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Parallel Computing

Premise: 

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them 

efficiently?

Octa-core mobile 

(2016, Samsung 

Galaxy 7)

GPU 

appliances

Octa-core laptop, Intel Xeon 

Processor E5-2690, 2012
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Parallel Computing

Premise: 

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them 

efficiently?

Intel “Skylake”: 4-28 cores

AMD “Naples”: 8-32 cores

The processors 

in our new 

cluster/server to 

be used in this 

lecture

Another server, 

perhaps in later 

courses
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Parallel Computing

Premise: 

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them 

efficiently?

June 2012: IBM 

BlueGene/Q, 

1,572,864 cores, 

16 PFLOPS

June 2016: 

Sunway

TiahuLight, 

10,649,600 cores, 

93 PFLOPS

June 2011: Fujitsu K, 705,024 cores, 

11 PFLOPS

November 2018: 

IBM/Nvidia, 

2,397,824 cores, 

143.5 PFLOPS

November 2012: Cray Titan, 560,640 

cores, 17.5 PFLOPS

June 2020: Fujitsu 

Fugaku, 7,630,848 

cores,  442,010 

TFLOPS
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Parallel Computing

Premise: 

Parallelism (as in parallel computers) is everywhere!

What to do with all these resources? How can we make use of them 

efficiently?

Fact: Since ca. 2010, there are (next to) no sequential computer 

systems anymore (multi-core, GPU accelerated, …)

How to use these parallel computers?

a) Parallelize the applications (efficiently)

b) Have enough independent applications that can run at the same 

time (concurrently) to keep system busy

Wide range: From a few to >1,000,000 processors
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Fact: Since ca. 2010, there are (next to) no sequential computer 

systems anymore (multi-core, GPU accelerated, …)

Premise:

“We” want to solve larger, more complex problems faster (better, 

cheaper, …)

Challenge a): Parallelizing individual applications to exploit parallel 

hardware (multiple cores)

Why?
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The Free Lunch Is Over 

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter

The biggest sea change in software development since the OO revolution is 

knocking at the door, and its name is Concurrency.

This article appeared in Dr. Dobb's Journal,30(3), March 2005

Exponential increase in single-core performance: No software 

changes needed to exploit the faster processors, no reason to 

bother with exploiting parallelism

Lot’s of similar hype/panic 

around 2005-2010 and still

“Free lunch” (as in “There is no such thing as a free lunch”)

…and no reason to produce 

good, efficient code

Parallel Computing challenge
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Concurrent programming, the expression of a program as a 

composition of several autonomous activities, has never been more 

important than it is today. … use concurrency … to exploit a 

modern computer’s many processors, which every year grow in 

number but not in speed.

… reasoning about concurrent programs is inherently harder 

than about sequential ones, and intuitions acquired from 

sequential programming may at times lead us astray.

10 years later (Donovan, Kernighan: The GO 

Programming language, Addison-Wesley, 2016):
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Concurrent Parallel programming, the expression of a program as 

a composition of several autonomous parallel activities, has never 

been more important than it is today. … use concurrency

parallelism … to exploit a modern computer’s many processors 

efficiently, which every year grow in number but not in speed.

… reasoning about concurrent the performance of parallel 

programs is inherently harder than about sequential ones, and 

intuitions acquired from sequential programming may at times lead 

us astray.

But parallel computing is concerned with efficiency and performance:
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Processor performance:

Number of (some kind of) instructions that can be carried out per unit 

of time

Examples:

• FLOPS: FLoating-Point OPerations per Second (IEEE 64-bit)

• IPS: Instructions per Second

Measuring/accounting for performance:

• Which kinds of operations matter most in 

application? Which correspond best to, e.g., 

running time 

• Which kind of operations are most expensive?

• Count number of these per time unit (seconds)

Why FLOPS? Historically, floating-point operations 

were expensive. And accountedS for most of the 

work in numerical applications.

Floating-point? 

Integer? Branches? 

Memory accesses? 

Cache misses?

Comparisons?

• Measure 

(empirical)?

• Specification?
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prefix factor

Mega 106 (Million)

Giga 109 (Billion)

Tera 1012 (Trillion)

Peta 1015

Exa 1018

Zetta 1021

Yotta 1024

Metric prefixes (SI)

MegaFLOPS, MIPS

ExaFLOPS

GigaFLOPS Parallel and 

High-

Performance 

Computing

Gr.

Ital.

Lat.

Gr.
Current HPC systems: 10-100 

PetaFLOPS, see 

www.top500.org

http://www.top500.org/
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Moore‘s “law” (popular version):

Sequential processor performance doubles every 18 months

Gordon Moore: Cramming more components onto integrated circuits. 

Electronics, 38(8), 114-117, 1965

Exponential growth in processor performance often referred to as

Moore’s “Law” is (only) an empirical observation/extrapolation.

“Free Lunch” aka Moore’s “law”

Source: Wikipedia.org, co-founder of Intel

Not to be confused with physical “law of nature” or “mathematical 

law” (e.g., Amdahl’s Law, see later)
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2006:

Factor 103-104

increase in 

integer 

performance 

(SPECint) over 

1978 high-

performance 

processor

From: Hennessy/Patterson, Computer Architecture, A Quantitative Approach  

Measured: SPEC

log-scale
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Some reasons for Moore’s “law” phenomenon

1. Increased clock frequency (4MHz ca. 1975 to 4GHz ca. 2005; 

factor 1000, 3 orders of magnitude)

2. Miniaturization, smaller features sizes, more transistors 

(“technology”)

3. Inventions in computer architecture, increased processor 

complexity: Deep pipelining requiring branch prediction and 

speculative execution; processor ILP extraction (need 

transistors)

4. Multi-level caches (need transistors)
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• Deep pipelining

• Branch prediction

• Caches

• Superscalar execution (>1 instruction/clock) through multiple-

functional units, ILP (Instruction Level Parallelism), …

• Out-of-order execution, speculative execution

• Simplified/better instruction sets (for compiler)

• Data parallelism through SIMD units (same instruction on multiple 

data/clock)

• SMT/Hyperthreading

Increase in clock-frequency alone (factor 100-1000?) alone does not 

explain performance increase:

Mostly fully transparent, at most compiler needs to care: “free lunch” 

Programmer and compiler have to care

But you can write much more 

efficient/better programs if you understand 

these things
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Processor performance:

Number of (some kind of) instructions that can be carried out per unit 

of time

(Number of Instructions per Clock) x (Clock Frequency)

Superscalar processor: ≥ 1

SIMD/vector processor: ≥ 1 (e.g., 512-bit SIMD = 8 64-bit 

operations/clock)

Caveat:

Processor’s point of view. Memory system must be able to deliver 

data fast enough to keep processor busy
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Memory system performance:

Latency: Number of clock cycles to deliver one unit of data (Byte, 

Word, …)

Bandwidth: Number of units that can be delivered per unit of time 

(second, clock cycle)

Latency and bandwidth determined by the structure of the memory 

system (caches, banks, ports, controllers, …), and where the data 

are in memory
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Moore‘s “law” (“Free lunch”) effectively killed parallel computing in 

the 90ties: To increase performance by an order of magnitude (factor 

10 or so), just wait 3 processor generations, that is 4.5 to 6 years

Parallel computers, typically relying on processor technologies a few 

generations old, and taking years to develop and market, could not 

keep up

Also: Steep increase in performance/€ 

Performance/€  ??

Parallel computers were not commercially viable in the 90ties

…and not only commercially
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Intel iPSC

IBM SP

INMOS 

Transputer

MasPar

Thinking 

Machines CM2

Thinking 

Machines CM-5

SB-PRAM

90ties: Companies went out of 

business, systems disappeared

C
o
m

m
e
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l 
a
c
ti
v
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y

1985 1992 20061979

Still commercially tough
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Intel iPSC

IBM SP

INMOS 

Transputer

MasPar

Thinking 

Machines CM2

Thinking 

Machines CM-5

PRAM: Parallel RAM

SB-PRAM

Parallel computing 

disappeared from 

mainstream CS

90ties: Companies went out of 

business, systems disappeared

The lost decade: A 

lost generation

R
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1985 1992 20061979

TU Wien 2011
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“Rather than becoming something that chronicled the progress of the 

industry, Moore's Law became something that drove it.”

Gordon Moore, according to wikipedia.org

Peter Hofstee, IBM Cell co-designer

„…a self-fulfilling prophecy…  nobody can afford to put a 

processor or machine on the market that does not follow it“, 

HPPC 2009

What is an empirical “law”?

• Observation

• Extrapolation

• Forecast

• Prediction

• Self-fulfilling prophecy

• (Political) dictate

but can become a real Law when reasons 

behind are understood (mechanism)

Observed correlations are not Laws
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What is an empirical “law”?

• Observation

• Extrapolation

• Forecast

• Prediction

• Self-fulfilling prophecy

• (Political) dictate

Two types of Laws:

• Mathematical Law (aka Theorem, Proposition, …): Necessary 

relationship that can be derived analytically from premises/axioms 

(e.g.: Amdahl’s Law, see later)

• Non-analytic, empirical law: Explained, necessary relationship 

with predictive power, with supporting, explanatory theory, 

empirically falsifiable (but not falsified) and supportable
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Moore’s “law” in the “Free lunch” version ended ca. 2005:

• Clock speed reached limit around 2003 (no 4GHz processors)

• Power consumption limit from 2000

• Instructions/clock limit late 90ties

Single-core performance has not increased (and will most likely not 

increase) significantly (= exponentially) since ca. 2005

Moore’s “law” (popular version) was no Law

“Free lunch” over: End of a certain business model               Panic



24

©Jesper Larsson TräffSS23

“Free lunch” was over… 

ca.  2005

• Clock speed limit 

around 2003

• Power consumption 

limit from 2000

• Instructions/clock limit 

late 90ties

But:

Numbers of 

transistors/chip can 

continue to increase 

(>1Billion)

Hz

ILP

W

Kunle Olukotun (Stanford), ca. 2010
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Moore‘s “law” (what Moore originally observed):

Transistor counts double roughly every 12 months (1965 version); 

every 24 months (1974 version)

What are all these 

transistors used for?

Gordon Moore: Cramming more components onto integrated circuits. 

Electronics, 38(8), 114-117, 1965

So few transistors (in 

the thousands) needed 

for full microprocessor

Computer Architecture challenge: 

What is the best way to use 

transistors? The art of tradeoffs(!)
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Kunle Olukotun, 2010, Karl Rupp (TU Wien), 2015
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Intel i7

Since early 2000’s: Transistors used for

• More cache

• More cores

• More threads (hyperthreading, SIMD)

Computer architecture challenge

Moore’s “law” (exponential growth in number of transistors version) 

can continue for some time

How to use all these transistors efficiently?

Performance increase must come through parallelism
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How to use all these transistors efficiently?

A different tradeoff/answer: GPU architecture (here: nvidia Turing)

From www.tomshardware.com

Design decisions:

• Many (many) 

simple cores

• Hardware support 

for extremely large 

number of threads

• Lower clock 

frequency 

(~1.5GHz)

• Complex, 

hierarchical 

memory system

http://www.tomshardware.com/
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NEC SX-Aurora (ca. 2019) traditional 

vector processor:

• Powerful SIMD vector processors, 

many, parallel pipelines

• Banked, on-chip memory system

• Lower clock frequency (1.6GHz)

How to use all these transistors efficiently?

A different tradeoff/answer: vector co-processor

Will this take off?

Hot Chips 2018, www.hotchips.org

Computer architecture 

is an open area of 

research (should be)

But (commercially) 

tough!!

Much is possible 

with FPGA, ASIC

http://www.hotchips.org/
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Single-core performance does still increase, somewhat, but much 

slower…                                 Henk Poley, 2014, www.preshing.com

Average, normalized, SPEC benchmark numbers, www.spec.org

http://www.preshing.com/
http://www.spec.org/
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Moore’s law (exponential growth in number of transistors version) 

can continue for some time (but exponential growth cannot continue 

forever!?)

Computer Architecture challenge: How to use these transistors 

efficiently?

Tradeoff:

Simpler (less complexity, fewer transistors, less power) and  slower 

(less power) cores in order to get more cores on chip

Even better parallel computing solutions required
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Terminology…

Core: The smallest unit capable of executing instructions according 

to a program (used to be called “processor”, “processing unit”)

Processor: Collection of one or more cores on a single chip (as in 

“multi-core processor”) 

Sometimes used:

Multi-core: handful of (standard CPU) cores (2-32)

Many-core: a lot of cores, often in special-purpose processors (GPU)
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Parallel (multi-core) processor performance:

Number of (some kind of) instructions that can be carried out per unit 

of time

(Number of cores) x (Number of Instructions per Clock) x (Clock 

Frequency)

Superscalar processor: ≥ 1

SIMD/Vector processor: ≥ 1 (e.g., 512-bit SIMD = 8 64-bit 

operations/clock

Multi-core: > 1 core/processor, possibly many processors

Caveat:

Processor’s point of view. Memory and communication system must 

be able to deliver data fast enough to keep processor busy
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Parallel Computing challenge, concrete, practical

Solve some problems faster on p cores than on just one…

Issues:

• Parallel computers are diverse, very 

different architectures

• No commonly agreed upon 

“bridging” model for designing, 

analyzing and implementing 

algorithms

Many different paradigms (models), 

many different programming languages 

& interfaces



35

©Jesper Larsson TräffSS23

Problem P on input I:

• How much faster can P(I) be solved with p processor-cores 

instead of 1 processor-core? Can P(I) be solved better with p 

processor-cores?

• How? New algorithms? New techniques?

• Can all problems be solved faster? How much faster?

• Are there problems that cannot be solved faster with more 

processors?

• Which assumptions are reasonable?

• Does parallelism give new insights into nature of computation?

Parallel Computing challenge, theoretical, model-driven

Informal model: p processor-cores, some means for exchanging 

information (memory, communication network, …) and coordination
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“Bridging models”, from theory to practice

Leslie G. Valiant: A Bridging Model for Parallel Computation. 

Commun. ACM 33(8): 103-111 (1990)

Computational/Architecture/Machine model (formally) describes 

components of processor (ALU, memory, interconnect), and defines 

how programs are executed and at what costs

• Design and analysis algorithms, account for costs (Example: 

Worst-case asymptotic complexity)

• Objectifies costs (good algorithm has low model costs, best 

algorithm has lowest possible model costs)

bridge

Model costs translate reasonably into/predicts performance on wide 

range of actual hardware
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Model costs translate reasonably into/predicts performance on wide 

range of actual hardware

Minimum requirement for a good bridging model:

If Algorithm A performs better than Algorithm B in model, then the 

implementation of Algorithm A performs better than the 

implementation of Algorithm B on the applicable hardware 
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Computational/Architecture/Machine model (formally) describes 

components of processor (ALU, memory, interconnect), and defines 

how programs are executed and at what costs

Good model

• abstracts unnecessary detail,

• accounts for the essentials,

• leads to interesting results, algorithms and lower bounds,

• and “bridging” works

Sometimes “just” informal mental model (“intuition”) that guides 

design choices (“this loop is better than that, because…”)

Tim Roughgarden (ed): Beyond worst-case analysis of 

algorithms. Cambridge University Press, 2021.
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Algorithm in model

Concrete program (C, 

C++, Java, Haskell, 

Fortran,…)

Sequential computing

Concrete architecture

Model gap: 

Predicted 

performance 

corresponds (to 

some degree) to 

“real” performance

Implementation

Compilation
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Algorithm in model

Concrete program (C, 

C++, Java, Haskell, 

Fortran,…)

Sequential computing

Concrete architecture

Implementation

Compilation

vs. Parallel computing

Algorithm 

in model A

Concrete program: different 

paradigms (MPI, OpenMP, Cilk, 

OpenCL, MapReduce, Go, Java, …)

Conc. Arch. A Conc. Arch. Z

Algorithm 

in model B

Algorithm 

in model Z
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Parallel computing challenges

Algorithm 

in model A

Concrete program: different 

paradigms (MPI, OpenMP, Cilk, 

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm 

in model B

Algorithm 

in model Z

Model(s) gap:

• Many different 

models, no single, 

agreed upon model

• Many different 

paradigms, 

languages and 

frameworks

• Many different 

architectures, highly 

diverse

• No good “bridging” 

properties

Multi-core/many-core, shared-

memory, distributed memory, GPU, …
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Parallel computing challenges

Algorithm 

in model A

Concrete program: different 

paradigms (MPI, OpenMP, Cilk, 

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm 

in model B

Algorithm 

in model Z
Predicted parallel 

performance often 

does not correspond 

to measured parallel 

performance

Designing, 

analyzing and 

benchmarking 

parallel algorithms is 

a skill (“The Art 

of…”) that requires 

experience Multi-core/many-core, shared-

memory, distributed memory, …
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Parallel computing challenges

Algorithm 

in model A

Concrete program: different 

paradigms (MPI, OpenMP, Cilk, 

OpenCL, MapReduce, Go, …)

Conc. Arch. A Conc. Arch. Z

Algorithm 

in model B

Algorithm 

in model Z

Portability problem:

Program written in 

language A for 

architecture A may not 

work for architecture Z

Performance portability 

problem:

Well performing 

algorithm/program for 

architecture A designed 

in model A may not 

perform well on 

architecture Z
Multi-core/many-core, shared-

memory, distributed memory, …
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Parallel computing: Definitions

Challenge a): Parallelizing single applications to exploit parallel 

hardware (multiple cores)

“single applications”: Focus on computational problems

“exploit”: Solving faster/better (than previous best solution), utilizing 

the parallel hardware well

“Parallel Computing” is
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Parallel computing:

The discipline of efficiently utilizing dedicated parallel resources

(processors, memories, …) to solve individual, given computational 

problems.

Specifically:

Parallel resources with significant inter-communication capabilities, 

for problems with non-trivial communication and computational 

demands

Typical keywords: Tightly coupled, dedicated parallel system; multi-core 

processor, GPGPU, High-Performance Computing (HPC), …

Typical concerns:

Solving (difficult) problems faster!
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Distributed computing:

The discipline of making independent, non-dedicated resources 

available and cooperate toward solving specified problem 

complexes.

Typical keywords/areas: Grid, cloud, internet, agents, autonomous 

computing, mobile computing, IoT, …

Typical concerns:

Correctness, availability, progress, security, integrity, privacy, 

robustness, fault tolerance, …

Specifically/typically:

No centralized control
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Concurrent computing:

The discipline of managing and reasoning about interacting 

processes that may (or may not) progress simultaneously

Typical keywords: Operating systems, synchronization, interprocess

communication, locks, semaphores, autonomous computing, process 

calculi, CSP, CCS, pi-calculus, lock/wait-freeness, …

Typical concerns:

Correctness (often formal), e.g. deadlock-freedom, starvation-

freedom, mutual exclusion, fairness, …



49

©Jesper Larsson TräffSS23

The three disciplines Parallel computing, Distributed computing, and 

Concurrent computing are intimately related:

• The same problem can often be viewed from all three 

perspectives, a matter of degree and focus.

• Methods and solutions from one discipline very often relevant to 

the others

Our focus: Problem and performance oriented parallel computing!



50

©Jesper Larsson TräffSS23

Parallel vs. Concurrent computing

Process

ResourceProc

Process ProcessProcess …

Concurrent computing: Focus on coordination of access to/usage of 

shared resources (to solve given, computational problem)

Proc

Memory (locks, semaphores, data 

structures), device, …

Given problem: Specification, algorithm, data
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Subproblem

Proc

Subproblem SubproblemSubproblem

Problem
Specification, 

algorithm, data

Parallel computing: Focus on dividing given problem (specification, 

algorithm, data) into subproblems that can be solved by dedicated 

processors (in coordination)

Proc Proc Proc

Coordination:

synchronization, 

communication
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The problem of parallelization

Subproblem Subproblem SubproblemSubproblem

Problem

How to divide given problem into subproblems that can be solved in 

parallel?

• Specification

• Algorithm?

• Data?

• How is the computation divided? Coordination necessary? Does 

the sequential algorithm help/suffice?

• Where are the data? Which communication is necessary?
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The problem of parallelization

Subproblem Subproblem SubproblemSubproblem

Problem

How to divide given problem into subproblems that can be solved in 

parallel?

• Specification

• Algorithm?

• Data?

Note:

This does not mean division once and for all time, subproblems are 

typically dynamic and diverse
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Aspects of parallelization

• Algorithmic: Dividing computation into independent parts that can 

be executed in parallel. What kinds of shared resources are 

necessary? Which kinds of coordination? How can overheads be 

minimized (redundancy, coordination, synchronization)?

• Scheduling/Mapping: Assigning parts of computation to 

processors in good order

• Load balancing: (Re)assigning independent parts of computation 

to processors such that all resources are utilized to the same 

extent (evenly and efficiently)

• Communication: When must processors communicate? How?

• Synchronization: When must processors agree/wait for each 

other?
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• Linguistic: How are the algorithmic aspects expressed? Concepts 

(programming model) and concrete expression (programming 

language, interface, library)

• Pragmatic/practical: How does the actual, parallel machine look? 

What is a reasonable, abstract (“bridging”) model?

• Architectural: Which kinds of parallel machines can be realized? 

How do they look?
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Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism 

(ILP) 

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism
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Implicit (processor) parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism 

(ILP) 

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism

Hardware&Compiler, “Free lunch”
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Implicit (processor) parallelism:

Large-scale (“coarse-grained”) 

parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism 

(ILP) 

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism

“Trivial” parallelization, distributed computing, …
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Implicit (processor) parallelism:

Explicit (“fine-grained”): 

parallelism:

Large-scale (“coarse-grained”) 

parallelism:

Levels of parallelism/which parallelism?

• Gates and functional units

• Instruction Level Parallelism 

(ILP) 

• Cores/threads/processes

• Communication

• Synchronization

• Multiple applications

• Coupled applications

• SIMD/Vector parallelism
Parallel computing “parallelism”
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Compiler parallelization, automatic parallelization

Why must parallelism be explicit? Can’t we just leave it all to the 

compiler?

Efficient code for multi-core processor(s)

• Successful only to a limited extent:

• Compilers cannot invent a different algorithm

• Hardware parallelism (ILP) not likely to go much further

Samuel P. Midkiff: Automatic Parallelization: An Overview of 

Fundamental Compiler Techniques. Synthesis Lectures on Computer 

Architecture, Morgan & Claypool Publishers 2012

• “High-level” problem specification

• Sequential algorithm/program

Compiler
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Explicitly parallel programming (parallel computing today):

• Explicitly parallel code in some parallel language/interface

• Support from parallel libraries

• (Domain Specific Languages)

• Compiler does as much as compiler can do

Lot’s of interesting problems and tradeoffs, active area of research

• Algorithms

• Languages/interfaces

• Compilers

Need for strong 

languages and 

compilers
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Some typical “given, individual problems” for this lecture

Problem 1:

Matrix-vector multiplication: Given (n x m) matrix A, m element 

vector v, compute n element vector u = Av

x =
A[i,j] u[i] = ∑A[i,j]v[j]

Dimensions n,m

large: obviously 

some parallelism

How to ∑ in parallel?

Access to matrix and vector?

…
…
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Problem 1a:

Matrix-matrix multiplication: Given (n x l) matrix A, (l x m) matrix B, 

compute (n x m) matrix product C = AB 

x =

C[i,j] = ∑A[i,k]B[k,j]
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Problem 1b:

Solving sets of linear equations. Given matrix A and vector b, find x 

such that Ax = b

Preprocess A such that solution to Ax = b can easily be found for any 

b (LU factorization, …)
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Problem 1c:

Sparse matrix-matrix multiplication: Given nxk matrix A, kxm matrix 

B, compute (n x m) matrix product C = AB 

x =

C[i,j] = ∑A[i,k]B[k,j]

“sparse” means: lots of redundant information, 

e.g., 0-elements, 1-elements, …
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Problem 2:

Stencil computation, given nxm matrix A, update as follows, and 

iterate until some convergence criteria is fulfilled

A[i,j]

iterate {

for all (i,j) {

A[i,j] <-

(A[i-1,j]+A[i+1,j]+A[i,j-1]+A[i,j+1])/4

}

} until (convergence)

with suitable handling of matrix border

Looks well-behaved, “embarrassingly parallel”? Data-matrix 

distribution? Conflicts on updates?

Use: Discretization and solution of 

certain parallel differential equations 

(PDEs); image processing; …

5-point 

stencil in 

2d
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Problem 3:

Merge two sorted arrays of size n and m into a sorted array of size 

n+m

Easy to do sequentially, but sequential 

algorithm looks… sequential

Problem 3a:

Sort by merging
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Problem 4:

Computation of all prefix-sums: Given an array A of size n of 

elements of some type S with an associative operations +, compute 

for all indices 0≤i<n the prefix-sums in array B

B[i] = ∑0≤j<iA[j] Implies solution to problem of 

computing just ∑. Parallel?

A: 1 2 3 4 5 6 7 …

B: x 1 3 6 10 15 21 28 …

All prefix-sums

Computing ∑ai for some associative operator 

+ on some set of elements ai in some order is 

called reduction
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Problem 5:

Sorting a sequence of objects (“reals”, integers, objects with order 

relation) stored in array

Hopefully parallel merge solution can be of 

help. Other approaches? Quicksort? Integers 

(counting, bucket, radix)? 
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Problem 6:

Graph search: Given G=(V,E), given start vertex s in V, compute a 

BFS/DFS traversal of G from s

Graph analysis: 

a) Given undirected G, find the connected components (CC)

b) Given directed G, find the strongly connected components 

(SCC)
All easy (well, almost, SCC) problems for 

sequential computing, with n=|V|, m=|E| 

solvable in O(n+m) steps. In parallel?

Are the undirected (CC) and the directed 

(SCC) problems any different?

0 GFLOPS, integer and bitwise 

operations matter
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Problem 6a:

Graph analytics: 

Given G=(V,E), compute the between-ness centrality for all vertices 

of G (or other graph property…)
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Problem 6b:

Graph search: Given weighted G=(V,E), given start vertex s in V, 

compute a shortest path tree rooted at s (SSSP).

Compute shortest paths between all pairs of nodes in G (APSP).

Are the good, known SP algorithms (Dijkstra, Bellman-Ford, …) 

useful?
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Models in/of parallel computation

Computational/Architecture/Machine model (formally) describes 

components of processor (ALU, memory, interconnect), and defines 

how programs are executed and at what costs

Parallel machine model:

• Processor (core) capabilities

• Memory organization

• Communication and synchronization

• Execution and cost (: time)
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M

P

Standard sequential model: The RAM (Random-Access Machine)

Processor (ALU,  PC, registers) capable of 

executing instructions stored in memory on  

data in memory

Unit cost RAM model

Execution cost model, first assumption: All 

operations (ALU instructions, memory access) 

take same (unit) time.
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M

P

• Memory: load, store, move

• Arithmetic (integer, real/floating point 

numbers)

• Logic: and, or, xor

• Bit/word: bitwise and, or, xor, shift

• Branch, compare, procedure call

Instructions

Realistic?

Useful?

Another useful model of computation: The Turing 

machine

Standard sequential model: The RAM (Random-Access Machine)

Useful indeed, basis of much (all?) of 

sequential algorithmics
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M

P

Standard sequential model: The RAM (Random-Access Machine)

Unit cost RAM model

Not realistic: Memory access time is (much) 

slower than instruction execution

Practical consequence: Application performance determined by

• Instruction time

• Memory access time, memory bandwidth

Execution cost model, first assumption: All 

operations (ALU instructions, memory access) 

take same (unit) time.
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M

P

RAM aka “von Neumann architecture”, or stored program computer, 

data and program in same memory

“von Neumann bottleneck”: Program and 

data separate from CPU, performance 

bounded by memory bandwidth.

Standard sequential model: The RAM (Random-Access Machine)

• John von Neumann (1903-57), Report on EDVAC, 1945; also 

Eckert&Mauchly, ENIAC

• John W. Backus: Can Programming Be Liberated From the von 

Neumann Style? A Functional Style and its Algebra of Programs. 

Commun. ACM 21(8): 613-641 (1978)
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M

P

Processor (ALU,  PC, registers) capable of 

executing instructions stored in memory on  

data in memory

Cache

Standard sequential model: The RAM (Random-Access Machine)

Cache: Smaller memory with faster access 

time for storing frequently used data; 

managed by processor (“free lunch”)

Clever architectural idea for hiding von Neumann bottleneck:

Support unit cost RAM illusion by making data access look fast (unit 

cost)
Works well for algorithms with high 

temporal and spatial locality
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M

P

Processor (ALU,  PC, registers) capable of 

executing instructions stored in memory on  

data in memory

Complex, non-uniform memory cost, hierarchy 

of different types of memory (caches)
More realistic?

Cache

Standard sequential model: The RAM (Random-Access Machine)

Cache: Smaller memory with faster access 

time for storing frequently used data; 

managed by processor (“free lunch”)

More difficult for algorithm designer: External memory algorithms, 

cache-aware algorithms, cache-oblivious algorithms, …
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M

P

(Parallel) RAM variations

M M M…

Overcoming the von Neumann bottleneck:

Increasing memory bandwidth by more complex, banked memory 

(also: prefetching)

Processor, (parallel) instructions:

• Vector operations (arithmetic, logical) on multiple or larger words, 

single instruction operates on multiple data (SIMD)

Banked, non-

monolithic 

memory
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P

Parallel RAM variations

M

PP P

Shared-memory model (bus based). Parallelism through many 

processors, communication/coordination through shared memory

• How many processors?

Aggravated 

“von Neumann 

bottleneck”
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P

Parallel RAM variations

M

PP P

Shared-memory model (multi-ported, memory network)

• What can the memory do?

• How are the processors synchronized?

• What are the costs?

Monolithic memory
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P

Parallel RAM variations

M

PP P

All processors operate under control of the same clock: 

Synchronous, shared-memory model

Parallel RAM (PRAM):

• Processors work in lock-step (all same program, or individual 

programs), all perform an instruction in each step (clock tick)

• Unit-time instruction and memory access (uniform)

PRAM a unit cost model

Monolithic memory
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P

Parallel RAM variations

M

PP P

PRAM conflict resolution: What happens if several processors in the 

same time step access the same memory location?

• A memory location is either read or written in a time step

• EREW PRAM: Not allowed, neither read nor write

• CREW PRAM: Concurrent reads allowed, concurrent writes not

• CRCW PRAM: Both concurrent read and write

Monolithic memory
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P

Parallel RAM variations

M

PP P

CRCW PRAM write conflict resolution:

• COMMON:     Conflicting processors must write same value

• ARBITRARY: One write succeeds

• PRIORITY:     A priority scheme determines which

Realistic?

Useful?

Monolithic memory
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P

Parallel RAM variations

M

PP P

Realistic?

Useful?

Joseph JáJá: An Introduction to Parallel Algorithms. Addison-Wesley 

1992, ISBN 0-201-54856-9

Not realistic! Unit-time, uniform memory access, 

synchronous control, … all problematic assumptions

But extremely useful theoretical tool (late 70ties-mid 

90ties): Fast algorithms, algorithmic techniques and 

ideas, and lower bounds

Monolithic memory
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P

Parallel RAM variations

M

PP P

PRAM algorithm design:

• Assume as many processors per step as convenient, dependent 

or independent of input size n (dependent: p=f(n) processors)

• How fast can some given problem of size n be solved, how many 

parallel steps are needed?

• What is the total number of operations carried out? What is the 

(maximum) number of processors required (for a step)?

Monolithic memory
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Examples, PRAM pseudo-code

Initializing an array a of n elements:

par (0<=i<n) a[i] = i*i;

“par” construct indicates that some operation is to be performed for 

each i in the specified range. If a processor is available for each 

such i, the operations can be done in O(1) parallel time steps. There 

are O(n) operations to be done in all, n being the size of the range

for (k=1; k<n; k<<=1) {
par (0<=i<n) a[i] = i/k;

}

At most ceil(log2 n) parallel 

steps, each in O(1), total 

number of operations O(n 

log n)
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PRAM algorithm design:

• Assume as many processors per step as convenient, dependent 

or independent of input size n (dependent: p=f(n) processors)

• Alternatively: Assume fixed number of processors p for input of 

(variable size) n

• How fast can some given problem of size n be solved, how many 

parallel steps are needed?

• What is the total number of operations carried out? What is the 

(maximum) number of processors required (for a step)?

• Is the number of processors (resources) used realistic? How can 

we judge this?

• Which PRAM variant is needed (EREW “weaker” than CRCW)

• Are there problems for which no reasonable PRAM algorithm 

exist? Yes, probably. But not in this lecture
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PRAM Example: Fast maximum finding

Problem: Given n numbers in shared memory array a, find the 

maximum 

Idea: Perform all n2 comparisons (a[i] vs. a[j]) in parallel, eliminate 

those numbers that cannot be maximum. Use p=n2 processors

Input array a

Elimination array b: 

b[i]==false means a[i] 

is not maximum

…

…
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par (0<=i<n) b[i] = true;      // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

PRAM Example: Fast maximum finding

Problem: Given n numbers in shared memory array a, find the 

maximum 

Idea: Perform all n2 comparisons (a[i] vs. a[j]) in parallel, eliminate 

those numbers that cannot be maximum. Use p=n2 processors

1.
2.

3.

The algorithm consist of three parallel steps, with different number of 

processors in each step, par-construct allocates processors to array 

indices
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par (0<=i<n) b[i] = true;      // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

1.
2.

3.

Three parallel steps, in each the allocated processors perform a 

constant number of operations, O(1) time per step with n, n2 and n 

PRAM processors, respectively.

CRCW capability needed in Steps 2 and 3

Theorem:

On a Common CRCW PRAM, the maximum of n numbers can be 

found in O(1) time steps and O(n2) operations in total

Claim: b[i]==true iff a[i] is maximum among a[0], a[1], …,a[n-1]
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Theorem:

On a Common CRCW PRAM, the maximum of n numbers can be 

found in O(1) time steps and O(n2) operations in total

Observations:

• Constant time algorithm with polynomial resources (operations, 

processors)

• Total number of operations (number of allocated processors over 

all steps) is counted as the resource measure

Is this a good algorithm? Answer later

…but it is fast
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On constants in PRAM algorithms

If we agree on the cost (number of steps) of individual instructions, 

either at PRAM assembly level, or at the pseudo-code level, e.g.,

par (0<=i<n) b[i] = true;
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false;

par (0<=i<n) if (b[i]) x = a[i];

10+1

10+1+1

10+1+1 = 35 steps 

Say cost 10, independent of n, for simple processor assignment

we can analyze many simple PRAM programs and give exact 

running times (ignoring lower order terms, perhaps). We normally do 

not do so. But constants matter!
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Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])
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Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])
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Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

k

max(a[i],a[i+k])
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Another idea: PRAM maximum finding by pairwise comparisons

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<k) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

…
Input array a

In each iteration of while loop, the number of elements that can be 

maximum is halved. Thus, while loop performs ceil(log2n) iterations

One step with 

ceil(nn/2)
processors

k

No Concurrent Read or Write

max(a[i],a[i+k])

CR
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Theorem:

On a CREW PRAM, the maximum of n numbers can be found in 

O(log n) time steps, and O(n) operations in total

Proof: The number of (sequential) operations in the while loop 

outside the parallel part is constant, O(1). The number of processors 

per iteration is k, over all iterations n/2+n/4+n/8+… ≤ n, plus at most 

log2n where k is odd, thus the number of operations in total is O(n). 

All processors read k and nn

In which respects is this a better algorithm 

than the fast maximum algorithm?

Answer later
Theorem: Can also be done on an EREW PRAM

Proof: Exercise… (think about this)



100

©Jesper Larsson TräffSS23

Wasting processors: PRAM maximum again

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (0<=i<n) {

if (i+k<nn) a[i] = max(a[i],a[i+k]);
}
nn = k;

}

One step with 

n processors

Theorem (inferior):

On a CREW PRAM, the maximum of n numbers can be found in 

O(log n) time steps, and O(n log n) operations in total using n 

processors
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Using given, fixed number of processors p: PRAM maximum again

nn = n;
while (nn>1) {

k = (nn>>1)+(nn&0x1); // bitwise ceil(nn/2)
par (i=0, (nn/p), 2*(nn/p), ..., <nn) {

for (j=i, j<i+(nn/p); j++) {
if (j+k<nn) a[i] = max(a[j],a[j+k]);

}
}
nn = k;

}

nn/p steps 

with p
processors

Theorem:

On a CREW PRAM, the maximum of n numbers can be found in 

O(n/p+log n) time steps, and O(n) operations in total using p 

processors
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Matrix-matrix multiplication on a PRAM, easy version

par (0<=i<n) {
par (0<=j<m) {

C[i,j] = 0;
for (k=0; k<l; k++) {

C[i,j] += A[i,k]*B[k,j];
}

}
}

Theorem:

On a CREW PRAM, matrix-matrix multiplication can be done in O(l) 

steps, and O(nml) operations in total using (nm) processors 

(assuming n,m,l known to all processors)

Possible to do better? In what respects?

Not parallel

Nested parallelism
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Matrix-matrix multiplication on a PRAM, easy version without nesting

par (0<=i<n, 0<=j<m) {
C[i,j] = 0;
for (k=0; k<l; k++) {

C[i,j] += A[i,k]*B[k,j];
}

}

Theorem:

On a CREW PRAM, matrix-matrix multiplication can be done in O(l) 

steps, and O(nml) operations in total using n*m processors

Pseudo-code used liberally and judiciously: It must be possible in 

principle to execute the algorithm on the given PRAM

Theorem: Can also be done on an EREW PRAM (think about this…)
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PRAM algorithms analyzed and judged on

• Number of parallel time steps needed (ultra-fast, fast, slow, …)

• Number of operations performed by the assigned processors over 

the time steps (work)

• Number of processors

What are the criteria for judging whether an algorithm is good or 

bad?

• Sequential base line, best-known algorithm (see later)

• Lower bounds
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Leslie G. Valiant: A Bridging Model for Parallel Computation. 

Commun. ACM 33(8): 103-111 (1990)

Algorithm in model

BSP library/Language

Valiant’s bridging model proposal: Bulk Synchronous Parallel

Conc. Arch. A Conc. Arch. Z

• Coarse-grained synchronous 

execution (PRAM-like 

thinking)

• Local computation in 

supersteps

• Synchronization

• Automatic data exchange 

between supersteps

Run-time support
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P

M

PP P

M M M…

Shared-memory model, banked, memory-network, processors not 

synchronized (asynchronous, not lock-step, no common clock)

Parallel RAM variations

• How to synchronize: Atomic operations, barriers

• Memory consistency: When can some processor “see” what 

some other processor has written into memory?

Non-monolithic 

memory

Complicated semantics
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UMA (Uniform Memory Access):

Access time to memory location independent of location and 

accessing processor, e.g., O(1), O(log M), …

NUMA (Non-Uniform Memory Access):

Access time depends on processor and location.

P

M

PP P

P

M

PP P

M M M…

Parallel memory access cost terminology

Examples: RAM is UMA, 

PRAM is UMA (unit cost)

(Almost) All 

“real” 

processors 

are NUMA
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P

M

PP P

M M M…

Parallel RAM variations

Non-monolithic 

memory

LM LM LM LM

Locality: Some memory locations are closer (faster access) to 

processor than others; some memory may be entirely local, non-

shared, only accessible by the processor to which it belongs

Challenge: Programming with locality

Realistic? 

Closer to how 

actual parallel 

processors 

behave
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P

LM

PP P

LM LM LM…

Parallel, distributed memory RAM

Interconnection Network

Memory is distributed over processors, memory is local to the 

processors, each processor can directly access only its own, local 

memory, communication through dedicated network

• Explicit communication needed

Realistic? 

Closer to how 

actual parallel 

processors are 

constructed 

and behave
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Parallel model summary

• Types/power of processors (instructions, functional units)

• Number of processors (fixed, bounded, unbounded, …)

• Memory organization (shared/distributed/both, cache-

hierarchical), wordsize (fixed, bounded, unbounded)

• Communication (shared memory, network), operations

• Synchronization operations

• Memory behavior, atomic operations

Level of detail and formality depends on purpose:

• Studying (limits to) parallelization, complexity theory

• Designing and analyzing algorithms

• Analyzing and predicting application performance
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Execution cost model

• What is the cost (: time) of different types of operations (same unit 

cost, or dependent on type of operation, int/float)?

• What is the cost of memory access (UMA, NUMA)?

• Communication and synchronization costs? (latency and 

bandwidth)
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Yet another parallel architecture model (totally non-RAM):

John on Neumann, Arthur W. Burks: Theory of self-reproducing automata, 

1966

H. T. Kung: Why systolic architectures? IEEE Computer 15(1): 37-46, 1982

T. Toffoli, N. Margolus: Cellular Automata Machines: A new environment for 

modeling. MIT, 1987 

State of cell (i,j) in next step 

determined by

• Own state

• State of neighbors in some 

neighborhood, e.g., (i,j-1), (i+1,j), 

(i,j+1), (i-1,j)

Cellular automaton, systolic array, … : Simple processors without 

memory (finite state automata, FSA), operate in lock step on 

(unbounded) grid, local communication only
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Another architecture classification/taxonomy

• How many instructions can be carried out simultaneously?

• How much data (words) can be accessed simultaneously?

Flynn’s taxonomy: 

Instruction stream(s) and data stream(s) in computing system

M. J. Flynn: Some computer organizations and their effectiveness. 

IEEE Trans. Comp. C-21(9):948-960, 1972
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SISD

Single Instruction Single Data

MISD

Multiple Instruction Single Data

SIMD

Single Instruction Multiple Data

MIMD

Multiple Instruction Multiple Data

M. J. Flynn: Some computer organizations and their effectiveness. 

IEEE Trans. Comp. C-21(9):948-960, 1972

Instruction stream

D
a
ta

 s
tr

e
a
m
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• SISD: Single processor, single stream of instructions, operates on 

single stream of data. Example: Sequential architecture (e.g. 

RAM)

• SIMD: Single processor, single stream of operations, operates on 

multiple data per instruction. Example: traditional vector 

processor, SIMD-extensions, GPU(?) (PRAM, some variants)

• MISD: Multiple instructions operate on single data stream. 

Example: Pipelined architectures, streaming architectures(?), 

systolic arrays (70ties architectural idea)

• MIMD: Multiple instruction streams, multiple data streams 

(PRAM, distributed memory architecture)

Some say: Empty

Flynn computing system organizations
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M

P

SISD

M

P

M MM

SIMD

Typical Flynn taxonomy systems

M

P P P P

M M M… M

P P P P

M M M

Communication network

MIMD

M P P P P

…

… MISD (?)
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Example: PRAM (also: GPU)

par (0<=i<n) {
if (i+k<nn) {

a[i] = max(a[i],a[i+k]);
} else {

… // something totally different
}

}

Processors do something different depending on the condition: 

MIMD, but under control of same program

SIMD restriction: Both branches are executed, for some processors 

as noop, depending on condition. On GPU’s this is called 

branch/thread divergence, and can cause severe performance loss



118

©Jesper Larsson TräffSS23

Example: Vector processor, the classical SIMD architecture

One instruction controls operation on a vector of data: Vector 

addition, …

• “Traditional” vector processor: support for arbitrarily long vectors

• Vector extensions: SSE, AVX, AVX512, smaller vectors of 4-8 

double words

a0

a1

…

an-1

b0

b1

…

bn-1

c0

c1

…

cn-1

+=

One vector-

add 

instruction
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Programming models

Algorithm 

in model A

Concrete program: different 

paradigms (MPI, OpenMP, Cilk, 

OpenCL, MapReduce, …)

Conc. Arch. A

Parallel programming 

model for parallel 

language or framework:

Mental model for 

programming and 

implementation of 

algorithms in given 

language
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Parallel programming model:

Abstraction (close to programming language) defining

• parallel resources

• management of parallel resources

• parallelization paradigms

• memory structure, memory model

• synchronization and communication features 

and their semantics and execution cost

Parallel programming language, or library (interface) is the concrete 

implementation of one (or more: multi-modal, hybrid) parallel 

programming model(s)
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Some sequential programming models

• Imperative (C, …)

• Object-oriented, higher-order functional (C++, …)

• Functional (LISP, Haskell, …)

• Logical (Prolog, …)

Algorithm in model

Concrete program (C, 

C++, Java, Haskell, 

Fortran,…)

Concrete architecture

Implementation

Compilation
Challenge: How to support 

programming model efficiently on 

RAM-like architecture?

Challenge: Programming model that 

is useful, convenient, expressive, …, 

and close enough to concrete 

architecture to allow realistic 

performance analysis (prediction)
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• Parallel resources: Processes, threads, tasks, …

• Expression of parallelism: Explicit or implicit

• Level and granularity of parallelism

• Memory model: Shared, distributed, hybrid

• Memory semantics (“when operations take effect/become visible”)

• Data structures, data distributions

• Methods of synchronization (implicit/explicit)

• Methods and modes of communication 

Parallel programming model defines
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Examples:

1. Threads, shared memory, arrays, “parallel loops”, fork-join 

parallelism (OpenMP)

2. Processes, distributed memory, explicit message passing, 

collective communication, one-sided communication (MPI)

3. Tasks, spawn-join, dependencies, shared-memory (Cilk, OpenMP)

4. Shared arrays, implicit communication, “parallel-loops”, owner-

computes (UPC, PGAS languages*)

5. Data parallel SIMD (CUDA, OpenCL)

6. …

Not this lecture

This lecture:

• OpenMP

• MPI

• (Cilk)
*PGAS: Partitioned Global Address Space
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Flynn’s taxonomy often used to characterize programming models 

(MIMD, SIMD)

• MIMD: Different threads/processes may execute different 

programs

• SIMD: One instruction flow operates on many data elements

Flynn’s taxonomy as programming model description
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Programming model classification (SPMD subcase of MIMD)

F. Darema at al.: A single-program-multiple-data computational 

model for EPEX/FORTRAN, 1988

Sometimes useful and convenient to assume (restrict) that all 

processes execute the Same Program:

• Same objects (variables, procedures) exist for all processes, 

concepts like “remote procedure call”, “active messages”, 

“remote-memory access” make sense

• Processes may be executing different parts of the program at the 

same time

Programming model that makes this requirement is termed SPMD 

(Same Program Multiple Data)

All code in this lecture will be SPMD
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Programming language/library/interface/framework

Programming model

Architecture model

Real Hardware

Different architectures can realize (almost) 

any given programming model

Closer fit: More efficient use of architecture

Run-time support for programming model 

often needed (creating processes, assigning 

tasks, complex communication operations, 

…)

OpenMP MPI Cilk

Run-time 

support
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Examples:

• OpenMP programming interface/language for shared-memory 

model, intended for shared memory architectures. Can be 

implemented with DSM (Distributed Shared Memory) on 

distributed memory architectures; but performance usually not 

good

• MPI interface/library for distributed memory model, can be used 

on shared-memory architectures, too. Needs algorithmic support 

(e.g., “collective operations”)

• Cilk language (extended C) for shared-memory model, for 

shared-memory architectures; “task parallel”, needs run-time 

support (scheduling by “work-stealing”)
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More examples of programming models and interfaces : 

No attempt at defining what a 

programming model is, but an overview of 

current parallel/HPC interfaces and 

language extensions:

MPI, OpenMP, Cilk, OpenSHMEM, UPC, 

Chapel, Charm++, TBB, CUDA, and 

OpenCL

www.wikipedia.org is also not strong on definitions (in this area)

http://www.wikipedia.org/
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Lecture summary, checklist

• Parallel computing is everywhere.

• Moore’s “law”, “free lunch”

• Flynn’s taxonomy: MIMD, SIMD, SISD. SPMD restriction

• Models for parallel computation: Architecture, programming

• RAM, PRAM (EREW, CREW, CRCW), shared-memory, 

distributed memory, UMA, NUMA


