EKI

Table of Contents

EXEICISE L. e aaaaaaaaaaaaaaaaaans 2
o =T ol 1Y 0P PPPPPPTTTON 3
o =T ol [T I R PP PPPPPPTTTO 4
EXEICISE L ..eeeeiiiiiiiiiiie e e e e e e a et e e e e s aa bttt e e e e s s e bbb s e e e e e s s s sarraes 6
o= o1 = R PP PP PPPPPPPPPPPRY 7
o= o1] = I PP PPPPPPPPRPPRY 8
o= o1 = I PP PPPPPPPPPRPPRY 9
o= o1 = R PP PPPPPPPPPPPINS 10
o= o1 =t PP PPPPPPPPPPPINS 13
oS o1 1= AP PPPPPPPPPPPPPPPINS 15
o S ol R PP PPPPPPPPPPPINS 16
EXEICISE 2.4 ...ttt e e e et e ettt e e e s e e e et e e e s e e a e et et e e e s e e s aaeeeeeseesanrree 17
EXEICISE 2.5 ittt 18
EXEICISE 2.6ttt 19
EXEICISE 2.7 ittt 21
= (ol = PP PP P PP PPPPPPPPPPPPPPPPPIRS 23
o= o1 1= 0t RO PP PP PP PPPPPPPPPPPPPPPPINS 24
EXEICISE 3.2 ittt e e 26
EXEICISE 3.3 it e e et e e e st e e e e e e e s e at e e e e e s s e sanrree 28
EXEICISE 3. et e et et e e e s a et et e e e s s e at e e e e e s s s sanrree 30
EXEICISE 3.5 ittt e et e e e a et et e e e s s e ar e e e e e s s e snrree 31

| G (o I T TSRO 32

Exercise 1.1
Exercise 1.1: Describe the application types (PEAS) and the task environments of each of the fol-
lowing intelligent agents. Be sure to explain your reasoning and assumptions.

* Speech recognition,

* Robot vacuum cleaner.

Speech Recognition:

e Performance Measure: Accuracy of transcribing spoken words into text.

e Environment: Audio input from microphone, with background noise and varying accents.
e Actuators: Display to verify the text in- and output.

e Sensors: Microphone or audio input devices.

Robot Vacuum Cleaner:

e Performance Measure: Cleanliness of the environment (coverage, dirt collected, time taken).

e Environment: Physical indoor space with various surfaces and obstacles.

e Actuators: Wheels/tracks for movement, brushes/suction for cleaning, sensors for obstacle detection.
e Sensors: Proximity sensors, bumper sensors, wheel encoders, cameras/lidar/sonar for mapping.

Exercise 1.2

Exercise 1.2: Let f(n) = ¢- g(n) + d - h(n) be an evaluation function, where ¢ and d are constants.

(a) Define ¢, d, h(-), g(-) such that A* with this evaluation function acts as a breadth-first search.

(
(),

(b) Define ¢, d, h(-), g(-) such that A* with this evaluation function acts as a depth-first search.
),

(c) Definec, d, h(+), g(-) such that A* with this evaluation function acts as a uniform cost search.

You may assume that nodes contain all the information that we discussed in the lecture.

Breadth-first search

c=1

g(n) = depth(n)

d=0

h(n) =

f(n) = 1*depth(n) + 0*0 = depth(n)

Depth-first search

c=-1

g(n) = depth(n)

d=0

h(n) =

f(n) = -1*depth(n) + 0*0 = - depth(n)

Uniform-cost search

c=1

g(n) = pathCost(n)

d=0

h(n) =

f(n) = -1* pathCost(n) + 0*0 = pathCost(n)

Exercise 1.3

Exercise 1.3: Provide a proof or a counterexample for each of the following claims:
(a) Every consistent heuristic (with 2(G) = 0 for each goal node) is admissible.
(b) Every admissible heuristic is consistent.

Please try to keep your counterexample(s) as simple as possible. The graph(s) you use should
have no more than five nodes.

Useful definitions

Definition

A heuristics h is admissible, if for every node n the following holds:
1. h(n) < h*(n) where h*(n) is the true cost from n (h is “optimistic”);
2. h(n) >0;
3. h(g) = 0 for every goal g (follows from 1 and 2).

... it never overestimates the cost to reach the goal

Definition

A heuristic is consistent if, for every node n,

every successor n’ of n and every operator a,
h(n) < c(n,a,n’) + h(n")

holds, where c(n, a,n’) are the path costs for a.

a) Proof by Induction

Abbrevation:c = c(n,a,n’)
c...true cost fromnton’'

Let k be the shortest path fromn' to G

Base Case (k = 0):
h(n) < c+h(n")
if h(n)=0-h(n)<c=h"(n)

Proposition:
h(n") is admissible, therefore
h(n") = 0and h(n') < h*(n)

Inductive step:
h(n)<c+h(n') <c+h*(n")=h*(n)
N

h(n) < h*(n)

Conclusion:
Every consistent heuristic is admissable

b) Counterexample

Given this Heuristic

h(C) =0
h(B) = 1
h(A) = 4

Admissibility is granted

h(C)=0<0
hB)=1 <3
h(A)=4<4

Inconsistency

h(C) = 0 < ¢(C) = 0: true - consistent
h(B) =1 <3+ h(C) = 3: true — consitent
h(A) =4 <1+ h(B) = 2: false — inconsistent

Exercise 1.4

Exercise 1.4: In this exercise, we will see that some agents which have rich enough capabilities of
self-consciousness cannot exist in principle. To this end, we define the notion of a Gédelian agent" as
follows. Imagine such an agent to be a device which is able to tell us statements of a specific form.
The statements the agent can tell us are build up using the following symbols:

~ T, N, (,)

We call all the statements which we can form using these symbols the language of our agent. For
example, the statement —7'(7T") is in the agent’s language. The norm of a statement X is the statement
X (X). Not all statements in this language are meaningful. A sentence is a statement if it is of one of
the following forms:

—

T(X),
2. -T(X),
3. TN(X),
4. =TN(X).
(Here, X is an arbitrary statement.) We now assign truth values to sentences as follows:
1. T(X) is true iff X can be told by the agent;
2. =T(X) is true iff X cannot be told by the agent;
3. T'N(X) is true iff the norm of X can be told by the agent;
4. =TN(X) is true iff the norm of X cannot be told by the agent.

We assume our agent to be trustworthy, i.e., we assume that whenever the agent tells us a sentence,
then it is true. Now your task is to show that, under this assumption, the opposite does not hold,
i.e., prove that there is a true statement which cannot be told by our trustworthy agent. Hint: find a
statement which is true iff the statement itself cannot be told by the agent. Use then the assumption
of trustworthiness to conclude that your statement cannot be told. Think about why your statement
cannot be told and discuss the reason(s).

n ... symbolizes not

S = T(S):
S = true » T(S) = true -» S = true ... consistent

S = false > T(S) = false » S = false ... consistent

S = nT(S):
S =true » nT(S) = false » S = false ... inconsistent
S = false » nT(S) = true » S = true... inconsistent

Since my chosen statement is self-referential, it can break the language.

Exercise 1.5

Exercise 1.5: Perform the A* algorithm using the given heuristic function i on the following graph
in order to find a shortest path from s to t. In which order are the nodes expanded? Show the contents
of the priority queue at each iteration. If multiple nodes have the same priority, expand the one that
comes first alphabetically.

A*: Use evaluation function f(n) = g(n) + h(n)

(and avoid expanding paths that are already expensive)
» g(n): path costs from start to n, (i.e., costs so far up to n)
e h(n): estimated cost to goal from n (like in greedy search)
e f(n): estimated total cost of path through » to goal

Current Values

Step Node g(n) h(n) f(n) s a b c d t Chosen Node
1 s 0 20 20 20 - - - - - S
2 a 15 15 30 20 30 - - 26 - d
d 14 12 26
3 c 31 5 36 20 30 31 36 26 - a
23 8 31
4 b 21 8 29 20 30 29 36 26 - b
5 C 28 5 33 20 30 29 33 26 35 [¢
t 35 0 35
| 6 t 35 0 35 20 30 29 33 26 35 t
| 7 20 30 29 33 26 35 t

Visited Nodes

Exercise 1.6

Exercise 1.6: Consider the following graph (the grey nodes are goal nodes):

Use the listed search strategies on the given graph to look for a goal node, starting from the node
A (depth 0). In case you can expand several nodes and the search strategy does not specify the
order, choose the nodes in alphabetic order (or place them in the collection in such way that they are
processed alphabetically). Where applicable, specify the contents of the frontier and the explored set

for each step or the contents of the call stack for recursive approaches.

+ Breadth-first search with goal test at generation time,

Uniform cost search,

Depth-first search with goal test at expansion time, iterative,

Depth-limited search (use a limit of 2),

Iterative deepening search.

BFS ucs IDS
Step Node |List (FIFO)| Explored Step Node Note List (Path Cost)| Explored Step Node |Limit- Depth| Stack [Explored
1 A A 1 A A0 1 A 0 A
2 A BCDE A 2 A C3 B4 E5D7 A
3 B CDE AB 3 C B4 F4A E5 G6 D7 AC 2 A 1 A
4 C DEFG ABC 4 B F4 E5 G6 D7 ACB 3 A 1 BCDE A
5 D EFGHI ABCD 5 F E5 G6 D7 ACBF 4 B 0 CDE AB
6 H EFGI ABCDH 6 E G6D7J10 ACBFE 5 C 0 DE ABC
7 G D7J10K13 ACBFEG 6 D 0 E ABCD
Note: Controls if the new node 8 D J10K13114 H17 | ACBFEGD 7 E 0 ABCDE
in the listis a goal 9 J K12 K12114 H17 | ACBFEGD)
10 K 114 H17 ACBFEGDJK 8 A 2 A
9 A 2 BCDE A
Note: Does not controls if the new node in the list is a goal 10 B 1 CDE AB
11 C 1 DEFG ABC
DFS 12 F 0 DEG ABCF
Step Node |List (FIFO)| Explored 13 G 0 DE ABCFG
1 A A P 14 D 1 EHI ABCFGD
2 A BCDE A DFS (lelt=2) 15 H 0 El ABCFGDH
3 B CDE AB Step Node |Limit- Depth Stack Explored
4 C DEFG ABC 1 A 2 A Note: Controls if the new node in the list is a goal
5 F DEG ABCF 2 A 2 BCDE A
6 G DEK ABCFG 3 B 1 CDE AB
7 K DEJ ABCFGK 4 C 1 DEFG ABC
5 F 0 DEG ABCF
Note: Controls if the new node 6 G 0 DE ABCFG
in the listis a goal 7 D 1 EHI ABCFGD
8 H 0 El ABCFGDH

Note: Controls if the new node in the listis a goal

Exercise 1.7

Exercise 1.7: Consider again the 8-Puzzle discussed in the lecture. Consider the discussed heuristics
(a) hi(n): number of misplaced tiles,
(b) ho(n): Manhattan distance.

Show whether the two suggested heuristics are admissible and/or consistent (monotonic).

a) hi1(n): Number of misplaced tiles
Is admissible:

h(g) =0 ... if the puzzle is solved, all tiles are correct
h(n) >=0 ... either the puzzle is correct, or incorrect and therefore 0 <= h(n) <=8
h(n) <= h*(n) ... every misplaced tile must be moved at least once, to get it to the correct position

Is consistent
h(n) <=c(n, a, n’) + h(n’) ... Three scenarios can occur after a move:
1. A misplaced tile is now correct, therefore h(n) <= 1 + h(n’) with h(n’) = h(n)-1
2. A misplaced tile is still misplaced, therefore h(n) <=1 + h(n’) with h(n’) = h(n)
3. A correct placed tile is now misplaced, therefore h(n) <= 1 + h(n’) with h(n’) = h(n)+1

b) h2(n): Manhattan distance
Is admissible:

h(g) =0 ... if the puzzle is solved, all tiles are correct

h(n) >=0 ... either the puzzle is correct, or incorrect and therefore 0 <= h(n)

h(n) <= h*(n) ... every misplaced tile must be moved at least the Manhattan distance to its place, to get it to
the correct position

Is consistent:

h(n) <=c(n, a, n’) + h(n’) ... Four scenarios can occur after a move:

1. A misplaced tile is now correct, therefore h(n) <= 1 + h(n’) with h(n’) = h(n)-1

2. Amisplaced tile is still misplaced but further, therefore h(n) <= 1 + h(n’) with h(n’) = h(n)+1
3. Amisplaced tile is still misplaced but closer, therefore h(n) <=1 + h(n’) with h(n’) = h(n)-1
4. A correct placed tile is now misplaced, therefore h(n) <=1 + h(n’) with h(n’) = h(n)+1

Exercise 1.8
Exercise 1.8: Decide and explain which of the following statements are true and which are false?
Back up your answers with proofs or counterexamples.

(a) If we consider an arbitrary search space, then there exists a graph on which neither breadth-first
search nor depth-first search would be complete. Provide a proof or argue what would be the
smallest counterexample in this case.

Answer: True
BFS and DFS are only complete if the search space is finite.

Therefore, this infinite graph cannot be solved:

Since the number of steps to find s = t via BFS or DFS are n+1,
and as n tends to infinity, so do the number of steps.

(b) In chess, a rook can move on any number of squares on the board in a straight line, vertically or
horizontally, but cannot jump over other figures. Then, the Chebyshev distance is an admissible
heuristic for the problem of moving the rook from square A to square B via the shortest path,
where the costs are the number of travelled fields.

The Chebyshev distance between two points (xy, 1), (x2, y2) on a plane is given by:

max{|z; — zal, [y1 — ya|}

£l

Answer: True

h(n) <= h*(n) ... Correct, since the Chebyshev Distance is always smaller than the Manhattan distance

h(n) >=0 ... Correct, since the bigger number of two positive numbers (absolute value) is positive
h(g) =0 ... Correct, since A == B and therefore the rook does not have to move

(c) The A™ algorithm yields an optimal path in a graph search if the used heuristic is admissible.

Answer: True/False
There are 2 variants of the A* algorithm, therefore there are also 2 answers:

1) A* tree search algorithm delivers an optimal solution when used with an admissible heuristic.
Tree search: We do not keep a closed list 2 the same node can be visited multiple times

2) A* graph search algorithm delivers an optimal solution when used with a consistent heuristic (stronger condt.)
Graph search: We keep a closed list of visited nodes = the same node won’t be visited multiple times

Proof by contradiction of A* with tree search:

1. Suppose A* with an admissible heuristic wasn't optimal.

2. This would mean A* finds a longer path to the goal first, while there exists a shorter one.

3. Given the heuristic is admissible, the estimated cost of the shorter path must be less than its true cost.

4. A* always picks the path with the lowest estimated total cost next, contradicting the assumption that it found a
longer path first.

5. Hence, A* must be optimal when using an admissible heuristic

Exercise 2.1

Exercise 2.1: A close friend of you is experiencing some trouble in deciding what book to read next.
You have recently learned about the wonders of artificial intelligence. In particular, how decision trees
can be used to make predictions based on examples and you decide to construct a model that decides
whether your friend will like a book they have not read before.

After a quick research about the relevant data for such a decision, you settle for the attributes
B (whether the book has been a bestseller) with the domain V' (B) = {T, L}, R (whether the re-
lease year is before 2000) with the domain V(R) = {T, L}, P (the number of pages of the book)
with the domain V(P) = {<150,150—300,>300} and G (genre of the book) with the domain
V(G) = {fiction, novel, mystery, romance, biography, poetry, politics}. Content with this rather sim-
plistic model, your friend provides you with the data for some books that they have already read:

Sample | B | R | P | G || Liked?
| 1 1 >300 mystery F
2 T T 150—-300 novel T
3 T 1 150—-300 politics T
4 T 1 <150 novel T
5 €L T 150—-300 romance F
6 1 T <150 poetry T
7 €L 1 150—-300 fiction F
8 T T 150—-300 biography T
9 1 T <150 biography T

Use the gathered data to construct a decision tree capable of predicting whether your friend will
like a book, given the values of the attributes they chose. In each step of the construction, choose the
attribute that maximizes the information gain, as shown in the lecture.

Useful equations

B(q) = —(q *log,q + (1 —q)log,(1— q)) ...q = proportion
d

+n
Rem(4A) = 2 p; - nk * B <pkl-):nk) ..p = pos.;n..neg; xy ...k = state((T, F)(m,n,p,))

Gain(A) =B (;ﬁ) — Rem(A) ...p = pos.;n..neg.

Selection of the first attribute

Gain(B) = B (—) — Rem(B) = 0.918 — 0.539 = 0.379

Gain(R) = Rem(R) = 0.918 — 0.845 = 0.073

(53)-

6

Gain(P) = (6 n 3) Rem(P) = 0.918 — 0.539 = 0.379
)

Gain(G) = Rem(G) = 0.918 — 0.000 = 0.918

o

By choosing attribute “G”, we gain the most information (Gain = 0.918)

Conclusion

Further attribute selection is not necessary, since the attribute “G” creates a perfect mapping

Book Genre

mystery=T

Exercise 2.2

Exercise 2.2: Construct another decision tree for Exercise 2.1, this time choosing the attribute that
maximizes the relative information gain, i.e., the ratio between the gain of the attribute and its own

intrinsic information. Gain(A)
. 71N
G(I-'.ETLR(A) = W

and

E, S
HA) =) | B ' log, B
acV(A)

where V' (A) denotes the domain of the attribute A and |E,| is the number of all samples which have

the value a of the attribute A. Furthermore, we define S := zael—’(.4}|Ea| to be the size of the set of
all samples.

Selection of the first attribute (V = 9)

GainR(g) 4B _ 0379 _

GRS = THB) T 052040471
GainR(R) = Gain(R) 0.073 — 0.074

AT TR T 0471+0520
GainR(P) = Gain(P) 0.379 _ 0280

M T TH(P) T 0528+ 047140352

, Gain(B) 0.918

GainR(G) =B = =0.139

H(B) ~ 0.482+ 0.352 + 0.352 + 0.482 + 0.352 + 0.352 + 0.352

By choosing attribute “B”, we gain the most relative information (GainR = 0.382)

Selection of the first attribute (V = 2)

SamplenB HR HP HG ﬂ Liked? K
6L T <150 poetry T
9.1 T <150 biography T

Given this table it is clear, everything could be used to get the correct “Liked?” value,
since both times, the “Liked?” value is true.
Therefore | choose R as the next distinguisher:

1,5,7 2,3,4,6,8,9
Bestseller

2,3,4,8 1,57 6,9
Release < 2000

T \

6,9

1,57

Exercise 2.3

Exercise 2.3: In this exercise we explore some of the problems with decision trees and the ways of
dealing with them:

(a) Compare the results obtained in Exercise 2.1 and Exercise 2.2. Use this example to discuss the
advantages of using the relative information gain rather than the regular information gain rule.
Be sure to explain why using the relative gain leads to better results!

(b) Discuss the design choices that were made in Exercise 2.1.
Are decision trees a suitable model for predicting which books someone will like in practice?

Is the choice of attributes and possible values sensible? If so, argue why, if not, provide some
alternative options.

What can you say about the practical accuracy of the generated tree(s)? What could have been
done to make the tree(s) more accurate (match your friend’s situation better)?

(c) Suppose that you are collecting data for a decision tree. The first two examples you collect have
the exact same value for each of the attributes you picked, but their classification is different.
You stop collecting further data and ponder the implications of this situation. Answer the
following questions briefly:

o What could be the cause of such a situation?
o What would the decision tree learning algorithm discussed in the lecture do in this case?

o What could you do to avoid the problem?

a)

Even though the regular information gain is a good measure to search for the most relevant attribute, it can lead to
some problems. If the chosen attribute has a lot of distinct values, like the value in our example, which can take 7
different values, it is likely to result in a bigger information gain. If, for example, the value would be evaluated on a
scale from 1 to 100, it quite certainly would lead to a huge information gain, especially if the gathered data is such a
small sample, but this approach does not lead to a better decision tree. This issue can be mitigated by using the
relative information gain, because the number of distinct values for each attribute is taken into account.

b)

Yes, but only if the parameters are chosen “correctly”. For example, the release date parameter (< 2000) is horrible
for books. This might produce a valid tree but does not help at all. If we have a huge sample size and “good” it might
be feasible. Better options would have been: writing style or theme.

To get better trees, we would need a bigger sample size and better parameters and update the tree every 10 books.
c)

Maybe | am missing a vital parameter.

The DTL algorithm would still build a decision tree, but the final node could still not be classified.

“Clean” the dataset, by either deleting both examples, or only pick more sensible one and delete the other.
Add another parameter and try again.

Exercise 2.4

Exercise 2.4: Suppose that an attribute splits the set of examples F into k subsets E, ..., Ej where
each subset E; has p; positive and n; negative examples. Show that the attribute has zero information

gain if the ratio Pi}j‘ini is equal for all i € {1,...,k}. Provide arguments for all properties that you
use.

+n
Rem(A) = Pk k*B(Pk)
- 1% +n Pk +nk
— 3 (p) L\ Pr +ny
p+n p+n
=B (P) * 1
p+n
Since % is equal for all i, we can pull the B() out of the sum
, _ p
Gain(A) = B () — Rem(A)
p+n

Exercise 2.5

Exercise 2.5: Consider a neural network with five nodes of the following form:

in

Y2

The numbers next to the arrows denote the respective weights. Node 4 has g(z) = —x as its activation
function. Node 2 uses the identity function g(a) = 2. Nodes 1 and 3 use a hard limiter with a threshold
of 0.5, while node 5 uses the sigmoid function g(x) = 1/(1 + e *).

What is the output produced by the network when the input is (1, 22) = (1,1)? Determine the
input and output of every neuron.

x1=1
x2=1
(1, x = 0.5
g91(x) ‘{o, x <05
g2(x) = x
93(x) = g1(x)
ga(x) = —x
95(x) = 1+e™

g (Z input; * weight;)

nl: g1(1*4+1%0)=g1(4) =1
n3:93(1*x—1-5)=g3(-6)=0
n2:g2(1*14+0x3+1x1)=g2(2)=2
n4:g4(2*x1+0x—-14+1%2)=g4(4) =—4
n5:g5(1x—1+2+—-2+4+(—4)*—4+1x5)=g5(16) = 0.999~1

yl=n2=2
y2=n5=1
y3=n4=-4

Exercise 2.6

Exercise 2.6: Design a neural network with six binary input signals So, S1, lp, I1, I2, I3 and a single
binary output signal 1,,,;, which behaves as a 4-bit multiplexer. You are free to determine the structure
of the network yourself, but try to use as few layers as possible. The following activation function
should be used for all neurons:

1 if0.2.-2>1,
glz) =

0 otherwise.

As a reminder, a 4-bit multiplexer uses its inputs (S; and 57) to select and propagate one of the
four input values (Iy, I1, I> and I3). The remaining input values are ignored. The following truth
table illustrates this behavior:

51 | So | I | I | I, | I3 || Lout

0 0 1 * * 1
0 0 0 * * 0
0 1 * 1 * * 1
0 1 * 0 * * 0
1 0 * * 1 * 1
1 0 * * 0 * 0
1 1 * * * 1 1
1 1 * * 0 0

Note: The * symbol means that the signal at the given position can be either 1 or 0, as its value does
not affect the output in any way.

A 4-bit multiplexer can be built with 2 Not Gates, 4 AND Gates and one OR Gate:

51

>
>

U

Output

JUU

These Gates can be built from neurons and the given g(x):

AND Gate: OR. Gale Nd'[Ga\k

2 S 5

/ A -7
N 2 2 Q3 = [a /]
C C

Therefore the multiplexer can be built like this:

Exercise 2.7

Exercise 2.7: Consider a single layer perceptron with two input neurons and one output neuron of the
following form:

T

\\?—IL ?
Y
T2 "/’?;;,9_

Train the perceptron using the Perceptron learning rule and the identity activation function g(z) = x
on the following training data: f(3,1) =6, f(0,2) = 12, f(4,—7) = 12 and f(—8,12) = —35. The
weights are initialized to 0 and the learning rate «v is 1. The bias weight will not be learned and stays 1.

Express the function f(z,,25) that your network has learned after the training is complete alge-
braically. Does this function produce the expected outputs for all four training inputs?

If the neuron has not learned the function correctly, provide alternative weights so that the neuron
produces the expected outputs for all examples, or prove that this is impossible.

Useful equations

in= Zwi*xi
i

hy = g(in)
Err=y—h, ..y=f(x)

w; =w; +ax*Errxg'(in) * x;

Initial situation

W1:0
W2:0
a=1

1. Round:f(3,1)=6

in=0*3+0x1+1=1
hy(31) =g(1) =1
Err=6—1=5
g=1
w;=0+1x5x1x3=15
w,=04+1%5+%1+1=5

2. Round:f(0, 2) =12

in=15x0+5+x2+1=11
h,(0,2) =g(11) =11
Err=12-11=1

g1 =1
w;=154+1%1%x1x0=15
W, =54+1*x1x1x2=7

3. Round:f(4,-7)=12

in=15%4+7*(=7)+1=12
h,(4,-7) =g(12) =12
Err=12-12=0

g'(12)=1
w;=15+1%x0x1x4=15
w,=7+1x0x1%(-7)=7

4. Round:f(-8,12) =-35

in=15*(—-8)+7%12+1=-35
h,,(=8,12) = g(—35) =35
Err=-35—-(-35)=0
g'(=35)=1
w;=15+1%1x0x—-8=15
w,=7+1x1+x0%x12=7

flx,x) = gwe +wy *xx; +wy *x,) = g(1+ 15x; +7x,) = 1+ 15x; + 7x,
F3BD)=1+15%3+7x1=37

£(0,2)=1+15%0+7%2 =15

F4,-7)=1+15%4+7x(=7) = 12

£(—8,12) =1+15%(—8) + 7 %12 = —35

The learned function f(x4,X;) does not produce the correct values

By converting the equations into a matrix, we can prove via the gauss elimination method, if a correct solution exists

3 1 6

0 2 12
4 -7 12
-8 12 =35

I =111 i I
= —_ =%
3

3 1 6
0 2 12

Lo 25 , |
R
-8 12 -35
8
IV=1IV+_x*I
3
3 1 6
0 2 12
0 —2 4
3

o #)
3

25
11 = 111+?*11

3 1 6
(0 2 12\
0 0 54

4

0 * 19
3

This would mean 0*x1 + 0*x2 = 54, which cannot be true, therefore no solution exists

Exercise 2.8

Exercise 2.8: Show formally that a single-layer perceptron with the step function as activation func-
tion (g(x) = 1 for = > t for some threshold ¢ and g(z) = 0 otherwise) cannot express XOR.

A perceptron evaluates to the following function
f(x,x2) = gwo + X1 * wy + x5 * wy)

XOR should therefore validate the following system of equations

I: £(0,0) = 0

I1:£(0,1) =1
HI:£(1,0) = 1
IV:f(1,1) =0

1:£(0,0) = g(wo)

1I: £(0,1) = g(wy +wy)

HI: f(1,0) = g(wy + wy)
IV:f(1,1) = glwg + wy +wy)

The result of the step-function is “1”, if g(x) = tand “0” if g(x) < t
Mapping these constrains to our system of equations leads to the following
Iwyg <t

IH:wyg +wy >t

HI:wg+w; >t

Vi:wg+w; +w, <t

Therefore the following transformations must lead to a valid result

I11I:

W0<tS wo + wy

Wo < wo+wy | —wy

wy; >0

I1L1V:

Wo+wy+w, <t<wg+w,

wo+wy +w, <wg+w, | —(wg+wy)
w; <0

But they don’t.

Exercise 3.1

Exercise 3.1: Consider the following cryptarithmetic puzzle. Every letter corresponds to exactly one
digit. In particular, the digits corresponding to different letters are different and C, R, and D should
not be 0.

DANGER

(a) Describe the corresponding CSP with its variables and constraints and specify the initial domain
of each variable.

(b) Draw the constraint graph.

(c) Find a solution of the puzzle.

a)

Variables:
C,R,0,S A D, N,G,E, X1, X2, X3, X4, X5

Domain:
{OI 1' 2' 3' 4' 5' 6' 7' 8’ 9}

Constraints:
Alldiff(C, R, O, S, A, D, N, G, E)

C!=0
R1=0
DI=0

... because they are the first digit of each number

S+S=R+10*X1
X1+S+D=E+10*X2
X2+0+A=G+10*X3
X3+R+0=N+10*X4

X4 +C+R=A+10*X5

X5=D

... to ensure the addition is correct

b)

AlIDiff

Math Const. —»

c)

Solution found via following online decoder: https://www.dcode.fr/cryptarithm-solver

CROSS+ROADS=DANGER
96233+62513=158746

https://www.dcode.fr/cryptarithm-solver

Exercise 3.2

Exercise 3.2: Consider the 3-colorability problem for the following graph:

(a) Perform one step of the backtracking search on the following graph. Use the colors red, green, and
blue. Select the first node by using the degree heuristic and after that, select the nodes according
to the minimum-remaining-values heuristic. If the remaining values of two or more nodes are
equal, apply the degree heuristic to these nodes. If you still have multiple options after applying
both heuristics, select the node with the smallest number. If the step terminates and colors the
entire graph, show the coloring it found. If it necessitates a backtrack, state which node could not
be colored and stop (i.e., do not backtrack).

Heuristics:

Degree Heuristic (DH)
Selects the node that is involved in the largest number of constraints on other unassigned nodes

Minimum Remaining Values Heuristic (MRVH)
Choose the variable with the fewest legal values

Step Heuristic Candidates Visited Nodes
| 1 DH 6 6 |
2 MRVH 3,5,8,9,10
DH 3 3,6
3 MRVH 5 3,6,5
4 MRVH 2,4,7,8,9,10
DH 1,4,9
MIN 1 3,6,5,1
| 5 MRVH 2 36512 |
| 6 MRVH 4 365124 |
| 7 MRVH 7 3651247 |
8 MRVH 8,9,10
DH 9 3,6,5,1,2,4,7,9
| 9 MRVH 8 3,6,51,2,4,7,9,8 |

| 10 MRVH 10 3,6,5,1,2,4,7,9,8,10]

(b) Give a partially colored graph and select one additional node to color so that the least-constraining-
value heuristic forces you to choose one particular color for that node. Try to keep your example
as simple as possible.

Next choice

Allows 0 values for D / \ Allows 1 value for D

Exercise 3.3

Exercise 3.3: After a long semester your heart cannot help but scream vacation. You set off to a nice
quiet beach, only to find yourself at an impasse. Since the bridges to the other side were not properly
maintained, most of them were damaged and you cannot simply pass. Fortunately, like any good
tourist, you are carrying tools and wooden planks and are able to repair the broken bridges if you are

in one of the regions they connect. If a bridge is already operational, you may simply pass. Your only
goal is to get to the beach as fast as possible.

(a) Design two STRIPS actions, one for crossing from one region to another and one for repairing

a broken bridge between two regions. Define the variables to model different aspects of this
exercise on your own and describe them in detail.

(b) You are given a map of your surroundings. Regions are labeled with ry, . . ., rg and bridges with
with by, ..., b1g. Visual inspection tells you that the bridges b2, b3, bg, bg, and byg are broken.
Your initial position is the region rg, while you desire to be at y. Formulate the initial state of

the given planning setting and use progression planning to find a plan to reach the beach. What
do the goal states look like?

L

N
lb Vi M/b

a T,
‘bg - .10

a)

Action(Cross(r1,72,b))
Precond:at(r1) A connected(rl,b) A connected(r2,b) A (r1! = r2)
Effect:at(r2) Alat(rl)

Action(Repair(r,b))

Precond:at(r) A connected(r,b) A broken(b)
Effect:! broken(b)

at(r) ... Player isinroomr
connected(r, b) ... Room is connected to bridge "b"
broken(b) ...Bridge "b" is broken

Should also include a notBroken(b) statement, since strips cannot contain negative attributes like 'broken(b)

Samll error:
Should also include a notBroken(b) statement, since strips cannot contain negative attributes like !broken(b)

Highlight

(b) You are given a map of your surroundings. Regions are labeled with 1, . . ., rg and bridges with
with by, ..., b1g. Visual inspection tells you that the bridges b, b3, bg, bg, and by are broken.
Your initial position is the region rg, while you desire to be at ry. Formulate the initial state of
the given planning setting and use progression planning to find a plan to reach the beach. What

do the goal states look like?

-

I, 4 ﬂ:r >
om I s b &°7

6 7
8 :blﬂ
r
Initial state: r8
Goal: rl
Cross(r8,r5,b9) Cross(r5,r2,b4) Repair(r2, b3) Cross(r2,r3,bh3) Cross(r3,r1,b1)

-~ "'-‘(/"_' T ‘//"' T ‘(/"_' T ‘//"_' o
at(r8) at(rs) at(r2) at(r2) at(r3) at(r1)
broken(b2) broken(b2) broken(b2) broken(b?2) broken(b2) broken(b2)
broken(b3) broken(b3) broken(b3)
broken(b6&) broken(b6) broken(bG) broken(bG) broken(b&) broken(b6)
broken(b8) broken(b8) broken(b8) broken(b8) broken(b8) broken(b8)
broken(b10) broken({b10) broken(b10) broken(b10) broken(b10) broken(b10)

connected(r1,b1)

connected(r2,b3)
connected(r2,b4)

connected(r3,b1
connected(r3,b3
connected(r3,b5
connected(r3,b6

connected(r4,b2)
connected(r4 b7)

connected(rd,b4)
connected(r5,b9)

connected(r6,b5)
connected(ré,b3)

connected(r7,b6)
connected(r7,b7)
connected(r7,b10)

connected(r8,b9)
connected(rd,b10)

connected(r1,b1)

connected(r2,b3)
connected(r2,b4)

connected
connected
connected
connected

r3,b1)
r3,b3)
r3,b5)
r3,b6)

connected(rd4,b2)
connected(r4,b7)

connected(r,b4)
connected(r5,b9)

connected(r6,b5)
connected(r6,b8)

connected(r7,b6)
connected(r7,b7)
connected(r7,b10)

connected(r8 bg)
connected(r8,b10)

connected(r1,b1)

connected(r2,b3)
connected(r2,b4)

connected(r3,b1
connected(r3,b3
connected(r3,b5
connected(r3,b6

connected(r4,b2)
connected(r4, b7)

connected(r5,b4)
connected(rs,b9)

connected(r6,b5)
connected(rg,b8)

connected(r7,b8)
connected(r7,b7)
connected(r7,b10)

connected(r8,b9)
connected(r8,b10)

connected(r1,b1)

connected(r2,b3)
connected(r2,b4)

connected
connected
connected
connected

r3,b1)
r3,b3)
r3,b5)
r3,b6)

connected(r4,b2)
connected(r4,b7)

connected(rs,b4)
connected(r5,b9)

connected(r6,b5)
connected(r6,b8)

connected(r7,b6)
connected(r7,b7)
connected(r7,b10)

connected(r8,bg)
connected(r8,b10)

connected(r1,b1)

connected(r2,b3)
connected(r2,b4)

connected(r3,b1
connected(r3,b3
connected(r3,b5
connected(r3,b6

connected(r4,b2)
connected(r4 bT)

connected(r5,b4)
connected(rs,b9)

connected(r6,b5)
connected(rg,b8)

connected(r7,b6)
connected(r7,b7)
connected(r7,b10)

connected(r8,b9)
connected(r8,b10)

connected(r1,b1)

connected(r2,b3)
connected(r2 b4)

connected(r3,b1)
connected(r3,b3)
connected(r3 b5)
connected(r3,b6)

connected(r4,b2)
connected(r4 b7)

connected(r5,b4)
connected(r5,b9)

connected(r6,b5)
connected(ré b8)

connected(r7,b6)
connected(r7 b7)
connected(r7,b10)

connected(r8,b9)
connected(r3,b10)

Exercise 3.4

Exercise 3.4: You have recently noticed that some birds are regular visitors of your balcony, so your
want to surprise them by building a small bird house in which you can put some seeds for them. You
already bought a wooden kit and left it in your living room and there are some tools, such as a hammer
and nails, in your basement. Since you finished your studying early, you have plenty of time and you
decide to practice your Al skills by formalizing the process of gathering the essentials for building the
bird house as follows:

Action(Take(r, 0)),
Precond : contains(r, o) Ain(r),
Effect : holds(o) A —contains(r, o)
Action(Put(r, o)),
Precond : holds(o) A in(r),
Effect : —holds(0) A contains(r, o)
Action(Move(rs, r3))
Precond : in(r1),
Effect : min(ry) A in(rs)

The meaning of the predicates is as follows:
in(r): you are located in the room r,
contains(r, 0): the room 7 contains the object o,
holds(o): you are holding the object o.

Furthermore, you specify your initial state as:

S := {in(hallway), contains(livingRoom, woodenKit), contains(basement, hammer),
contains(basement, nails)}.

The desired state is formalized as:

G := {in(balcony), contains (balcony, woodenkit), contains(balcony, hammer),
contains(balcony, nails)}.

Use the STRIPS state-space search algorithm starting in S (i.e., use progression planning) to deter-
mine the shortest possible plan that achieves the desired goal state G. You do not have to draw a
complete graph. Simply show how the solution is found.

Q.@

Balcony Hallway Living Room Basement
Move(H,R) Abbreviations:
Take(LR,WK)

Move(LR,BSM) BLC ... Balcony
TAKE(BSM, H) HW ... Hallway
TAKE(BSM,N) LR ... Living Room
Move(BSM,LR) BSM ... Basement
Move(LR,HW)

Move(HW,BLC) WK ... Wooden Kit
PUT(BLCWK) H ... Hammer
PUT(BLC,H) N ... Nails

PUT(BLC,N)

Exercise 3.5
Exercise 3.5: Assume there is a lottery with tickets for €5 and there are three possible prizes: €100
with a probability of 0.1%, €50 with probability 0.2%, and €1 otherwise.

(a) What is the expected monetary value of a lottery ticket?

(b) When is it rational to buy a ticket? Give an inequality involving utilities with the following
utilities: U(S) = 0, U(Sk45) = 5 - U(Sk41), U(Sk4+50) = 35 - U(Sk+5), but there is no
information about U (Sk100)- (S, denotes the state of possessing n Euros.)

(c) Define U(Sk.5) and U(Sky100) such that a rational agent whose utility function satisfies the
equations in Subtask (b) chooses to buy a lottery ticket.

a) Monetary Value

(100 — 5) % 0.1% + (50 — 5) % 0.2% + (1 — 5) * 99.7% = —3.803€

b) Rational to buy a ticket

EU(buy) = 0.1% * U(Sk4100) + 0.2% * U(Sk450) + 99.7% * U(Sk41)
= 0.1% * U(Sics100) + 0.2% * 35 * U(Sirs) + 99.7% * U(Sirs)
= 0.1% * U(Ss100) + 0.2% * 35 # 5 % U(Siy1) + 99.7% % U(Scy1)
= 0.001 * U(Sis100) + 1.347 * U(Sks1)

EU('buy) = U(Si+s) = 5 * U(Sk+1)

EU(buy) = EU(! buy)
0.001 * U(Sis100) + 1.347 % U(Sisr) = 5% U(Sksr)
0.001 % U(Sks100) = 3.653 * U(Sks1)
U(Sk+100) = 3653 * U(Sk41)

c) Defining U(Sys) and U(Sk+100)
U(Sk+100) = 3653 * U(Sy41)

1
U(Sk+100) = 3653 = T * U(Sk+s)
U(Sk+100) = 730.6 * U(Sk+5)

U(Sk+1) =1
> U(Sk+s) =5
i U(Sk+100) = 730.6 * 5 = 3653

Exercise 3.6

Exercise 3.6: In 1713, Nicolas Bernoulli investigated a problem, nowadays referred to as the Sz. Pe-
tersburg paradox, which works as follows. You have the opportunity to play a game in which a fair

coin is tossed repeatedly until it comes up heads. If the first head appears on the n-th toss, you win
2" Euros.

(a) Show that the expected monetary value of this game is not finite.

(b) Daniel Bernoulli, the cousin of Nicolas, resolved the apparent paradox in 1738 by suggesting
that the utility of money is measured on a logarithmic scale, i.e., U(S,,) = alog, n + b, where
Sy (n > 0) is the state of having n Euros and a, b are constants. What is the expected utility of
the game under this assumption? Assume, for simplicity, an initial wealth of 0 Euros and that
no stake has to be paid in order to play the game.

a) Infinite monetary value
1
EMV(1) = — = 2!

1 1
EMV(2) =57+ 2! 4+ 22

22
1 1 1
EMV(3) =—==x21+ 22 * 22 + >3 * 23

n

EMV(n) = ZZL" A
i=1
n
- Z 1
i=1

limn = oo

n—oo

b) Expected Utility

1
EU(D) = Jira* d2h) +b

1 1
EU(2) = —*a*ld(Zl)+b+—*a*ld(22)+b

EU(n)—Z—*a*ld(2)+b

*a*xi+b

-

27"

i=1

n
ax*i
>ty

n

i=1 i=1
n n
_ i 1
—“*25”’*25
i=1 i=1
n
1
lim a * Z——a*2+b*1
n—-oo 2
i=1 i=1

=2a+b

