### 6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741) 29 September 2023

| Kennzahl <br> (study id) | Matrikelnummer <br> (student id) | Familienname (family name) | Vorname (first name) | Platz <br> (seat) |
| :--- | :---: | :---: | :---: | :---: |

1.) Coverage

Consider the following program fragment and test suite:

```
int multiplymodulo (long long a,
    long long b,
    long long mod) {
    long long res = 0;
    a = a % mod;
    while (b != 0) {
    if (b & 1)
            res = (res + a) % mod;
    a = (a<<< 1) % mod;
    b = b >> 1;
\beta }
return res;
}
```

(a) Control-Flow-Based Coverage Criteria

Indicate $(\checkmark)$ which of the following coverage criteria are satisfied by the test-suite above.

|  | satisfied |  |
| :--- | :--- | :--- |
| Criterion | yes | no |
| statement coverage |  |  |
| path coverage |  |  |
| decision coverage |  |  |

For each coverage criterion that is not satisfied, explain why this is the case:

| 1 | 2 | 3 | 4 | 5 | 6 | $\sum$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $/ 18$ | $/ 10$ | $/ 10$ | $/ 09$ | $/ 06$ | $/ 07$ | $/ 60$ |

## (b) Data-Flow-Based Coverage Criteria

Indicate $(\checkmark)$ which of the following coverage criteria are satisfied by the test-suite above (here, the parameters $\mathrm{a}, \mathrm{b}$, and mod of the function do not constitute a definition, but their re-assignment does. The return statement is a c-use):

|  | satisfied |  |
| :--- | :--- | :--- |
| Criterion | yes | no |
| all-defs |  |  |
| all-c-uses |  |  |
| all-p-uses |  |  |
| all-c-uses/some-p-uses |  |  |
| all-du-paths |  |  |

For each coverage criterion that is not satisfied, explain why this is the case:
(c) Consider the two coverage criteria below.

- If the test-suite from above does not satisfy the coverage criterion, augment it with the minimal number of test-cases such that this criterion is satisfied. If full coverage cannot be achieved, explain why.
- If the coverage criterion is already achieved, explain why.

(4 points)
(d) Mutation Testing

Assume that the assignment $i=b \gg 1$; is changed to $i=1 / 2$; Either provide a test case that strongly kills the resulting mutant (i.e., a test case for which the mutant provides a return value different from the one provided by the original program and specified by the test case), or explain why no such test case can exist (i.e., the mutant is equivalent).

## Test Case



## 2.) Hoare Logic

Prove the Hoare Triple below. Assume that the domain of all variables in the program are the natural numbers including 0 , i.e., $a, b, x, y, r e s \in \mathbb{N}_{0}$. You need to find a sufficiently strong loop invariant.

Note: y/2 denotes integer division (i.e., always rounds down).

Hint: What is the relation between $(\mathrm{a} * \mathrm{~b})$ and $(\mathrm{x} * \mathrm{y})$ ?

Annotate the following code directly with the required assertions. Justify each assertion by stating which Hoare rule you used to derive it, and the premise(s) of that rule. If you strengthen or weaken conditions, explain your reasoning.

Note: No points for assertions not clearly derived by using one of the rules from the lecture!

```
{true}
res = 0;
x = a;
y = b;
while (y != 0) {
    if (y % 2 == 1)
        res = res + x;
    else
            skip;
    x = x * 2;
    y = y / 2;
    }
    {(res = a b b )
```

3.) Invariants Consider the following program, where i, $j, x$, and $y$ are unsigned integers (i.e, $\mathbb{N} \cup\{0\}$ ). Note that i/2 denotes integer division (always rounds down).

```
i \(=x\);
j = y;
while (i > 1) \{
    i = i / 2;
    \(j=j * 2 ;\)
\}
```

Consider the formulas below; tick the correct box $(\checkmark)$ to indicate whether they are loop invariants for the program above.

- If the formula is an inductive invariant for the loop, provide an informal argument that the invariant is inductive.
- If the formula $P$ is an invariant that is not inductive, give values of $\mathbf{i}, \mathrm{j}, \mathrm{x}$, and y before and after the loop body demonstrating that the Hoare triple

$$
\{P \wedge B\} \quad \mathrm{i}=\mathrm{i} / 2 ; \quad \mathrm{j}=\mathrm{j} * 2 ; \quad\{P\}
$$

(where $B$ is (i > 1)) does not hold.

- Otherwise, provide values of $\mathbf{i}, \mathrm{j}, \mathrm{x}$, and y that correspond to a reachable state showing that the formula is not an invariant.

| $(i \cdot j \leq x \cdot y)$ <br> Justification: | $\square$ Inductive Invariant | $\square$ Non-inductive Inv | $\square$ Neither |
| :---: | :---: | :---: | :---: |
| $(i \cdot j=x \cdot y)$ <br> Justification: | $\square$ Inductive Invariant | $\square$ Non-inductive Inv | $\square$ Neither |
| $(i \cdot j>0)$ <br> Justification: | $\square$ Inductive Invariant | $\square$ Non-inductive Inv | $\square$ Neither |

## 4.) Temporal Logic

(a) Consider the following Kripke Structure:


For each formula, give the states of the Kripke structure for which the formula holds. In other words, for each of the states from the set $\left\{s_{0}, s_{1}, s_{2}\right\}$, consider the computation trees starting at that state, and for each tree, check whether the given formula holds on it or not.
i. $\mathbf{E G} a$
ii. $\mathbf{E G F}$ F
iii. $\mathbf{A}(a \wedge \mathbf{X} b)$
iv. $\mathbf{A}(a \mathbf{U} b)$
v. $\mathbf{E}(b \mathbf{U} a)$
(b) Consider the following Kripke Structure with initial state $s_{0}$ :


Use the tableaux algorithm for CTL from the lecture to compute the sets of states in which the following formula (and its subformulas) hold!

- For every subformula, compute the states for which it holds!
- For fixpoints, list every step of the computation!

EG (EX $a$ )
(4 points)

## 5.) Decision procedures

Consider the following formula in propositional logic; is it satisfiable?

- If yes, provide all satisfying assignments and explain how you arrived at that number
- if not, provide the steps of the CDCL algorithm that led to this conclusion:
- illustrate the conflict graphs for the relevant implication levels and
- provide the learned clauses.

$$
\begin{aligned}
\left(\neg x_{1} \vee x_{2}\right) \wedge( & \left.x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge \\
\left(\neg x_{3} \vee x_{4}\right) & \wedge\left(x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge \\
\left(\neg x_{5} \vee x_{6}\right) & \wedge\left(x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{6} \vee x_{7}\right) \wedge\left(x_{6} \vee \neg x_{7}\right) \wedge \\
\left(\neg x_{1} \vee \neg x_{6} \vee \neg x_{7}\right) & \wedge\left(\neg x_{1} \vee \neg x_{7} \vee x_{6}\right) \wedge\left(\neg x_{6} \vee x_{7} \vee x_{1}\right) \wedge\left(x_{6} \vee \neg x_{7} \vee x_{1}\right)
\end{aligned}
$$

## 6.) General Questions

Indicate whether the following statements are true or false!

## Statement

Any assertion implied by an inductive invariant of a program is also an inductive invariant.

No CTL formula that contains at two least temporal operators (with preceding path quantifiers) can be reformulated as an eqivalent LTL property.

If a program terminates on all inputs, path coverage can always be achieved.

Any formula in Conjunctive Normal Form can be converted into a Binary Decision Diagram.

Any formula in Conjunctive Normal Form can be converted into a Binary Decision Diagram whose size is polynomial in the number of variables.

If all-c-uses/some-p-uses and all-p-uses/some-c-uses is achieved, then all-uses is also achieved.

The Hoare triple $\{$ true $\}$ while (true) skip; \{false\} is valid.

