Zum ersten Übungstest kommt eine Auswahl aus den folgenden Fragen.

1 Definition von Konvergenz

Welche der folgenden Eigenschaften einer Folge a_n sind äquivalent zu " a_n ist konvergent" (in \mathbb{R})?

Dazu können Eigenschaften der Form "Q l ${\bf R}$ r" abgefragt werden, wobei es folgende Möglichkeiten gibt:

```
 \begin{array}{l} \mathbf{Q} & (\exists a \in \mathbb{R}) \ (\forall \varepsilon > 0) \ (\exists M) \ (\forall n > M), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon \geq 0) \ (\exists M) \ (\forall n > M), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon \neq 0) \ (\exists M) \ (\forall n > M), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon \geq 1) \ (\exists M) \ (\forall n > M), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon > 1) \ (\exists M) \ (\forall n > M^2), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon > 0) \ (\exists M) \ (\forall n > M^2), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon > 0) \ (\exists M) \ (\forall n > M + 1), \\ (\exists a \in \mathbb{R}) \ (\exists M) \ (\forall \varepsilon > 0) \ (\forall n > M), \\ (\exists a \in \mathbb{R}) \ (\forall \varepsilon > 0) \ (\exists M) \ (\exists n > M), \\ \end{aligned} 
\begin{array}{c} \mathbf{1} & |a_n - a|, \\ |a_n - a_n|, \\ |a_n - a_n|, \\ |a_n - a_n| \\ \end{aligned} 
\begin{array}{c} \mathbf{R} & <, \\ \leq, \\ > \\ \end{array} 
\begin{array}{c} \varepsilon, \\ \varepsilon + 1, \\ \varepsilon^2, \\ \frac{\varepsilon}{2}, \\ \sqrt{\varepsilon}; \end{array}
```

Ebenfalls gefragt werden können Cauchyfolgen-Varianten, d.h., "Q l R r" mit R und r wie oben, und:

```
Q \mid (\forall \varepsilon > 0) (\exists M) (\forall n, m > M) 
(\forall \varepsilon > 0) (\forall M) (\exists n, m > M) 
(\exists M) (\forall \varepsilon > 0) (\forall n, m > M) 
1 \mid |a_n - a_m|, 
|a_m - a_n|, 
|a_n - a_n, 
|a_m - a_n|
```

Beispiel: Q sei $(\exists a \in \mathbb{R}) (\forall \varepsilon > 0) (\exists M) (\forall n > M^2)$ und l sei $a_n - a$ und R sei > und r sei ε^2 ; dann ergibt sich die Frage:

```
Ist folgende Aussage äquivalent zu "a_n ist konvergent:" (\exists a \in \mathbb{R}) (\forall \varepsilon > 0) (\exists M) (\forall n > M^2) a_n - a > \varepsilon^2.
```

Formal sind das also 660 "verschiedene" Fragen.

Hinweise: Das sollte alles offensichtlich sein; beachte allerdings folgende möglicherweise überraschende Kombinationen:

$$\dots (\forall \varepsilon \neq 0) \dots < \varepsilon^2$$

 $\dots (\forall n, m > M) \dots a_n - a_m < \varepsilon \text{ (ohne Betrag-Striche!)}$

Bemerkung (Keine Prüfungsfrage)

Was ist mit $(\forall \varepsilon > 0)$ $(\exists a \in \mathbb{R})$ $(\exists M)$ $(\forall n > M)|a - a_n| < \varepsilon$? (Hinweis: das schaut zwar ganz falsch aus, funktioniert aber, siehe Cauchyfolgen)

2 Konvergenz

Gib für folgende Folgen a_n und für allgemeines $\varepsilon > 0$ ein M an mit $(\forall n > M) |a_n| < \varepsilon$

(a)
$$a_n = \frac{1}{n}$$

(c)
$$a_n = \frac{1}{2^n}$$

(e)
$$a_n = (-1)^n \frac{1}{n}$$

(b)
$$a_n = \frac{1}{\sqrt{n}}$$

(d)
$$a_n = 0$$

(f)
$$a_n = (-1)^n \frac{1}{10^n}$$

3 Logik

Welche der folgenden Aussagen sind allgemein gültig (d.h. für beliebige mathematische Aussagen φ , ψ , für beliebige Menge A)

Zur Erinnerung: $\varphi \to \psi$ heißt "wenn dann" bzw "impliziert"; \leftrightarrow heißt "gdw", \land heißt "und", \lor "oder" und \neg "nicht".

(a)
$$\neg (\forall x \in A)\varphi(x)$$
 impliziert $(\exists x \notin A)\varphi(x)$.

(b)
$$\neg(\forall x \in A)\varphi(x)$$
 implicient $(\exists x \in A)\neg\varphi(x)$.

(c)
$$\neg(\forall x \in A)\varphi(x)$$
 impliziert $(\forall x \notin A)\neg\varphi(x)$.

(d)
$$\varphi \to \psi$$
 implizient $\neg \varphi \to \neg \psi$.

(e)
$$\varphi \to \psi$$
 impliziert $\neg \psi \to \neg \varphi$.

(f)
$$\varphi \leftrightarrow \psi$$
 impliziert $\neg \varphi \leftrightarrow \neg \psi$.

Und dieselben Fragen nochmals für "gdw" statt "impliziert".

4 Ordnungen, Vollständigkeit

Welche der folgenden Aussagen gilt in \mathbb{N} , \mathbb{Z} , \mathbb{Q} und \mathbb{R} :

- (a) Jede nicht-leere Teilmenge hat ein Minimum.
- (b) Jede nicht-leere Teilmenge hat ein Maximum.
- (c) Jede beschränkte nicht-leere Teilmenge hat ein Minimum.

- (d) Jede beschränkte nicht-leere Teilmenge hat ein Maximum.
- (e) Jede nicht-leere Teilmenge hat ein Infimum.
- (f) Jede nicht-leere Teilmenge hat ein Supremum.
- (g) Jede beschränkte nicht-leere Teilmenge hat ein Infimum.
- (h) Jede beschränkte nicht-leere Teilmenge hat ein Supremum.

5 Bruchrechnen

Welche der folgenden Brüche stellen die gleiche Zahl dar:

(a) $\frac{3}{\frac{5}{2}}$

(e) $\frac{1}{2} + \frac{2}{3}$

(j) $\frac{2}{3}$

(b) $\frac{2}{\frac{2}{4}}$

(f) $\frac{1}{2} + \frac{1}{3}$

(k) $\frac{3}{2}$

(c) $\frac{2}{\frac{4}{2}}$

(g) $\frac{1}{2} + \frac{1}{6}$

(1) $\frac{1}{\frac{6}{5}}$

 $\frac{4}{2}$

(h) $\frac{5}{6}$

(m) 1

 $(d) \ \frac{2}{\frac{1}{2}}$

(i) $\frac{6}{5}$

(n) 4

(Allenfalls gefragt in der Form: Welche der folgenden Brüche sind gleich X, wobei X einer der Einträge ist, z.B. $\frac{1}{2} + \frac{2}{3}$.)

6 Wachtumsraten

Ordne die folgenden Folgen nach Ihrer Wachstumsrate (\ll), wobei k>2 und $1<\ell<2$

(a) $\log n$

(e) n

(i) n^k

(b) $\sqrt[k]{n}$

(f) $n \log(n)$

(i) 2^n

(c) \sqrt{n}

(g) n^{ℓ}

(d) $\sqrt[l]{n}$

(h) n^2

(Allenfalls gefragt in der Form: Gilt $\log(n) \ll n^k$ etc, das sind dann 56 "verschiedene" Fragen.)

7 Arithmetik mit Limiten

Wir setzen voraus dass die Folge a_n konvergiert und die dazugehörige Reihe konvergiert, und dasselbe für b_n . Was gilt dann allgemein:

(a)
$$\lim_{n\to\infty} (a_n) + \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n + b_n)$$

(b)
$$\lim_{n\to\infty} (a_n) \cdot \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n \cdot b_n)$$

- (c) $\lim_{n\to\infty} (a_n) \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n b_n)$
- (d) $\sum_{n=1}^{\infty} |a_n|$ konvergiert
- (e) a_n hat einen Häufungspunkt
- (f) $\sum_{n=1}^{\infty} (a_n) + \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n + b_n)$
- (g) $\sum_{n=1}^{\infty} (a_n) \cdot \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n \cdot b_n)$
- (h) $\sum_{n=1}^{\infty} (a_n) \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n b_n)$

8 Konvergenzkriterien

Sei a_n eine Folge. Was gilt allgemein: (Alternierend heißt dass a_n abwechselnd ≥ 0 und ≤ 0 ist.)

- (a) Wenn a_n beschränkt ist, dann konvergiert a_n .
- (b) Wenn a_n beschränkt ist, dann hat a_n einen Häufungspunkt.
- (c) Wenn a_n beschränkt und monoton ist, dann konvergiert a_n .
- (d) Wenn a_n beschränkt und monoton ist, dann hat a_n einen Häufungspunkt.
- (e) Wenn a_n einen Häufungspunkt hat, dann konvergiert a_n .
- (f) Wenn a_n konvergiert, dann hat a_n einen Häufungspunkt.
- (g) Wenn a_n genau einen Häufungspunkt hat, dann konvergiert a_n .
- (h) Wenn a_n konvergiert, dann hat a_n genau einen Häufungspunkt.
- (i) Wenn a_n konvergiert, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (j) Wenn a_n eine Nullfolge ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (k) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann konvergiert a_n .
- (l) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann is a_n eine Nullfolge.
- (m) Wenn $\sum_{n=1}^{\infty} |a_n|$ konvergiert, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (n) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann konvergiert $\sum_{n=1}^{\infty} |a_n|$
- (o) Wenn a_n alternierend ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (p) Wenn a_n alternierend und eine Nullfolge ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (q) Wenn a_n alternierend ist und $|a_n|$ eine monotone Nullfolge, dann konvergiert $\sum_{n=1}^{\infty} a_n$.

9 Mehr Konvergenz

Angenommen $\sum_{n=1}^{\infty} a_n$ konvergiert. Was gilt dann allgemein:

- (a) $\sum_{n=1}^{\infty} |a_n|$ konvergiert.
- (b) $\sum_{n=1}^{\infty} 100 \cdot a_n$ konvergiert.
- (c) $\sum_{n=1}^{\infty} \sqrt{n} \cdot a_n$ konvergiert.
- (d) $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$ konvergiert.
- (e) $\sum_{n=1}^{\infty} (-1)^n a_n$ konvergiert.

10 Limiten von rationalen Funktionen

Konvergieren folgende Folgen? Wenn ja, was ist der Limes? Wenn nein, gehen sie nach unendlich? Oder nach minus unendlich? (Oder natürlich: Weder noch?)

(a)
$$\frac{3n^2+7n}{6n^2+1}$$

(c)
$$\frac{3n^2+7n}{6n^3+1}$$

(e)
$$\frac{17n^4+1}{17n^3-1}$$

(b)
$$\frac{3n^2+7n}{6n+1}$$

(d)
$$\frac{17n^4+1}{17n^4-1}$$

(f)
$$\frac{17n^4+1}{17n^6-1}$$

11 Mengenschreibweise

Welche der Folgenden Aussagen gilt: Dabei bezeichnen wir hier mit (a, b) etc reelle Intervalle, und $\langle a, b \rangle$ das geordnete Paar.

(a)
$$\langle 2, 3 \rangle = \langle 3, 2 \rangle$$

(e)
$$[1,2) \cup (2,3) = [1,3)$$

(b)
$$\{2,3\} = \{3,2\}$$

(f)
$$[1,2) \cup [2,3) = [1,3) \setminus \{2\}$$

(c)
$$[1,2) \cup [2,3) = [1,3)$$

(g)
$$[1,2) \cup [2,3) = [1,3] \setminus \{2\}$$

(d)
$$[1,2) \cup [2,3) = [1,3]$$

(h)
$$[1,2) \cup (2,3) = [1,3) \setminus \{2\}$$

12 Abzählbarkeit

Welche der folgenden Mengen ist abzählbar:

(a) Ø

(e) \mathbb{N}_0

(i) Das Intervall (0,1)

- (b) $\{7, 12, 22\}$
- $(f) \mathbb{Z}$

(j) Das Intervall $(2, \infty)$

- (c) $\{8, 13, 23\}$
- $(g) \mathbb{Q}$

(d) N

(h) R

Kann auch gefragt werden: Welche Mengen haben dieselbe Kardinalität wie X, wobei X eine der Beispiele ist, z.B. \mathbb{Z} .

Kann auch gefragt werden als: Ordne folgende Mengen Ihrer Kardinalität nach, beginnend mit der kleinsten.

13 Rationale Zahlen

Welche der folgenden Zahlen ist in $\mathbb Q$ (Periodische Zahlen notieren wir zB als $0.23\overline{25}$):

(a) $0, 23\overline{762375}...$

- (d) $\sqrt{4}$
- (b) $0, 101 \underbrace{00}_{2} 1 \underbrace{000}_{3} 1 \underbrace{0000}_{4} 1 \dots$
- (e) 2π

(c) $\sqrt{2}$

(f) $\frac{92835}{7235} + \frac{1}{10^{51}-1}$