
Question1: Explain the basic terms of Dependability: Name the five attributes
(requirements) of a "dependable system". What is the difference between availability und
reliability? Explain the "dependability threats" Failure, Error and Fault and the relation
between them. Explain "permanent", "transient" and "intermittent" faults and provide
examples.

Definition: (Slide 6)

The ability of a system to deliver service that can justifiably be trusted. The ability of a system to

avoid service failures that are more frequent and more severe than is acceptable.

Attributes of a dependable system: (Slide 7)
 Availability: Readiness for correct service (usage): system is ready to be used immediately;

probability of correct functioning at any given moment in time.

 Reliability: Continuity of correct service; system runs continuously over a period of time

without failure. Difference to Availability: A system which is maintained for 2 weeks a year
but never fails has a high reliability but only an availability of 96%

 Safety: Absence of catastrophic consequences on the user(s) and the environment.

 Integrity: Absence of improper system alterations.

 Maintainability: Ability to undergo modifications and repairs.

Dependability Threats: (11-13)
 Failure: Event that occurs, when the delivered service deviates from correct (expected/useful)

service.

 Error: The part of a system’s total state that may lead to a subsequent service failure – a

failure occurs, when the error causes the delivered service to deviate from correct service.

 Fault: A (design, programming, manufacturing) defect, that has the potential to generate

errors

Relation between the above threats: (Slide 14)

Types of faults + Examples (Slide 46)

Transient Faults
 occurs once and then disappears

 If the operation is repeated, the fault goes away

 Detection may not be always necessary

 E.g.: A Bird flying through a beam of a microwave transmitter

 BUT: A transient fault can lead to a permanent error!

Permanent Faults

 continues to exist, until the faulty component is repaired

 E.g.: Burnt-out chips, Software Bugs, Disk head crashes

Intermittent Faults

 Appears, disappears, reappears, ...

 E.g. A loose contact on a connector

 Difficult to diagnose

Distributed Systems | Dependability and Fault Tolerance | Question 2

Why do we need a failure model? Provide different failure models for a "fail-
controlled systems" and discuss them with respect to the required effort for
masking faults. Why is it awkward to specify a system as "k-fault-tolerant"?

Book p. 324-326; Slides p. 51, 61

Why

Failures are divided into classes (failure models) for a better estimation of their consequences.

Failure models (by Tanenbaum) (slides p. 51)

• Crash failure: A server crashes and doesn't give any answers until it is rebooted but the server
worked fine before the crash. The failure can be masked with the help of multiple redundant
servers, because it is easy to detect, but as a result the traffic goes up and you have to face new
problems like consistency.

• Omission failure: A server doesn't reply to requests. This is easy to mask.
The failure can have following reasons:
◦ receive omission: The server never received a request.
◦ send omission: The server received the request, did the processing but wasn't able to send

the reply.
• Timing failure: The response takes longer then a defined maximum response time. The

masking effort depends on the defined response time. Too short: Too many failures occur. Too
long: Failures are detected too late.

• Response failure: The reply from the server is incorrect. There are two kinds of response
failures:
◦ Value failure: The server replies a wrong answer. E.g. a search engine provides websites

that were never searched for.
◦ State transition failure: The server acts in an unexpected way to a request, i.e. he departs

from the program flow. E.g. A server receives a request which he can't understand and starts
an action that should never happen. This failure can't be masked most of the time because it
is very hard to detect (mostly only by the user).

• Inconsistent/arbitrary/byzantine failure: A server may answer in a different way to the same
request. If the failure cannot be detected internally by the system, it is called a byzantine failure.
This failures cannot be masked at all, because they can't be detected.

K-fault-tolerance (slides p. 61)

A k-fault-tolerant system is a system, where k components can fail without any interference to the
system and the system has to be possible to respond correctly.
Problem:

• The faulty processes can possibly run on and produce wrong data (byzantine failure).
• 3k+1 processes are necessary for a k-fault-tolerant system.

(c) by Klaus Krapfenbauer

Distributed Systems | Dependability and Fault Tolerance | Question 2

Summary

(c) by Klaus Krapfenbauer

Q 3:

Slide: 8 p. 56 Book: 326f

Why do we need redundancy for masking faults? What kinds of redundancy do

you know?

Redundancy is the key for fault-tolerance. There can be no FT without redundancy!
If a system is to be fault tolerant, the best it can do is to try to hide the occurrence of
failures from other processes. The key technique for masking faults is to use
redundancy.

Three kinds are possible:

• information redundancy
• time redundancy
• physical redundancy

information redundancy, extra bits are added to allow recovery from garbled bits. For
example, a Hamming code can be added to transmitted data to recover from noise on
the transmission line.

time redundancy, an action is performed, and then if need be, it is performed again.
Transactions use this approach. If a transaction aborts, it can be redone with no harm.
Time redundancy is especially helpful when the faults are transient or intermittent.

physical redundancy, extra equipment or processes are added to make it possible for
the system as a whole to tolerate the loss or malfunctioning of some components.
Physical redundancy can thus be done either in hardware or in software. For example,
extra processes can be added to the system so that if a small number of them crash, the
system can still function correctly.

1

Exercise 04: Two army problem (slide 08, p. 68 – 69)

Question: Explain the proposition of the "two-army" problem.

Problem:

Two processes, using unreliable a communication, can’t agree to a consensus.

(Example on slide p. 68)

Situation:

- Asynchronous messaging-system:

Two nodes have to coordinate each other agree to a consensus

- The processes are reliable

- Messages aren’t tampered (gefälscht)

- Message loss is possible, because the used channel is unreliable

- It is not enough to just acknowledge messages

- Evidence of FLP: It is impossible to design a deterministic consensus algorithm in an

synchronous distributed system subject to even a single process crash failure (slide p. 69).

Example:

Meeting for dinner, sent per mail It is impossible to know if the message has ever arrived yet!

Question5: Explain the proposition of the "byzantine generals".

Problem: (Slide 65, 66)

 There is a system with n processes (nodes)

 Communication between nodes is synchronous and reliable

 All nodes communicate with each other

 k processes are erroneous and provide faulty data

(1:2:v means: process 1 says that process 2 says ‘v’)

Traitors may actively prevent loyal generals from reaching agreement by feeding incorrect and

contradictory information

Solution: (Slide 67)

 n>=3k+1, i.e. a minimum of 3k+1 processes must exist in order to identify k wrong

nodes
 This provides that the system runs correctly, i.e. k faulty nodes are compensated for.

However, it is unknown which nodes are faulty

3k+1 processes are needed for agreement with m faulty processes (using unsigned messages)

Distributed Systems | Dependability and Fault Tolerance | Question 6

Explain the failure classes in client/server systems. What is the "lost reply"
problem?

Book p. 336-342; Slides p. 73-80

Failure classes (slides p. 74)

1. Client Cannot Locate the Server : The client is unable to locate the server, e.g. the server is
down, wrong client stub

2. Lost request: The request message from the client to the server is lost
3. Server crashes: The server crashes after receiving a request

Problem: Client cannot detect if the server crashed before or after the processing of his
request.

4. Lost reply: The reply message from the server to the client is lost
5. Client crashes: The client crashes after sending a request

Lost reply (4th failure class) (slides p. 79)

The reply of the server gets lost. The client cannot detect whether the request got lost, the reply got lost
or the server crashed in the meantime.

Solutions:
• Repeat the reply. Only useful with idempotent operations, i.e. operations which can be

repeated (e.g. reading data; where a transaction from one bank account to another is not
idempotent).

• Each request has a sequence number, so that the server can detect whether it is a new request
or an already processed one. In this case there has to be a specified amount of time how long the
server should remember the requests.

• The client could add a flag to the request, marking the request as new or repeated.

(c) by Klaus Krapfenbauer

Q. 7

Slide: 8 p 82f book: 343f

What is reliable and ordered multicast (group communication) in static process

groups? What has to be taken care of, when the groups change dynamically?

Explain the concept of "atomic multicast" ("virtual synchrony").

Slide 8, p 82

Such services guarantee that messages are delivered to all members in a process
group. Unfortunately, reliable multicasting turns out to be surprisingly tricky.

 reliable multicast guarantees that a message multicast to group view G is
delivered to each non faulty process in G. If the sender of the message
crashes during the multicast, the message may either be delivered to all
remaining processes, or ignored by each of them.

 crashed replica, however, it may have missed several updates. At that point, it
is essential that it is brought up to date with the other replicas. Bringing the
replica into the same state as the others requires that we know exactly which

 transport layers offer reliable point-to-point channels, they rarely offer reliable
communication to a collection of processes

slide p 93
Atomic multicast

In particular, what is often needed in a distributed system is the guarantee that a
message is delivered to either all processes or to none at all. In addition, it is
generally also required that all messages are delivered in the same order to all
processes. This is also known as the atomic multicast problem.

slide p 97
virtual synchrony

Reliable multicast in the presence of process failures can be accurately defined in
terms of process groups and changes to group membership. Virtual synchrony allows
an application developer to think about multicasts as taking place in epochs that are
separated by group membership changes. However, nothing has yet been said
concerning the ordering of multicasts.

four different orderings:

 Unordered multicasts: nothing defined

 FIFO-ordered multicasts: the communication layer is forced to deliver
incoming messages from the same process in the same order as they
have been sent.

 Causally-ordered multicasts: delivers messages so that potential
causality between different messages is preserved. if a message m 1

causally precedes another message m2, regardless of whether they were

multicast by the same sender, then the communication layer at each
receiver will always deliver m 2 after it has received and delivered m 1

 Totally-ordered multicasts: means that regardless of whether message
delivery is unordered, FIFO ordered, or causally ordered, it is required
additionally that when messages are delivered, they are delivered in the
same order to all group members

	01 - Dependability
	02 - Failure models
	Why do we need a failure model? Provide different failure models for a "fail-controlled systems" and discuss them with respect to the required effort for masking faults. Why is it awkward to specify a system as "k-fault-tolerant"?
	Why
	Failure models (by Tanenbaum) (slides p. 51)
	K-fault-tolerance (slides p. 61)
	Summary

	03 - redundancy
	04 - Two army problem
	05 - Byzantine Generals
	06 - Client-server
	Explain the failure classes in client/server systems. What is the "lost reply" problem?
	Failure classes (slides p. 74)
	Lost reply (4th failure class) (slides p. 79)

	07 - reliable and ordered multicast

