model

• synchronization and communication features

and their semantics and execution cost

Parallel programming language, or library (interface) is the concrete

implementation of one (or more: multi-modal, hybrid) parallel

programming model(s)

121

©Jesper Larsson TräffSS23

Some sequential programming models

• Imperative (C, …)

• Object-oriented, higher-order functional (C++, …)

• Functional (LISP, Haskell, …)

• Logical (Prolog, …)

Algorithm in model

Concrete program (C,

C++, Java, Haskell,

Fortran,…)

Concrete architecture

Implementation

Compilation
Challenge: How to support

programming model efficiently on

RAM-like architecture?

Challenge: Programming model that

is useful, convenient, expressive, …,

and close enough to concrete

architecture to allow realistic

performance analysis (prediction)

122

©Jesper Larsson TräffSS23

• Parallel resources: Processes, threads, tasks, …

• Expression of parallelism: Explicit or implicit

• Level and granularity of parallelism

• Memory model: Shared, distributed, hybrid

• Memory semantics (“when operations take effect/become visible”)

• Data structures, data distributions

• Methods of synchronization (implicit/explicit)

• Methods and modes of communication

Parallel programming model defines

123

©Jesper Larsson TräffSS23

Examples:

1. Threads, shared memory, arrays, “parallel loops”, fork-join

parallelism (OpenMP)

2. Processes, distributed memory, explicit message passing,

collective communication, one-sided communication (MPI)

3. Tasks, spawn-join, dependencies, shared-memory (Cilk, OpenMP)

4. Shared arrays, implicit communication, “parallel-loops”, owner-

computes (UPC, PGAS languages*)

5. Data parallel SIMD (CUDA, OpenCL)

6. …

Not this lecture

This lecture:

• OpenMP

• MPI

• (Cilk)
*PGAS: Partitioned Global Address Space

124

©Jesper Larsson TräffSS23

Flynn’s taxonomy often used to characterize programming models

(MIMD, SIMD)

• MIMD: Different threads/processes may execute different

programs

• SIMD: One instruction flow operates on many data elements

Flynn’s taxonomy as programming model description

125

©Jesper Larsson TräffSS23

Programming model classification (SPMD subcase of MIMD)

F. Darema at al.: A single-program-multiple-data computational

model for EPEX/FORTRAN, 1988

Sometimes useful and convenient to assume (restrict) that all

processes execute the Same Program:

• Same objects (variables, procedures) exist for all processes,

concepts like “remote procedure call”, “active messages”,

“remote-memory access” make sense

• Processes may be executing different parts of the program at the

same time

Programming model that makes this requirement is termed SPMD

(Same Program Multiple Data)

All code in this lecture will be SPMD

126

©Jesper Larsson TräffSS23

Programming language/library/interface/framework

Programming model

Architecture model

Real Hardware

Different architectures can realize (almost)

any given programming model

Closer fit: More efficient use of architecture

Run-time support for programming model

often needed (creating processes, assigning

tasks, complex communication operations,

…)

OpenMP MPI Cilk

Run-time

support

127

©Jesper Larsson TräffSS23

Examples:

• OpenMP programming interface/language for shared-memory

model, intended for shared memory architectures. Can be

implemented with DSM (Distributed Shared Memory) on

distributed memory architectures; but performance usually not

good

• MPI interface/library for distributed memory model, can be used

on shared-memory architectures, too. Needs algorithmic support

(e.g., “collective operations”)

• Cilk language (extended C) for shared-memory model, for

shared-memory architectures; “task parallel”, needs run-time

support (scheduling by “work-stealing”)

128

©Jesper Larsson TräffSS23

More examples of programming models and interfaces :

No attempt at defining what a

programming model is, but an overview of

current parallel/HPC interfaces and

language extensions:

MPI, OpenMP, Cilk, OpenSHMEM, UPC,

Chapel, Charm++, TBB, CUDA, and

OpenCL

www.wikipedia.org is also not strong on definitions (in this area)

http://www.wikipedia.org/

129

©Jesper Larsson TräffSS23

Lecture summary, checklist

• Parallel computing is everywhere.

• Moore’s “law”, “free lunch”

• Flynn’s taxonomy: MIMD, SIMD, SISD. SPMD restriction

• Models for parallel computation: Architecture, programming

• RAM, PRAM (EREW, CREW, CRCW), shared-memory,

distributed memory, UMA, NUMA

