Y Informatics

Advance Computer Architecture
F1 On-chip Buses

Daniel Muller-Gritschneder

Most chips feature a range of processing elements (PEs) / multi-cores

PEs needs to communicate with each other

On-chip Interconnect architecture and type play crucial role in performance.

Chips and devices are connected via different types of interconnects

V1.0 AVA 2

Interconnect types

On-chip buses

Networks-on-chip (NoC)

A look at real on-chip interconnects Optional, not relevant for exam

V1.0 AVA 3

F1.1 Types of Interconnects

V1.0 AVA

Interconnect Types

* On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

* PCB-level: Connects different ASICs + connectors and other component all mounted on
one Printed Circuit Board (PCB).

 Many other interconnects (board to board, rack to rack): PCle, Ethernet, CAN, UART, 12C,
SPI, GPIO, ...

Memories

Pl HIRC R R Actuator
Embedded i B Micro-Controller /) o B
processor 2 0 ol | System-on-chip

Other

Integrated PEELES
Circuit (IC)

Printed Circuit Board (PCB)

V1.0 AVA 5

Different Scales of Interconnects

Chip2Chip (3D Stacked)

On-chip it
Interconnect i i Chip Package

Processor Main Memory

Bumps S AMD
PCB Board ource

Chip2Chip

Board2Board

Rack2Rack

sl e CSNCRWSITRITSSITSSNeg

Sources: Pulp, SpiNNCloud
V1.0 AVA 6

F1.2 On-chip Buses - Introduction

V1.0 AVA

Memory-mapped Buses

* Purpose:
* Read or write a value from or to a certain address
* Value can be data or peripheral control information

 Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus
protocol
* Address bus
e Data bus for reading data
e Data bus for writing data
* Control signals: Indicate if access is read or write, bust length, ID, bus grant, ...

 Modules on the bus can either act as initiators or targets
» Typical initiators: CPUs, DSPs, DMAs, bus bridges, ...
* Typical targets: Memory, accelerators, interface peripheral, bus bridges, ...

V1.0 AVA 8

Classes of Memory-mapped Buses

Single-initiator bus:

* One initiator component can address different target components, which are mapped to different
addresses

Shared bus:

* There are several initiators on the bus
* An arbiter decides which initiator module is granted access to the bus
* Only one initiator can access one slave via the bus at a time

Layered bus:
* There is more than one arbiter such that more than one initiator is granted access on the bus
* Only one target component on each layer can be accessed at a time

Crossbar/ bus matrix
* Each target component has its own arbiter
* Each target component can be accessed by one initiator at a time

V1.0 AVA 9

V1.0

F1.3 On-chip Buses — Single Initiator

AVA

10

Single-Initiator Bus

e Target knows
 ifitis addressed by observing the address bus ADDR
e or decoder generates SEL signal for targets based on address bus ADDR

e Target can receive data on write data bus WDATA

* Decoder forwards the data from the addressed target by multiplexing it to the read data
bus RDATA

» Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY)

SEL,WR | ‘
i Target1 — I J— .
Init WDATA I
Init D > Target2
- DATA,RDY -
T T) Target2
§[3 =
Initiator Mirrored [
initiator
T Target3
. Decoder |«
Mirrored Target

Target

V1.0 AVA 11

Simple Write Access

O

1. |Initiator places address and data on the ADDR and WDATA bus ADDR ADDR
Initiator indicates write by setting signal WR to high WR__ b | WR | _
. Init SEL SEL arge
Initiator indicates that access is started by setting SEL signal to high ol woars
2. Target acknowledges write access by RDY signal . RDY | | RDY |

4

No wait cycles Two wait cycles
c1 2 3 4 | cC1 2 (3 4 5 €6 |
DR W addr X ADDR X adde X
WOATA | Xt X woaTA X data | X__
ROY | IR - 2 R A R T N

V1.0 AVA 12

Simple Read Access

N

RDY

1. |Initiator places address on the ADDR bus ADDR ADDR
Initiator indicates read access by setting signal WR to low WR WR
Initiator indicates that access is started by setting SEL signal to high mt [SEL_ | |SEL | Targett

RDATA RDATA
2. Target places data on RDATA bus RDY RDY |
Target acknowledges write access by RDY signal v
No wait cycles Two wait cycles
c1 2 3 4 | C1 £2 (3 (4 (5 (6
ADDR >(addr >(ADDR >(addir X
wroL N L/ owR N L L
SEL |/ * SEL 1 Y/ LN
RDATA >@ata>(RDATA >Gata>(

RDY | ! i ! !

V1.0 AVA 13

Performance of Simple Accesses

e Each access takes minimally two cycles
 Maximal bus bandwidth is: BW,,, = 0.5 - buswidth - fi,s

Two read accesses Two read accesses (bus access diagram)
1 2 c3 4 | c1 ic2 ic3 ica |

ADDR X addrt X addr2 | ADDR [_addrt addr2
wr o o
SEL / | . | .

RDATA | Xata__ Mata? RDATA | |datal] [data2

V1.0 AVA 14

Pipelined Accesses

* The next address can be placed on the bus while the data is read

 Maximal bandwidth supported by bus is equal to:
BWhyys = buswidth - fps

* Additional control signals and logic required to support pipelined accesses.

Three pipelined read accesses

C1 ic2 iC3 ica |

ADDR addr1 |addr2 [addr3

RDATA data1|data2|data3

V1.0 AVA 15

Burst Accesses

* A burst accesses a consecutive row of addresses

* Version 1: the addresses for all accesses must be given and a control signal that indicates
that this is a burst access of a certain size

* Version 2: Only the start address must be given and a control signal that indicates that
this is a burst access of a certain size

Four data values are returned for one start address (burst4)

C1 1C2 1C3 iC4 C5 | ! C1 1C2 iC3 iC4 C5
ADDR addr1 addr2 |addr3 |addr4 i ADDR addr1
BURST | b4 i BURST | b4
RDATA I datal| data2| data3| data4 RDATA I datal| data2| data3| data4

V1.0 AVA 16

Multiple Outstanding Transactions

* A address may be placed on the bus before the data of the previous access has been read
or be written

* This improves performance in case of wait cycles.

No outstanding transactions (two wait cycles)

'c1ic2 ic3 ica o5 €6 C7

ADDR |addr1 | addr2 hddr3 |
RDATA i i i data1 i data2

With multiple outstanding transactions (two wait cycles)

c1ic2 ic3 ica o5 €6 C7

ADDR addr1 |addr2 addr3

RDATA

data1| data2| data3

V1.0 AVA 17

Out of order Completion with Interleaving

* A address may be placed on the bus before the data of the previous access has been read
or be written

* |In case of wait cycles, the order of data reads may be changed

No out of order completion with interleaving

ic1ic2 ic3ica o5 €6 C7

ADDR hddr1 bddr2 hddr3

RDATA ' ' ' | data1l data2l | data3

With out of order completion with interleaving

'c1ic2 ic3ica o5 €6 C7

ADDR addr1 |addr2 addr3

data2| data1| data3

RDATA

V1.0 AVA 18

V1.0

F1.4 On-chip Buses — Multiple Initiators

AVA

19

Shared Bus

* Arbiter grants access to the initiator:

* Only the address and data of one initiator is forwarded to the targets

REQ1-REQ3
> Arbiter
GRANT
ADDR —
Init1 SWDATA > Target1
> iDATA
LT | v 9 >
nit2 WDATA > Target2
> iDATA I
>
ADDR p| Target3
|n|t3 WDATA
> FDATA |
Decoder (4

V1.0 AVA 20

Bus Arbitration

The arbiter grants access to initiator that request the bus

Round-robin: Access granted to initiators in pre-defined order that is repeated

FIFO: First initiator requesting the bus is granted access

Priority: Initiator with highest priority is granted access to the bus

Round-robin: No pipelining Round-robin: With pipelining
' C1 1C2 1C3 iC4 1C5 1 C6 ! 1 C1 1C2 1 C3 iC4 :C5
REQT1 Req Req ' REQ1 Req | Req | Req '
REQ2 i i Req Req REQ2 i i Req | Req
GRANT | |1 2 i |n GRANT | [[n| 12|«
ADDR1 ! addr1 ! addr3| ADDR1 ! addr1|addr2 addr4
RDATA1 | ! data1 1 | RDATA1! ! datal|data?
ADDR2 ! ! addr:2 i ADDR2 addr3 |
RDATA2 data2 ' RDATA2 data3

V1.0 AVA 21

Split Accesses

 Slave can allow a split of an access if it was many wait cycles
* Access of initiator |11 is split by issuing a start of split by slave

* |2 is granted the bus and access of initiator 12 is performed
Then access of initiator |1 is finished by issuing an end of split

'Cc1.iC2 {C3 iCc4 iC5iCB ICT [C8 {CO !
REQ1 Req | | | | | | | .
REQ2 i i Req

GRANT | [0 2
ADDR1 ! addr1 i addri
RDATA | ! ! ! ! | ! :
1 : ! ,
ADDR2 | addrg
RDATA i i i i data2
2 ! ! ! ! ! : ! !
SPLIT_ | | | Start | End
S 1 1 1 1

data1

V1.0 AVA 22

Crossbar / Bus Matrix

 All targets can be accessed individually

* Only conflict when two initiators access same target

. Arbiter1
« GRANT/REQ omitted. il
Decoder1 *
ADDR r I
Init1 Mﬁé—‘ Target1
JDATA
Arbiter2
Decoder2 *
ADDR r I
|n|t2 M - Target2
iDATA e
Arbiter3
Decoder3 *
ADDR r
Init3 == Target3
iDATA E

V1.0 AVA 23

Layered Bus

* Targets are on different layers

* |nitiator can connect to targets on different layers simultaneously

ArbiterLayer1
Decoder1 *
o [
- | woATA Target1
DATA
ArbiterLayer2
Decoder2 *
o [smmras N
Init2 WDATA Target2

iDATA .

Decoder3
oo | I Decoder |

| WDATA
* Target3
iDATA . :

V1.0 AVA 24

Init3

Some Bus Standards

 AMBA Bus (ARM)
* AHB: Advanced High Performance Bus
* APB: Advanced Peripheral Bus
* AXI: Advanced eXetendible Interface

* Wishbone (Open)
 TileLink (Open)

V1.0 AVA 25

ARM AMBA Standard

Different Versions e.g., AMBA 2,0, AMBA 3.0,...
AHB: Advanced High Performance Bus

* High performance

* Pipelined operation

* Multiple bus initiators
e Burst transfers

e Split transactions

APB: Advanced Peripheral Bus

* Low power

* Simple Interface

* Suitable for many peripherals
* One initiator (APB Bridge)

AXI: Advanced eXetendible Interface
* Configurable channel-based specification

V1.0 AVA 26

Typical On-Chip Interconnect for Smaller Embedded Devices

* High-performance near the processor cores, low-performance near the slow 1/O devices

Several
Targets

Several
Initiators

To main

Instructionf g\ | T
Cache - memory
Processor I:T T Timer
Pipeline Data EHI

Cache

Bridge Bridge H
T Target Initiator D
| 1= 1) GPIO GPIO

Initiator Mirrored initiator

i One
q_/lalrrro:d Target € Several
9 Initiator Targets
AVA 27

V1.0

Conclusion

* Bus-based On-chip Interconnect
* Network on-Chip

* Next Sessions: Specialized Cores

V1.0 AVA 29

Thank you for your attention

Example — Layered Bus

* Given is the following architecture for a shared layered bus:
* There are two initiator components, CPU and DMA.

* There are three target components, MEM, HWacc and IO.
The MEM, is on layer 1, the Hwacc and IO component is on layer 2.

V1.0 AVA 31

Example — Layered Bus

ArbiterLayerl

V1.0

AVA

Decoderl *
M
| u
ADDR :
WDATA I VEM
CPU }
RDATA M
u
X ArbiterLayer2
Decoder2 ‘
M
ADDR I J >
WDATA % Hwacc
DMA n
RDATA M)
u
X
Decoder -
[e]
M

32

Example — Layered Bus - Access

Assume that the CPU wants to read access the 10 slave component in the bus cycle 1 and that the DMA

wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The 10 component inserts two wait cycles. The HWacc
component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no pipelining.

REQ-CPU
REQ-DMA

GRANT-Layerl
GRANT-Layer2

ADDR-Layerl
RDATA-Layerl

ADDR-Layer2
RDATA-Layer2

V1.0

Round-robin: No pipelining

1 ic2 ic3 ica ics ice jC7

L2

L2

CPU i DMA

addr-10 addr-HWacci

:/ :/‘ datal Idata2 |

wait cycles

AVA 33

Example — Layered Bus - Access

Assume that the CPU wants to read access the 10 slave component in the bus cycle 1 and that the DMA

wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The 10 component inserts two wait cycles. The HWacc
component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no pipelining.

REQ-CPU
REQ-DMA

GRANT-Layerl
GRANT-Layer2

ADDR-Layerl
RDATA-Layerl

ADDR-Layer2
RDATA-Layer2

V1.0

' C1

Round-robin: With pipelining

iC2 iC3 iC4 iC5 iC6 | C7
L2 | | | | ’
L2
CPU DMA
addr-10 addr-i—IWaccE
| | / | datal [data2
wait cycles

AVA

34

	Folie 1
	Folie 2: Motivation
	Folie 3: Agenda
	Folie 4
	Folie 5: Interconnect Types
	Folie 6: Different Scales of Interconnects
	Folie 7
	Folie 8: Memory-mapped Buses
	Folie 9: Classes of Memory-mapped Buses
	Folie 10
	Folie 11: Single-Initiator Bus
	Folie 12: Simple Write Access
	Folie 13: Simple Read Access
	Folie 14: Performance of Simple Accesses
	Folie 15: Pipelined Accesses
	Folie 16: Burst Accesses
	Folie 17: Multiple Outstanding Transactions
	Folie 18: Out of order Completion with Interleaving
	Folie 19
	Folie 20: Shared Bus
	Folie 21: Bus Arbitration
	Folie 22: Split Accesses
	Folie 23: Crossbar / Bus Matrix
	Folie 24: Layered Bus
	Folie 25: Some Bus Standards
	Folie 26: ARM AMBA Standard
	Folie 27: Typical On-Chip Interconnect for Smaller Embedded Devices
	Folie 28: Summary
	Folie 29: Conclusion
	Folie 30: Thank you for your attention
	Folie 31: Example – Layered Bus
	Folie 32: Example – Layered Bus
	Folie 33: Example – Layered Bus - Access
	Folie 34: Example – Layered Bus - Access

