
1

©Jesper Larsson TräffSS23

Introduction to Parallel Computing
Algorithm examples: Merging, Prefix sums

Jesper Larsson Träff

traff@par.tuwien.ac.at

TU Wien

Parallel Computing

mailto:traff@par.tuwien.ac.at

2

©Jesper Larsson TräffSS23

First parallel algorithm: Merging

Useful building block in many other algorithms, e.g., mergesort

Problem:

Two ordered arrays A and B of size n and m, A[i]≤A[i+1] for 0≤i<n-1,

and B[j]≤B[j+1] for 0≤j<m-1.

Merge A and B into array C of size n+m, C[i]≤C[i+1] for 0≤i<n+m-1,

and each C[i] is either from A or B, and any element of A and B is in

C

3

©Jesper Larsson TräffSS23

Note:

• Sometimes helpful to assume that all elements from A and B are

distinct.

• This assumption is without loss of generality (wlog): Make

elements distinct by ordering pairs (A[i],i) lexicographically:

(A[i],i)<(A[j],j) if either A[i]<A[j], or A[i]=A[j] and i<j

Problem:

Two ordered arrays A and B of size n and m, A[i]≤A[i+1] for 0≤i<n-1,

and B[j]≤B[j+1] for 0≤j<m-1.

Merge A and B into array C of size n+m, C[i]≤C[i+1] for 0≤i<n+m-1,

and each C[i] is either from A or B, and any element of A and B is in

C

Drawback:

This textbook trick can cost an extra n-element integer array (of

original indices of the input elements), and extra time for comparison

4

©Jesper Larsson TräffSS23

Terminology/property:

Merge is stable, if the original (index) order of equal input elements

in A and B is preserved in C, and if A[i]=B[j] for some i and j, then A[i]

comes before B[j] in C

Stability is often desirable, and sometimes required (e.g., Radix sort)

5

©Jesper Larsson TräffSS23

i = 0; j = 0; k = 0;

while (i<n&&j<m) {

C[k++] = (A[i]<=B[j]) ? A[i++] : B[j++];

}

while (i<n) C[k++] = A[i++];

while (j<m) C[k++] = B[j++];

Standard, strictly sequential solution:

<A:

<B:

n

m

<C: < < < < < < < < <

n+m

Tseq(n+m)

= O(n+m),

m+n

element

reads and

writes

NB: Not “best known” sequential implementation (See Knuth, Vol. 3

and many more recent papers: cache, branch avoidance, …)

6

©Jesper Larsson TräffSS23

i = 0; j = 0; k = 0;

while (i<n&&j<m) {

C[k++] = (A[i]<=B[j]) ? A[i++] : B[j++];

}

while (i<n) C[k++] = A[i++];

while (j<m) C[k++] = B[j++];

Parallel solution?

No obvious parallelism in the sequential algorithm: Each iteration of

the loop depends on what happened in previous iterations (i and j),

and this depends on the input

Parallelization approach: Divide input arrays into smaller parts of

more or less the same size that can be merged independently. But

how?

No hope for “automatic parallelization”?

7

©Jesper Larsson TräffSS23

Solution 1:

Assume p=n+m processors, as many as elements in the input array.

Assign a processor to each element in A and B

Definition:

Given an element x of a set A not containing x, rank(x,A) is the

number of elements in A that are smaller than x

Parallel solution:

We try without specific assumptions about the parallel architecture.

For now, just p processors that can access (part of) the input and

output arrays

Idea: Merging by ranking

8

©Jesper Larsson TräffSS23

<A:

<B:

n

m

<C: < < < < < < < < <

n+m

Processor i, 0≤i<n, assigned to element A[i]

rank(A[i],B)

i+rank(A[i],B)

Processor j, n≤j<n+m assigned to element B[j-n]

• Element A[i] is written to C[i+rank(A[i],B)]

• Element B[j] is written to C[j+rank(B[j],A)]

• All elements can be handled independently, in parallel

9

©Jesper Larsson TräffSS23

if (i<n) C[i+rank(A[i],B)] = A[i];

else if (i<n+m) {

j = i-n;

C[j+rank(B[j],A)] = B[j];

}

Processor i, 0≤i<n+m

Parallel algorithm (and implementation) 1:

Assumes access to input arrays A and B such that ranks can be

computed efficiently. Convenient to have A, B, C in shared memory.

If not possible (distributed memory system), communication is

needed for rankings and accessing elements

Explicit

parallelization: We

specify what each

processor has to do

10

©Jesper Larsson TräffSS23

Observation:

For an ordered sequence stored in an array A, rank(x,A) can be

computed sequentially by binary search. The number of operations

per x (work, time) is O(log n) for input n-element array A

Tpar(n+m,n+m) = O(log (max(m,n))

Wpar(n+m,n+m) = O((m+n)log(max(n,m)) ≤ O(2n log n) = O(n log n)

The algorithm is not work-optimal:

Sp(n) = O(n/(n log n)/p) = O(p/log n)

Exponential improvement

in time, with linear number

of processors

Bad! Speed-up decreases

with n

11

©Jesper Larsson TräffSS23

Problems:

• Algorithm is not efficient, work a factor (log n) too large

• Normally, n»p

• When is the computation finished (processors synchronized)?

if (i<n) C[i+rank(A[i],B)] = B[i];

else if (i<n+m) {

j = i-n;

C[j+rank(B[j],A)] = B[j];

}

barrier; // synchronization construct

Explicit synchronization needed to ensure that any processor can

access any C[k] element. Now merge finished

Processor i, 0≤i<n+m

12

©Jesper Larsson TräffSS23

Logical processor synchronization:

At synchronization point (code, instruction, …) no processor i can

continue before all other processors j have also reached

synchronization point. Different programming models have different

ways of expressing barriers

Barrier synchronization pattern (from slide set on par. patterns)

for (i=n[j]; i<n[j+1]; i++) {

tmp[i] =a[i-1]+a[i]+a[i+1];

}

barrier;

x = tmp; tmp = a; a = x; // swap

Processor j, 0≤j<p

synchronize

For correctness,

synchronization

needed. Can be explicit

(barrier), implicit, or

provided by

programming or

architecture model

13

©Jesper Larsson TräffSS23

<A:

n

Solution 2 (use fewer processors, some fixed p):

Divide A into p blocks of size approx. n/p, rank only first element of

each block, in parallel merge blocks of A with blocks of B

sequentially

< <<

<

m

B:

i*n/p

C:

n+m

i*n/p+rank(A[i*n/p],B)

(i+1)*n/p+rank(A[(i+1)*n/p],B)

(i+1)*n/p

14

©Jesper Larsson TräffSS23

merge(&A[i*(n/p)],n/p,

&B[rank(A[i*(n/p)],B)],

rank(A[(i+1)*(n/p)],B)-rank(A[i*(n/p)],B),

&C[i*(n/p)+rank(A[i*(n/p)],B)]);

barrier;

Processor i, 0≤i<p

Structure:

• Parallel preprocessing – rank: binary search - to divide problem

into p independent pieces

• Sequential algorithm to process subproblems in parallel

Work optimal (for p≤(m+n)/log m):

Wpar(p,n) = O(p log m + p*(n/p)+m) = O(p log m + (n+m)) = O(n+m)

merge(A,n,B,m,C): (sequentially) merges A of size n and B of

size m into C of size n+m

Explicit parallelization

15

©Jesper Larsson TräffSS23

Problems:

• Assumed that p divides n (can be fixed)

• Severe load imbalance in worst case

<A:

n

< <<

<

m

B:

One processor does almost all work O(n/p+m), time Tpar(p,n+m) is

O(n/p+m+log n)

17

©Jesper Larsson TräffSS23

n

Now at most 2p smaller merge problems, all of size O(n/p+m/p).

Load balance achieved

Solution 3a (fix load imbalance):

Divide A into p blocks of size approx. n/p, rank only first element of

each block. For all balanced pairs (good segments) where

rank(A[(i+1)*n/p],B)-rank(A[i*n/p],B)≤m/p, do sequential merge. For

unbalanced pairs, divide bad segments

B[rank(A[i*n/p],B),…,rank(A[(i+1)*n/p],B)[into smaller parts and rank

first elements in A. Merge resulting pairs

<A:

n

< <<

<

m

B:

Bad segment,

rank(A[(i+1)*n/p],B)-rank(A[i*n/p],B)>m/p

18

©Jesper Larsson TräffSS23

Problems:

• Assigning processors to indices i*(n/p) for 0≤i<p easy.

• What about re-assigning to the start-indices of the blocks of the

bad segments?

• What if there is more than one bad segment? Load balance must

be done so that all blocks in bad segments have size at most

m/p. This load balancing problem can be solved with prefix-sums

(see later)

19

©Jesper Larsson TräffSS23

Solution 3b (avoid load imbalance):

Divide A into p blocks of size approx. n/p, rank only first element of

each block. Divide B into p blocks of size approx. m/p, rank only first

element of each block. This gives 2p merge pairs, all of size

O(n/p+m/p); case analysis shows that they are independent. Merge

resulting pairs sequentially in parallel

<A:

n

< <<

<

m

B: << <

Torben Hagerup, Christine Rüb: Optimal Merging and Sorting on the

EREW PRAM. Inf. Process. Lett. 33(4): 181-185 (1989)]

Jesper Larsson Träff: Simplified, stable parallel merging. CoRR

abs/1202.6575 (2012)

20

©Jesper Larsson TräffSS23

Solution 4 (turning upside-down, merging by co-ranking):

Assume that for any given index i in the output array C, the (unique)

two indices j and k in the input arrays A and B such that

C[0,…i-1] = merge(A[0,…j-1],j,B[0,k-1],k)

can be determined. Call j and k the co-ranks of i.

Divide the output array C of size n+m into p blocks of size (n+m)/p.

The start index of block i, 0≤i<p, is i*(n+m)/p.

For each block i:

• determine the co-ranks j(i) and k(i)

• merge the subsequences A[j(i),j(i+1)-1] and B[k(i),k(i+1)-1] into

C[i*(n+m)/p,(i+1)*(n+m)/p-1]

21

©Jesper Larsson TräffSS23

<A:

n

<

m

B:

i*(n+m)/p

C:

n+m

(i+1)*(n+m)/p

Co-ranks of i*(n+m)/p are j(i), k(i), and satisfy j(i)+k(i)=i*(n+m)/p

j(i) j(i+1)

k(i) k(i+1)

22

©Jesper Larsson TräffSS23

// coj[]: array of j-coranks

// cok[]: array of k-coranks

corank(i*(n+m)/p,A,n,&coj[i],B,m,&cok[i]);

barrier; // processor i will need coranks of i+1

merge(&A[coj[i]],coj[i+1]-coj[i],

&B[cok[i]],cok[i+1]-cok[i],

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Clearly work-optimal:

Wpar(p,n+m) ≈ p O((m+n)/p+log(n+m)) = O(m+n+p log(n+m))

which is O(m+n) when p log(n+m) in O(m+n)

23

©Jesper Larsson TräffSS23

// coj[]: array of j-coranks

// cok[]: array of k-coranks

corank(i*(n+m)/p,A,n,&coj[i],B,m,&cok[i]);

barrier; // processor i will need coranks of i+1

merge(&A[coj[i]],coj[i+1]-coj[i],

&B[cok[i]],cok[i+1]-cok[i],

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Perfectly load balanced:

The co-ranking assumption helps to determine exactly the segments

of A and B needed to merge the part C[i*(n+m)/p,…,(i+1)*(n+m)/p-1],

and each processor handles a segment of C of the same size

(difference at most 1 element if p does not divide (n+m))

24

©Jesper Larsson TräffSS23

corank(i*(n+m)/p,A,n,&j1,B,m,&k1);

corank((i+1)*(n+m)/p,A,n,&j2,B,m,&k2);

merge(&A[j1],j2-j1,

&B[k1],k2-k1,

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Previous implementation needs synchronization (and

communication?) after co-ranking, because processor i needs a

result computed by processor i+1

Tradeoff: At the cost of a redundant co-rank computation, this

synchronization step can be avoided. Which is better?

“Synchronization

-free, perfectly

load-balanced,

stable parallel

merge”

25

©Jesper Larsson TräffSS23

How can co-ranks be computed?

First: Observe that j+k=i (this will be an invariant): j and the k are the

number of elements from A and B needed to produce the first i

elements of C

Second: Let C[i-1] be the i’th output element of the merge, and let j

and k be the co-ranks of i. Since C=merge(A,B), it holds that C[i’-

1]≤C[i-1]≤C[i’’-1] for any i’,i’’ with i’<i<i’’

• Both A[j-1] and B[k-1] are in C[0,…,i-1], and the last element C[i-

1] must be either A[j-1] or B[k-1].

• Neither A[j] nor B[k] are in C[0,…,i-1].

26

©Jesper Larsson TräffSS23

Doing the case analysis:

• C[i-1]=A[j-1] implies A[j-1]≤B[k], and since A[j-1]≤A[j], trivially B[k-

1]<A[j] because B[k-1]=C[i’-1] for some i’<i and B[k-1]<A[j-1].

• C[i-1]=B[k-1] implies B[k-1]<A[j], and trivially A[j-1]≤B[k].

• Therefore, for j and k to be co-ranks of i, both A[j-1]≤B[k] and B[k-

1]<A[j] must hold.

27

©Jesper Larsson TräffSS23

Lemma:

For any i, 0≤i<n+m, there are unique j and k, j+k=i, such that

• Either j=0 or A[j-1]≤B[k], and

• Either k=0 or B[k-1]<A[j]

These j and k fulfill merge(A[0,…,j-1],B[0,…,k-1]) = C[0,…,i-1]

The co-ranking algorithm uses the lemma in a binary-search like

fashion to find the unique co-ranks of the given i

Christian Siebert, Jesper Larsson Träff: Perfectly Load-Balanced,

Stable, Synchronization-Free Parallel Merge. Parallel Processing

Letters 24(1) (2014)

28

©Jesper Larsson TräffSS23

<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the

invariant k=i-j

k

j

If A[j-1]>B[k]: j was too large, halve it (need jlow), increase k

correspondingly

jlow

29

©Jesper Larsson TräffSS23

<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the

invariant k=i-j

k

jjlow

klow

If B[k-1]≥A[j]: k was too large, halve it (need klow), increase j

correspondingly

30

©Jesper Larsson TräffSS23

<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the

invariant k=i-j

k

jjlow

klow

If B[k-1]≥A[j]: k was too large, halve it, increase j correspondingly

When halving j, j=(j-jlow)/2, klow is set to old value of k

When halving k, k=(k-klow)/2, jlow is set to old value of j

31

©Jesper Larsson TräffSS23

<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: set j=min(i,n), by the

invariant k=i-j

k

jjlow

klow

Iterate until j and k are found that satisfy the lemma. This happens

after at lost log(n+m) iterations

32

©Jesper Larsson TräffSS23

j = min(i,n); k = i-j; jlow = max(0,i-m);

done = 0;

do {

if (j>0&&k<m&&A[j-1]>B[k]) {

d = (1+j-jlow)/2;

klow = k;

j -= d; k += d;

} else if (k>0&&j<n&&B[k-1]>=A[j]) {

d = (1+k-klow)/2;

jlow = j;

k -= d; j += d;

} else done = 1;

} while (!done)

The co-ranking algorithm determines co-ranks j and k for given index

i and ordered arrays A and B

33

©Jesper Larsson TräffSS23

• Merging as a (data dependent, adaptive) load balancing problem:

divide the two sequences into parts of combined size (n+m)/p that

can be merged independently

• Convenient to assume a shared-memory programming model

abstraction: merge, binary search, and co-ranking can be given

straight-forward, sequential implementations

• Programming model must support allocation of p processing

elements to array indices

• Synchronization necessary after certain steps (barrier)

• In a distributed memory programming model, binary search and

co-ranking less obvious (communication needed to access parts

of input stored with other processes); some data redistribution

may be necessary before local merge

Merge solution: Issues and observations

34

©Jesper Larsson TräffSS23

Parallelization (of merge problem):

• Focus on the problem

• Consider potential for parallelization of known sequential

algorithm, new idea if necessary

• Make parallel work comparable to sequential work

• Look for good load balance

• Minimize number of synchronization points

• (Communication: not yet seen)

• Use sequential algorithms as subalgorithms

Theorem:

On a shared-memory system, two ordered sequences of size n and

m can be merged in time O((n+m)/p+log n)

35

©Jesper Larsson TräffSS23

“Automatic parallelization” will most probably not work. The needed

preprocessing idea (binary search, co-ranking) is found nowhere in

the sequential algorithm

Parallelization (of merge problem):

• Focus on the problem

• Consider potential for parallelization of known sequential

algorithm, new idea if necessary

• Make parallel work comparable to sequential work

• Look for good load balance

• Minimize number of synchronization points

• (Communication: not yet seen)

• Use sequential algorithms as subalgorithms

36

©Jesper Larsson TräffSS23

Foster‘s “methodology”

Ian Foster. Designing and building parallel programs - concepts and

tools for parallel software engineering. Addison-Wesley 1995

1. Partitioning: Divide the computation into independent tasks

2. Communication: Determine communication needed between

tasks

3. Agglomeration/aggregation: Combine tasks and communications

together into larger (independent) chunks

4. Mapping: Assign tasks and communications to processes,

threads, …

Often cited, “general”, 4-step strategy for parallelizing computations

37

©Jesper Larsson TräffSS23

1. Partitioning: Divide the computation into independent tasks

2. Communication: Determine communication needed between

tasks

3. Agglomeration/aggregation: Combine tasks and communications

together into larger (independent) chunks

4. Mapping: Assign tasks and communications to processes,

threads, …

Rules of thumb, important issues to consider; but unspecific.

Parallelization is problem/algorithm and architecture dependent

There is no general strategy for parallelizing an algorithm, or for

finding the right algorithm to parallelize

38

©Jesper Larsson TräffSS23

1. Partitioning: Algorithmic idea needed; rank/co-rank exposes

“tasks” (blocks that can be merged) to be performed

independently in parallel

2. Communication: How to rank/co-rank? Which data needs to be

exchanged before blocks can be merged

3. Agglomeration/aggregation: Ranking/binary search per element

too fine-grained, too much communication, too much work.

Divide into larger blocks of size n/p, m/p

4. Mapping: Processors close to blocks merge blocks

Four steps only partially applicable to the developed merge

algorithm (later: implementation). Helpful?

Foster’s “methodology” applied to the merge problem

39

©Jesper Larsson TräffSS23

Oblivious merging: Bitonic merge/Even-odd merge

Problem with merge by co-ranking and rank-based algorithms:

• Many processors may need to read the same array elements at

the same time. What if this is not allowed (EREW PRAM)? What

if this is not efficient (by serialization when several processors

read the same value)?

• What if only O(p) elements need to be merged on p processors?

(Solution 1 can be of help here)

40

©Jesper Larsson TräffSS23

(Data) Oblivious parallel algorithms

Definition:

Parallel algorithm is oblivious if its data access pattern (array

accesses, communication) is independent of (oblivious to) actual

data, dependent only on n and p

Two classical, oblivious merge algorithms

• Even/odd merge

• Bitonic merge

Kenneth E. Batcher: Sorting Networks and Their Applications. AFIPS

Spring Joint Computing Conference 1968: 307-314

Kenneth E. Batcher: On Bitonic Sorting Networks. ICPP (1) 1990:

376-379

41

©Jesper Larsson TräffSS23

Bitonic merge

A sequence (a0,a1,…,an-1) is bitonic if either

1. There is an index i such that a0≤a1≤…≤ai and ai+1≥ai+2≥…≥an-1

2. There is a cyclic shift of the sequence, such that 1. holds

≤ ≥

i

≤ ≥ ≤

Case 1

Case 2≤

42

©Jesper Larsson TräffSS23

A sequence (a0,a1,…,an-1) is bitonic if either

1. There is an index i such that a0≤a1≤…≤ai and ai+1≥ai+2≥…≥an-1

2. There is a cyclic shift of the sequence, such that 1. holds

Case 1 Case 2

43

©Jesper Larsson TräffSS23

Lemma:

Let a = (a0,a1,…,an-1) be a bitonic sequence of even length n. The

two sequences

• a’ = (min(a0,an/2),min(a1,an/2+1),…,min(an/2-1,an-1))

• a’’ = (max(a0,an/2), max(a1,an/2+1),…,max(an/2-1,an-1))

of length n/2 are

1. bitonic, and

2. a’ ≤ a’’ (all elements of a’ no larger than all elements of a’’)

≤ ≥ ≤

a’i=min(ai,ai+n/2)

a’’i=max(ai,ai+n/2)

44

©Jesper Larsson TräffSS23

Example:

• a = (1,1,2,3,4,7,7,6,5,4,4,3) = (1,1,2,3,4,7)||(7,6,5,4,4,3)

• a’ = (1,1,2,3,4,3)

• a’’ = (7,6,5,4,4,7)

Example (sequence cyclically shifted):

• a = (3,4,7,7,6,5,4,4,3,1,1,2) = (3,4,7,7,6,5)||(4,4,3,1,1,2)

• a’ = (3,4,3,1,1,2)

• a’’ = (4,4,7,7,6,5)

Bitonic

Bitonic

45

©Jesper Larsson TräffSS23

Proof of lemma:

1. Any subsequence of a bitonic sequence is bitonic. The

subsequences a’ and a’’ obviously partition a (a’ and a’’ disjoint,

union of a’ and a’’ is a)

2. Assume there is some a’i>a’’j. Exhaustive case analysis in all

cases leads to a contradiction

1.

46

©Jesper Larsson TräffSS23

Proof of lemma:

1. Any subsequence of a bitonic sequence is bitonic. The

subsequences a’ and a’’ obviously partitions a (a’ and a’’ disjoint,

union of a’ and a’’ is a)

2. Assume there is some a’i>a’’j. Exhaustive case analysis in all

cases leads to a contradiction

2.

n/2

ai
aj Assume a’i = min(ai,ai+n/2) = ai

Then it must be that aj<ai,

contradicting either that a’i is

min, or a’’j is max

ai+n/2

47

©Jesper Larsson TräffSS23

Ordering bitonic sequences:

Given bitonic sequence a:

• Split a into sequences a’ of minima and sequence a’’ of maxima

• Recursively order the two bitonic sequences a’ and a’’

Lemma can easily be extended to odd length sequences. Virtually

repeat the last element an-1 to get an even length sequence (helping

observation: Element in a bitonic sequence can be repeated, and

still give a bitonic sequence). The bitonic split will put the real an-1 in

either a’ or a shifted a’’.

But note: This extension is no longer oblivious. There are other ways

of extending bitonic ordering to odd sequence lengths

Wolfgang J. Paul: A Note on Bitonic Sorting. Inf. Process. Lett. 49(5):

223-225 (1994)

48

©Jesper Larsson TräffSS23

bitonic_merge(int a[], int n)

{

if (n==1) return;

int nn = n/2; int s = n/2;

if (n%2==1) { // n odd

nn++;

if (a[n/2]<a[n-1]) s++;

}

for (i=0; i<n/2; i++) {

int mina, maxa;

mina = min(a[i],a[i+nn]);

maxa = max(a[i],a[i+nn]);

a[i] = mina; a[i+nn] = maxa;

}

bitonic_merge(a,s);

bitonic_merge(a+s,n-s);

}

Parallelizable loop

Convert to iteration

trick

Implement as swap

49

©Jesper Larsson TräffSS23

Let W(n) be the work (number of operations) for the bitonic merge of

a sequence a of length n. We have

• W(1) = O(1)

• W(n) = O(n)+2W(n/2)

with solution W(n) = O(n log n)

Proof:

Expand recursion a few times, and guess solution. By induction,

ignoring O-constants:

W(n) = n + 2(n/2 log2n/2) = n + n log2n/2 = n + n log2n –n = n log2n

By same arguments, recursion depth is ceil(log2n)

Induction hypothesis

50

©Jesper Larsson TräffSS23

Theorem:

On a shared-memory system, a bitonic sequence of length p can be

ordered into a sequence in increasing order in ceil(log2p) parallel

steps and O(p log p) operations. A bitonic sequence of length n can

be ordered in time O((n log n)/p+log p).

Bitonic ordering can be done in-place

When n>p, do bitonic merge recursion until n/2k = n/p, then merge

bitonic subsequences of length n/p sequentially on the p processors.

Still 2k = p k = log2p and work per recursion step O(n), so total

work is O(n log p). The algorithm is not work-optimal

Note: Bitonic ordering is not stable

51

©Jesper Larsson TräffSS23

≤A:

≤B:

n

m

Merging ordered sequences A and B by bitonic ordering

≤ Reverse B: ≥

n+m

Resulting sequence is bitonic, but n+m may not be a power of two.

To get a bitonic sequence of length a power of two, pad from below

with virtual -∞ elements to nearest power of two.

52

©Jesper Larsson TräffSS23

≤A:

≤B:

n

m

Merging ordered sequences A and B by oblivious bitonic ordering

≤ Reverse B: ≥

n+m

-∞

Observation: The virtual elements will stay in front after bitonic split,

and can be kept as virtual elements

53

©Jesper Larsson TräffSS23

Comparator networks as a model for parallel sorting

x

y

min(x,y)

x

y
min(x,y)

x0

x1

x2

x3

Sorting network for n=4

Size: Number of comparators (≈ number of operations)

Depth: Longest path from an input to an output

Comparator (min/max)

54

©Jesper Larsson TräffSS23

D. E. Knuth: The Art of Computer Programming, Vol. 3. Addison-

Wesley, 1973.

Section 5.3.4, Exercise 51 [M50]: Prove that the asymptotic value of

Ŝ(n) is not O(n log n)

Question:

What is the minimal depth and size required for sorting n number

with a sorting network?

Is there a sorting network of depth O(log n) of size O(n log n)?

Long standing, open question in parallel computing

Bather’s bitonic sorting network has depth O(log2n) and size O(n

log2n)

55

©Jesper Larsson TräffSS23

Miklós Ajtai, János Komlós, Endre Szemerédi: An O(n log n) Sorting

Network. STOC 1983: 1-9

Miklós Ajtai, János Komlós, Endre Szemerédi: Sorting in c log n

parallel sets. Combinatorica 3(1): 1-19 (1983)

Question resolved in 1983 with the O(n log n) size AKS network

Complex construction (expander graphs), excessive constants; not

practical.

Another milestone in parallel sorting: O((n log n)/p + log n) EREW

PRAM mergesort; not practical

Richard Cole: Parallel Merge Sort. SIAM J. Comput. 17(4): 770-785

(1988)

Richard Cole: Correction: Parallel Merge Sort. SIAM J. Comput.

22(6): 1349 (1993)

56

©Jesper Larsson TräffSS23

Reduction and prefix sums in parallel

Reduction problem: Given sequence x0, x1, x2, …, xn-1, compute

y = ∑0≤i<nxi = x0+x1+x2+…+xn-1

• xi integers, real numbers, vectors, structured values…

• “+” any applicable operator, sum, product, min, max, bitwise and,

logical and, vector sum, …

Algebraic properties of “+”: Associative [x+(y+z)=(x+y)+z], possibly

commutative, …

Parallel reduction problem:

Given sequence (array) of elements (xi), associative operation “+”,

compute the sum y = ∑xi

57

©Jesper Larsson TräffSS23

Collective operation pattern:

Set of processors (threads, processes, …) “collectively” invoke some

operation, each contribute a subset of the n elements, process order

determine element order

• Reduction-to-one: All processors participate in the operations,

resulting “sum” stored with one specific processor (“root”)

• Reduction-to-all: All processors participate, results available to all

processes

• Reduction-with-scatter: Reduction of vectors, result vector stored

in blocks over the processors according to some rule

Reduction is a fundamental, primitive operation, used in many, many

applications (recall: Map-Reduce). Available in some form in most

parallel programming models/interfaces as “collective operation”

58

©Jesper Larsson TräffSS23

Definitions:

i’th prefix sum: Sum of the first i elements of xi sequence

yi = ∑0≤j<ixj = x0+x1+x2+…+xi-1

a) Exclusive prefix (i>0) sum: up to, but not including xi in sum

(special definition for i=0)

yi = ∑0≤j≤ixj = x0+x1+x2+…+xi

b) Inclusive prefix sum: up to and including xi in sum.

Note: Inclusive prefix trivially computable from exclusive prefix (add

xi), not vice versa unless “+” has inverse

Parallel prefix sums problem: Given sequence xi, compute all n

prefix sums y0, y1, …, yn-1

59

©Jesper Larsson TräffSS23

The collective prefix-sums operation often referred to as Scan:

Process i, i≤i<p, has xi

• Scan: Process i computes inclusive prefix sum yi

• Exscan: Process i computes exclusive prefix sum yi

Prefix-sums is a fundamental, primitive operation, used for

bookkeeping and load balancing purposes (and others) in many,

many applications. Available in some form in most parallel

programming models/interfaces.

Reduction, Scan:

Input sequence x0, x1, x2, …, xn-1 in array, distributed array, … in form

suitable to programming model

60

©Jesper Larsson TräffSS23

Parallel reduction problem:

Given sequence (array) of elements, associative operation “+”,

compute the sum y = ∑xi

Parallel prefix-sums problem:

Compute all n (inclusive or exclusive) prefix sums y0, y1, …, yn-1

Sequentially, both problems can be solved in O(n) operations, and n-

1 applications of “+”.

This is optimal (best possible), since the output depends on each

input xi. Complexity is Θ(n).

61

©Jesper Larsson TräffSS23

How to solve prefix sums problem efficiently in parallel?

• Total number of operations (work) proportional to Tseq(n) = O(n)

• Total number of actual “+” applications close to n-1

• Parallel time Tpar(n) = O(n/p+T∞(n)) for large range of p

• As fast as possible, T∞(n) = O(log n)

Remark:

In most reasonable architecture models, Ω(log n) would be a lower

bound on the parallel running time for a work-optimal solution

62

©Jesper Larsson TräffSS23

Sequential solution (both reduction and scan): Simple scan through

array with running sum

register int sum = x[0];

for (i=1; i<n; i++) {

sum += x[i]; x[i] = sum;

}

Tseq(n) = n-1 summations, O(n), 1 read, 1 write per iteration

for (i=1; i<n; i++) {

x[i] = x[i-1]+x[i];

}

Direct solution, not “best

sequential implementation”:

2(n-1) memory reads

Register solution possibly

better, but far from best

Questions: What can the compiler do? How much dependence on

basetype (int, long, float, double)? On content?

63

©Jesper Larsson TräffSS23

Some results (the two solutions and the compiler):

Implementation with OpenMP:

traff 60> gcc –o pref –fopenmp <optimization> …

traff 61> gcc --version

gcc (Debian 4.7.2-5) 4.7.2

Copyright (C) 2012 Free Software Foundation, Inc.

This is free software; see the source for copying

conditions. There is NO warranty; not even for

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Execution on small Intel system

traff 62> more /proc/cpuinfo

…

Model name: Intel (R) Core (TM) i7-2600 CPU @ 3.40 GHz

64

©Jesper Larsson TräffSS23

traff 98> ./pref -n 100000 -t 1

n is 100000 (0 MBytes), threads 1(1)

Basetype 4, block 1 MBytes, block iterations 0

Algorithm Seq straight Time spent 502.37 microseconds

(min 484.67 max 566.68)

Algorithm Seq Time spent 379.09 microseconds (min 296.97

max 397.58)

Algorithm Reduce Time spent 249.39 microseconds (min

210.75 max 309.59)

traff 99> ./pref -n 1000000 -t 1

n is 1000000 (3 MBytes), threads 1(1)

Basetype 4, block 1 MBytes, block iterations 3

Algorithm Seq straight Time spent 3532.19 microseconds

(min 2875.97 max 4552.18)

Algorithm Seq Time spent 2304.72 microseconds (min

2256.46 max 2652.57)

Algorithm Reduce Time spent 1625.14 microseconds (min

1613.68 max 1645.12)

65

©Jesper Larsson TräffSS23

int

No opt -O3

Direct Register Direct Register

100,000 502 379 73 72

1,000,000 3532 2304 615 552

10,000,000 28152 23404 5563 5499

Small custom benchmark, omp_get_wtime() to measure time, 25

repetitions, average running times of prefix-sums function (including

function invocation)

Optimizer (-O3) can do a lot (discover register/running sum

improvement)

Time in microseconds

66

©Jesper Larsson TräffSS23

double

No opt -O3

Direct Register Direct Register

100,000 451 653 145 144

1,000,000 3926 4454 1466 1162

10,000,000 30411 44344 10231 10001

Surprisingly, non-optimized, direct solution faster than register

running sum. Optimization a must: Look into other optimization

possibilities (flags)

Time in microseconds

Lessons:

For “best sequential implementation”, explore what compiler can do

(a lot). Document used compiler options (for reproducibility)

67

©Jesper Larsson TräffSS23

Reduction application: Cutoff computation

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// convergence check

done = …;

} while (!done)

done: if x[i]<ε for all i

Each process locally computes

localdone = (x[i]<ε) for all local i

done = allreduce(localdone,AND);

Collective operation:

perform reduction over

set of involved processes,

distribute result to all

processesLocal input

Associative reduction operation

68

©Jesper Larsson TräffSS23

Prefix-sums application: Array compaction, load balancing

for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Given arrays a and active, execute loop efficiently in parallel:

Work O(n) for the loop plus O(|active| f) for the function

evaluations, where |active| is the number of indices for which

active[i] is true

69

©Jesper Larsson TräffSS23

for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Data parallel computation

Given arrays a and active, execute loop efficiently in parallel:

No

dependencies

between loop

iterations

for (i=j*(n/p); i<(j+1)*(n/p); i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Processor j, 0≤j<p

Static

assignment of

work to

processors
Work: O(n+|active| f). Time Tpar(p,n)?

70

©Jesper Larsson TräffSS23

Processor j, 0≤j<p

a: …

Loop split across p processors can be inefficient: Some processors
(those with active[i] false) do little work, while others take the

major part. In worst case, Tpar(p,n) = O(|active| f), if all the work is

done by one processor. Typical load balancing problem

for (i=j*(n/p); i<(j+1)*(n/p); i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Problem with static division of loop iteration space into fixed blocks

71

©Jesper Larsson TräffSS23

for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Solution:
Reduce work to O(|active| f) by compacting active indices into

consecutive positions of new array, parallelize over smaller array

Data parallel computation

Given arrays a and active, execute loop efficiently in parallel:

Work O(n) for the loop plus O(|active| f) for the function

evaluations, where |active| is the number of indices for which

active[i] is true

72

©Jesper Larsson TräffSS23

Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

Smaller array of active indices: split into evenly sized blocks of size
|active|/p

…

…

p0 p1 p2 p-1

a:

73

©Jesper Larsson TräffSS23

Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

Approach: Count and index active elements

1. Mark active elements with index 1

2. Mark non-active element with index 0

3. Exclusive prefix-sums operation over new index array

4. Store original indices in smaller array

…

Work, time:

1+2.O(n), O(n/p)

3. We don’t know yet

4. O(n), O(n/p)

Last prefix

sum is

(almost) equal
to |active|

a:

74

©Jesper Larsson TräffSS23

a:

Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

for (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

for (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

index: 0 0 0 0 0 1 1 1 0 0 0 1 0 0 … 0 0 0 0 0 1 0 … 0 … 1 0 0 … 0 0 1

Exscan 0 0 0 0 0 0 1 2 3 3 3 3 4 4 4 … 4 4 4 4 4 4 5 5 … 5 … 5 6 6

…

75

©Jesper Larsson TräffSS23

Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

for (j=0; j<m; j++) {

i = oldindex[j];

a[i] = f(b[i]+c[i]);

}

1. First load balance (prefix-

sums)

2. Then execute (data parallel

computation)

…

for (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

for (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

a:

76

©Jesper Larsson TräffSS23

par (j=0; j<m; j++) {

i = oldindex[j];

a[i] = f(b[i]+c[i]);

}

1. First load balance (prefix-

sums)

2. Then execute (data parallel

computation)

par (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

par (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

Work: O(n) + O(|active| f)

Time: O(n/p) + Texscan(p,n) + O((|active| f)/p)

Data parallel computation over independent indices;

concrete assignment to processors ignored here

77

©Jesper Larsson TräffSS23

Prefix-sums application: Partitioning for Quicksort

Quicksort(a,n):

1. Select pivot a[k]

2. Partition a into a[0,…,n1-1], a[n1,…,n2-1], a[n2,…,n-1] of

elements smaller, equal, and larger than pivot

3. In parallel: Quicksort(a,n1), Quicksort(a+n2,n-n2)

Task parallel Quicksort algorithm

Running time T∞ (assuming good choice of pivot, at most n/2

elements in either segment):

T∞(n) ≤ T∞(n/2)+O(n) with solution T∞(n) = O(n)

Maximum speedup over sequential O(n log n) Quicksort is therefore

O(log n). Need to parallelize partition step

78

©Jesper Larsson TräffSS23

Partition:

1. Mark elements smaller than a[k], compact into a[0,…,n1-1]

2. Mark elements equal to a[k], compact into a[n1,…,n2-1]

3. Mark elements greater than a[k], compact into a[n2,…,n-1]

par (i=0; <n; i++) index[i] = (a[i]<a[k]) ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

n1 = index[n-1]+(active[n-1] ? 1 : 0);

par (i=0; i<n; i++) {

if (a[i]<a[k]) aa[index[i]] = a[i];

}

// same for equal to and larger than pivot elements

…

// copy back

par (i=0; i<n; i++) a[i] = aa[i];

79

©Jesper Larsson TräffSS23

Remaining load balancing problem:

Assign processors proportionally to smaller and larger segments,

Quicksort-recurse in parallel

Partition:

Three applications of prefix-sums (Exscan). How fast can prefix-

sums be computed?

Answer (how? See later):

In time O(n/p+log n) operations with p processors for array of n

elements

OpenMP tasks (or Cilk) will help

80

©Jesper Larsson TräffSS23

Quicksort(a,n):

1. Select pivot a[k]

2. Parallel Partition of a into a[0,…,n1-1], a[n1,…,n2-1],

a[n2,…,n-1] of elements smaller, equal, and larger than

pivot

3. In parallel: Quicksort(a,n1), Quicksort(a+n2,n-n2)

Task parallel Quicksort algorithm with parallel partition

T∞(n) ≤ T∞(n/2) + O(log n) with solution T∞(n) = O(log2 n)

Maximum possible speed-up is now O(n/log n)

81

©Jesper Larsson TräffSS23

Prefix-sums application: Load balancing for merge algorithm

<B:

Bad segments: rank[i+1]-rank[i]>m/p

Possible solution:

1. Compute total size of bad segments (parallel reduction)

2. Assign a proportional number of processors to each bad

segment

3. Compute array of size O(p), each entry corresponding to a

processor assigned to a bad segment: start index of segment,

size of segment, relative index in segment

82

©Jesper Larsson TräffSS23

b0 b1 b2

p Processors corresponding to

bad indices

b = ∑bi
Prefix-sums compaction,

Reduction, bad segment size bi

a0 0 0 0 … 0 a1 0 0 a2 …

Processors allocated to bi

Number of processors for bi is

ai ≈ p*bi/b

A0 A0 … A0 A1…A1 A2 …

0 1 … 2 3 4 … 7 8 …

ix0 ix0 … ix1 ix1 ix2…

1. Ai = ∑0≤j<iaj (exclusive

prefix-sums)

2. Running index by prefix-

sums (relative index:

running ix-A(i-1))

3. Start index by prefix-sums

with max-operation

4. Bad segment start and

size, prefix-sums

1.

2.

3.

4.

<p

Start, size

83

©Jesper Larsson TräffSS23

1. Recursive: Fast, work-optimal

2. Iterative: Fast, work-optimal

3. Doubling: Fast(er), not work-optimal (but still useful)

Key to solution: Associativity of “+”:

x0+x1+x2+…+xn-2+xn-1 = ((x0+x1)+(x2+…))+…+(xn-2+xn-1))

All three solutions quite different from sequential solution

Three theoretical solutions to the parallel prefix-sums problem

Questions:

• How fast can these algorithms really solve the prefix-sums

problem?

• How many operations do they require (work)?

84

©Jesper Larsson TräffSS23

Instead of W(n) = O(n), T∞(n) = O(n)

++ +++ ++

++ +

+

+

+

+

a[0]

a[1] a[5]a[2] a[4]a[3] a[7]a[6]

a[0] a[1] a[5]a[2] a[4]a[3] a[7]a[6]

something tree-like
W(n) = O(n)

T∞(n) = O(log n)

85

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

for (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

1. Recursive solution: Sum pairwise, recurse on smaller problem

Reduce problem

Solve recursively

Take back

86

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

for (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

1. Recursive solution: Parallelization

Data parallel loop

All processors must have

completed loop before call

Data parallel loop

Implicit or explicit “barrier”

All processors must have

completed call before loop

87

©Jesper Larsson TräffSS23

Scan

Pair Pair Pair PairPair …

Return

Scan

Pair Pair Pair PairPair …

Fork-join parallelism, parallel recursive calls

Implied Barrier

88

©Jesper Larsson TräffSS23

1. Recursive solution: Complexity and correctness

Scan(x,n)

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(n) operations, perfectly parallelizable: O(n/p)

Solve same type of problem, now of size n/2

Total number of “+” operations W(n) satisfies:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)

89

©Jesper Larsson TräffSS23

1. Recursive solution: Complexity and correctness

Scan(x,n)

{

if (n==1) return;

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(n) operations, perfectly parallelizable: O(n/p)

Solve same type of problem, now of size n/2

Total number of “+” operations W(n) satisfies:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)

90

©Jesper Larsson TräffSS23

Total number of operations:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)

Expand recurrence: W(n) = n+W(n/2) = n + (n/2) + (n/4)+…+1

Guess solution: W(n) ≤ 2n (recall: geometric series…)

Verify guess by induction:

W(1) = 1 ≤ 2

W(n) = n+W(n/2) ≤ n+2(n/2) = n+n = 2n

By induction hypothesis

91

©Jesper Larsson TräffSS23

1. Recursive solution: Complexity and correctness

Scan(x,n)

{

if (n==1) return;

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(1) time steps, if n/2 processors available

Solve same problem of size n/2

Number of recursive calls T(n) (which will be T∞) satisfies

• T(1) = O(1)

• T(n) ≤ 1+T(n/2)

92

©Jesper Larsson TräffSS23

Number of recursive calls

• T(1) = O(1)

• T(n) ≤ 1+T(n/2)

T(n) = 1+T(n/2) = 1+1+T(n/4) = 1+1+1+T(n/8) = …

2k≥n k≥log2 n

Guess: T(n) ≤ 1+log2 n

Guess is correct, by induction:

T(1) = 1 = 1+log2(1) = 1+0

T(n) = 1+T(n/2) ≤ 1+(1+log2(n/2)) = 1+(1+log2 n – log2(2)) =

1+(1+log2 n -1) = 1+log2 n

93

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Claim:

The algorithm computes the inclusive prefix-sums of x0,x1,x2,…, that

is, xi = Σ0≤j≤iXj, where Xj is the value of xj before the call

94

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Proof by induction:

Base n=1 is correct, algorithm does nothing

95

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2); // by induction hypothesis

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Proof by induction:

By induction hypothesis, yi = ∑0≤j≤iYj, where Yj is the value of yj

before the recursive Scan call, so yi = ∑0≤j≤iYj = ∑0≤j≤i(X2j+X2j+1)

96

©Jesper Larsson TräffSS23

Scan(x,n)

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2); // by induction hypothesis

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

By induction hypothesis yi = ∑0≤j≤iYj = ∑0≤j≤i(X2j+X2j+1)

Thus, xi = y(i-1)/2 for i odd, and xi = yi/2-1+Xi for i even fulfill the claim.

This is what the algorithm computes after the recursive call

97

©Jesper Larsson TräffSS23

1. Recursive solution: Summary

• With enough processors, T∞(n) = 2 log n parallel steps (recursive

calls) needed, two barrier synchronizations per recursive call

• Number of operations, W(n) = O(n), all perfectly parallelizable

(data parallel)

• Tpar(p,n) = W(n)/p + T∞(n) = O(n/p+log n)

• Linear speed-up up to Tseq(n)/T∞(n) = n/log n processors

98

©Jesper Larsson TräffSS23

1. Recursive solution: Summary (practical considerations)

Drawbacks:

• Space: extra n/2 sized array in each recursive call, n in total

• About 2n “+” operations (compared to sequential scan: n-1)

• 2(log2n) parallel steps

Advantages:

• Smaller y array may fit in cache, pair-wise summing has good

spatial locality (see later)

99

©Jesper Larsson TräffSS23

Aside: Master Theorem for simple, regular recurrence relations

Given recurrence of the form

T(n) = a T(n/b) + O(nd logen)

for constants a≥1, b>1, d≥0, e≥0, and T(1) some constant. This has

closed-form solution

1. T(n) = O(nd logen) if a/bd < 1

2. T(n) = O(nd loge+1n) if a/bd = 1

3. T(n) = O(nlog
b
a) if a/bd > 1

Mnemonics:

a: Branching (expansion, proliferation) factor for subproblems

b: Shrinkage factor for subproblem sizes

The missing c is for the hidden constant in O(nd logen)

Saves us from doing the

induction proof every time. We

need this later

100

©Jesper Larsson TräffSS23

Proof: Algorithms lecture, any good algorithms book, the script…

• Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. 3rd

edition. MIT Press, 2009

• Dasgupta, Papadimitriou, Vazirani: Algorithms. McGraw Hill, 2007

• Kleinberg, Tardos: Algorithm Design. Addison-Wesley, 2005

• Tim Roughgarden: Algorithms Illuminated. Soundlikeyourself

Publishing, 2017

It is not as difficult as it may look, try yourself. See also AMP lecture

Note:

There are other versions of the Master Theorem, covering even

more recurrences, and/or estimating constants. And theorems for

other kinds of recurrences
Such things are clearly useful!

101

©Jesper Larsson TräffSS23

Example:

For the recursive Scan implementation, the Master Theorem applies

to both work and depth:

• W(1) = O(1)

• W(n) = W(n/2) + n

a=1, b=2, d=1, e=0 gives W(n) = O(n), Case 1 applies

• T(1) = O(1)

• T(n) =T(n/2) + 1

a=1, b=2, d=0, e=0 gives T(n) = O(log n), Case 2 applies

More interesting use later

102

©Jesper Larsson TräffSS23

2. Iterative solution: Eliminate recursion and extra space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

And almost done, now x[2k-1] = ∑0≤i<2
k xi

Perform log2n rounds, in round i, i≥0, a “+” operation is done for

every 2i+1’th element

A synchronization operation (barrier) is needed after each round

103

©Jesper Larsson TräffSS23

Lemma:

Reduction can be performed out in r = log2 n synchronized rounds,

for n a power of 2. Total number of “+” operations are

n/2+n/4+n/8+…<n (=n-1)

• Shared memory (programming) model: synchronization after

each round

• Distributed memory programming model: represent

communication

Recall, geometric series: ∑0≤i≤nari = a(1-rn+1)/(1-r)

104

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

for (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Data parallel

computation, n/2(k+1)

operations for round r,

r=0, 1, …

Explicit synchronization

105

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}
Beware of

dependencies

Data parallel

computation, n/2(k+1)

operations for round r,

r=0, 1, …

106

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

But here are none.

Why?

k is kk/2, so no

update to x[i-k]

Data parallel

computation, n/2(k+1)

operations for round r,

r=0, 1, …

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

107

©Jesper Larsson TräffSS23

x:

Distributed memory programming model

0 1 2 3 4 5 6 7 8 14 15 16
…

Prefix-sums problem solved with explicit communication: Message

passing programming model

Beware: Much too costly for large n relative to p (see later what to

do)

109

©Jesper Larsson TräffSS23

15

round 0

round 3

round 2

round 1

Communication pattern in distributed memory solutions

round 0 round 1 round 2

0

110

©Jesper Larsson TräffSS23

15

Property 1:

Root active in all rounds

This communication pattern is called Binomial Tree

round 0

round 3

round 2

round 1

round 0 round 1 round 2

0

111

©Jesper Larsson TräffSS23

15

Property 2:

For l-level tree, number of nodes

at level k, 0≤k<l is choose(k,l-1),

the binomial coefficient

Home exercise:

Easy induction

proof

This communication pattern is called Binomial Tree

0

112

©Jesper Larsson TräffSS23

So far, algorithm can compute the sum for arrays with n=2k elements

for k≥0

• Repair for n not a power of 2?

• Extend to parallel prefix-sums?

Observation/invariant: let X be original content of array x before

round k, k=0,…,floor(log2n)

x[i] = X[i-2k+1]+…+X[i]

for i=j2k-1, j=1, 2, 3, …

Idea:

Prefix sums computed for certain elements, use anther log2n rounds

to extend partial prefix sums

113

©Jesper Larsson TräffSS23

Proof by invariant

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Invariant true before 0‘th

iteration

If I true before k‘th

iteration, must be true

before (k+1)‘th

Invariant must imply

conclusion/intended result

Home-work: prove

correctness of this

algorithm

114

©Jesper Larsson TräffSS23

Invariant: X be original content of x. Before round k,

k=0,…,floor(log2n), it holds that

x[i] = ∑i-2
k
+1≤j≤iX[j] for i=j2k-1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Before round k=0, x[i] = ∑i-2
k
+1≤j≤iX[j] = ∑i≤j≤iX[j] = X[i]

True by definition, invariant holds before iterations start

Homework solution

In program, k doubles,

so round number is

log(k); do not to confuse

with k in invariant

115

©Jesper Larsson TräffSS23

Invariant: X be original content of x. Before round k,

k=0,…,floor(log2n), it holds that

x[i] = ∑i-2
k
+1≤j≤iX[j] for i=j2k-1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

In round k, x[i] is updated by x[i-2k]+x[i]. By the invariant this is (∑i-2
k
-

2
k
+1≤j≤i-2

kX[j]) + (∑i-2
k
+1≤j≤iX[j]) = (∑i-2

k
-2

k
+1≤j≤iX[j]) =

∑i-2
(k+1)

+1≤j≤iX[j]. The invariant therefore holds before the k+1’st

iteration

In program, k doubles,

so round number is

log(k); do not to confuse

with k in invariant

116

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

“Good indices: have correct ∑0≤j≤ix[i]

Extending to prefix-sums

Idea: Use another log n rounds to make remaining indices “good”

117

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

Up phase

Down phase

Extending to prefix-sums

118

©Jesper Larsson TräffSS23

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

for (k=k>>1; k>1; k=kk) {

kk = k>>1; // halve

par (i=k-1; i<n-kk; i+=k) {

x[i+kk] = x[i]+x[i+kk];

}

barrier;

}

“Up-phase”:

log2 n rounds,

n/2+n/4+n/8+… < n

summations

“Down phase”:

log2 n rounds,

n/2+n/4+n/8+… < n

summations

Total work ≈ 2n = O(Tseq(n))

But: factor 2 off from sequential n-1 work

Non-recursive, data parallel implementation

These could be data dependencies, but

are not

119

©Jesper Larsson TräffSS23

for (k=k>>1; k>1; k=kk) {

kk = k>>1; // halve

par (i=k-1; i<n-kk; i+=k) {

x[i+kk] = x[i]+x[i+kk];

}

barrier;

}

Correctness: Need to prove that down-phase makes all indices

good.

Prove invariant: x[i] = ∑0≤j≤iX[i], for i=j2k-1, j=1,2,3,…, k=floor(log n),

floor(log2n)-1, …

Check at home

120

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

phase 0

phase 1

Sp(n) at most p/2: Half the processors are “lost”

121

©Jesper Larsson TräffSS23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

phase 0

phase 1

For p=n: Work optimal, but not cost optimal. The p processors are

occupied in 2log p rounds = O(p log p)

122

©Jesper Larsson TräffSS23

2. Non-recursive solution: Summary

Advantages:

• In-place, needs no extra so space, input and output in same array

• Work-optimal, simple, parallelizable loops

• No recursive overhead

Drawbacks:

• Less cache-friendly than recursive solution, element access with

increasing stride 2k, less spatial locality (see later)

• 2 floor(log2n) rounds

• About 2n “+” operations

123

©Jesper Larsson TräffSS23

Prefix-sums on the PRAM

With some care, both recursive and non-recursive prefix-sums

algorithms for the inclusive-prefix-sums problem can be

implemented on the PRAM

Theorem:

The (inclusive/exclusive) prefix-sums problem for an array of n

elements with an associative binary operator “+” can be solved on an

EREW PRAM with p processors in O(n/p+log n) time steps.

Home exercise

124

©Jesper Larsson TräffSS23

Theorem:

The (inclusive/exclusive) prefix-sums problem for an array of n

elements with an associative binary operator “+” can be solved on an

EREW PRAM with p processors in O(n/p+log p) time steps.

With the blocking technique explained next, the result can be

improved.

125

©Jesper Larsson TräffSS23

Aside: A lower bound/tradeoff for prefix-sums

Marc Snir: Depth-Size Trade-Offs for Parallel Prefix Computation. J.

Algorithms 7(2): 185-201 (1986)

Haikun Zhu, Chung-Kuan Cheng, Ronald L. Graham: On the

construction of zero-deficiency parallel prefix circuits with minimum

depth. ACM Trans. Design Autom. Electr. Syst. 11(2): 387-409 (2006)

Theorem (paraphrase): For computing the prefix sums for an n input

sequence, the following tradeoff between “size” s (number of “+”

operations) and “depth” t (T∞) holds: s+t≥2n-2

Proof by examining “circuits” (model of parallel computation) that

compute prefix sums

Roughly, this means: For fast parallel prefix sums algorithms,

speedup (in terms of + operations) is at most p/2

126

©Jesper Larsson TräffSS23

Prefix-sums for distributed memory models

Distributed memory programming model: represents

communication

Algorithm takes 2log2n communication rounds, each with n/2k

concurrent communication operations, total of 2n communication

operations. Since often n»p, much too expensive

Blocking technique:

Reduce number of communication/synchronization steps by dividing

problem into p similar, smaller problems (of size n/p) that can be

solved sequentially (in parallel), apply parallel algorithm on selected

element from p blocks

127

©Jesper Larsson TräffSS23

1. Processor i has block of n/p elements, x[i n/p,…,(i+1)n/p-1]

2. Processor i computes prefix sums of x[j], total sum in y[i]

3. Exscan(y,p);

4. Processor i adds exclusive prefix sum y[i] to all x[i

n/p,…,(i+1)n/p-1]

Observation:

Total work (“+” operations) is 2n+p log p; at least twice Tseq(n)

Blocking technique for prefix-sums algorithms

Processors locally, without synchronization, compute prefix-sums on

local (part of) array of size n/p (block). Exscan (exclusive prefix-

sums) operation takes O(log p) communication

rounds/synchronization steps, and O(p) work. Processors complete

by local postprocessing (block).

128

©Jesper Larsson TräffSS23

Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]

129

©Jesper Larsson TräffSS23

Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]

After solving local problems on blocks: p elements, p processors.

Algorithm that is as fast as possible (small number of rounds)

needed, does not need to be work optimal!

Note: This is not the best possible application of the blocking

technique (hint: Better to divide into p+1 parts)

130

©Jesper Larsson TräffSS23

Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[i][j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]

Sequential computation per processor

131

©Jesper Larsson TräffSS23

∑ ∑ ∑ ∑x:

y: y[i] = ∑x[i][j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

+ Prefix- ∑ + Prefix- ∑ + Prefix- ∑

Observation: Possibly better by reduction first, then prefix-sums

Naïve (per block) analysis:

• Prefix first: 2n read, 2n write operations (per block)

• Reduction first: 2n read operations, n write operations

• Both: ≥2n-1 “+” operations

Why?

132

©Jesper Larsson TräffSS23

Blocking technique summary

Technique:

1. Divide problem into p roughly equal sized parts (subproblems)

2. Assign subproblem to each processor

3. Solve subproblems using sequential algorithm

4. Use parallel algorithm to combine subproblem results

5. Apply combined result to subproblem solutions

Analysis:

1-2: Should be fast, O(1), O(log n), …

3: perfectly parallelizable, e.g. O(n/p)

4: Should be fast, e.g., O(log p), total cost must be less than O(n/p)

5: Perfectly parallelizable

133

©Jesper Larsson TräffSS23

Blocking technique summary

Technique:

1. Divide problem into p roughly equal sized parts (subproblems)

2. Assign subproblem to each processor

3. Solve subproblems using sequential algorithm

4. Use parallel algorithm to combine subproblem results

5. Apply combined result to subproblem solutions

Use when applicable BUT blocking is not always applicable!

Examples:

• Prefix-sums – data independent

• Cost-optimal merge – data dependent Step 1 quite non-trivial

134

©Jesper Larsson TräffSS23

Blocking technique: Another view

Technique:

1. Use work-optimal algorithm to shrink problem enough

2. Use fast, possibly non work-optimal algorithm on shrunk problem

3. Unshrink, compute final solution with work-optimal algorithm

Remark:

1. Typically from O(n) to O(n/log n) using O(n/log n) processors

2. Use O(n/log n) processors on O(n/log n) sized problem in O(log

n) time steps

135

©Jesper Larsson TräffSS23

Complexity:

1. O(1)

2. T = n/p, W = n

3. T = O(n/p), W = O(n) with p procesors (e.g. O(log p) for p in

O(n/log n))

4. T = n/p, W = n

If conditions in Step 3 fulfilled, blocked prefix-sums algorithm

is work-optimal. Use fastest possible prefix-sums with work not

exceeding O(n)

1. Processor i has block of n/p elements, x[i n/p,…,(i+1)n/p-1]

2. Processor i computes prefix sums of x[j], total sum in y[i]

3. Exscan(y,p);

4. Processor i adds exclusive prefix sum y[i] to all x[i

n/p,…,(i+1)n/p-1]

136

©Jesper Larsson TräffSS23

3. Yet another data parallel prefix-sums algorithm: Doubling

0 1 32 4 5 76 8

Round k‘, k=2k‘

Idea: In each round, let each processor compute sum

x[i] = x[i-k]+x[i] (not only every k’th processor, as in Solution 2)

Only ceil(log2n) rounds

needed, almost all

processors active in each

round; correctness by

similar argument as

solution 2

W. Daniel Hillis, Guy L. Steele Jr.: Data Parallel Algorithms.

Commun. ACM 29(12): 1170-1183 (1986)

137

©Jesper Larsson TräffSS23

for (k=1; k<n; k<<=1) {

for (i=k; i<n; i++) x[i] = x[i-k]+x[i];

barrier;

}

3. Yet another data parallel prefix-sums algorithm: Doubling

Data parallel?

Why might it not be correct?

There are dependencies

• How could this implementation be correct? Why? Invariant?

• All indices i≥1 active in each rounds, total work O(n log n)

• But only log n rounds

138

©Jesper Larsson TräffSS23

int *y = (int)malloc(n*sizeof(int));

int *t;

for (k=1; k<n; k<<=1) {

par (i=0; i<k; i++) y[i] = x[i];

par (i=k; i<n; i++) y[i] = x[i-k]+x[i];

barrier;

t = x; x = y; y = t; // swap

}

Iterations in update-loop not independent, thus loop not immediately

parallelizable: Eliminate dependencies

Eliminate

dependencies

with extra

array. Both

loops now

data parallel

139

©Jesper Larsson TräffSS23

int *y = (int)malloc(n*sizeof(int));

int *t;

for (k=1; k<n; k<<=1) {

par (i=0; i<k; i++) y[i] = x[i];

par (i=k; i<n; i++) y[i] = x[i-k]+x[i];

barrier;

t = x; x = y; y = t; // swap

}

invariant

Invariant:

before iteration step k, x[i] = ∑max(0,i-2
k
+1)≤j≤iX[j] for all i

It follows that the algorithm solves the inclusive prefix-sums problem

140

©Jesper Larsson TräffSS23

3. Doubling prefix-sums algorithm: Summary

Advantages:

• Only ceil(log2p) rounds (synchronization/communication steps)

• Simple, parallelizable loops

• No recursive overhead

Drawbacks:

• NOT work-optimal

• Less cache-friendly than recursive solution, element access with

increasing stride k, less spatial locality (see later)

• Extra array of size n needed to eliminate dependencies

141

©Jesper Larsson TräffSS23

Some results:

We implemented (ca. 2015) prefix-sums algorithms (with some extra

optimizations, and not exactly as just described), and executed on

• saturn: 48-core AMD system, 4*2*6 NUMA-cores, 3-level cache

• mars: 80-core Intel system, 8*10 NUMA-cores, 3-level cache

and computed speedup relative to a good (but probably not “best

known/possible”) sequential implementation (25 repetitions of

measurement)

142

©Jesper Larsson TräffSS23

mars, basetype double

143

©Jesper Larsson TräffSS23

mars, basetype int

144

©Jesper Larsson TräffSS23

saturn, basetype int

145

©Jesper Larsson TräffSS23

saturn, basetype double

146

©Jesper Larsson TräffSS23

A generalization of the prefix-sums problem: List-ranking

Given list x0 -> x1 -> x2 -> … -> xn-1, compute all n list-prefix sums

yi = xi+xi+1+xi+2+…+xn-1

by following -> from xi to end of list, “+” some associative operation

on type of list elements

Sequentially, looks like an easy problem (similar to prefix sums

problem): Find list head, follow the pointers and sum up, O(n)

The list ranking problem is to compute, for each list element, the sum

of the values of all following elements. The problem is sometimes

called the “data-dependent prefix sums problem”

147

©Jesper Larsson TräffSS23

Standard assumption: List stored in array

x0

Head:

first

element

Tail: last

element

x3 x2 x1 x5xn’ x4x6… … …

• Input compactly in array, index of first element may or may not be

known

• Index of element in array has no relation to position in list

x:

148

©Jesper Larsson TräffSS23

Standard assumption: List stored in array

x0

Head:

first

element

Tail: last

element

x3 x2 x1 x5xn’ x4x6… … …

A difficult problem for parallel computing: What are the subproblems

that can be solved independently?

Major, theoretical result (PRAM model): The list ranking problem can

be solved in O(n/p+log n) parallel time steps.

Parallel list ranking

in practice can work

for very large n

x:

149

©Jesper Larsson TräffSS23

Standard assumption: List stored in array

x0

Head:

first

element

Tail: last

element

x3 x2 x1 x5xn’ x4x6… … …

Richard J. Anderson, Gary L. Miller: Deterministic Parallel List

Ranking. Algorithmica 6(6): 859-868 (1991)

x:

Major, theoretical result (PRAM model): The list ranking problem can

be solved in O(n/p+log n) parallel time steps.

150

©Jesper Larsson TräffSS23

Usefulness of list ranking: Tree computations

Example (sketch):

Finding levels in

rooted tree, tree

given as array of

parent pointers

Level 0

Level 3

Level 2

Level 1

Level 4

Level 5

Task: Assign each node in

tree a level, which is the

length of the unique path to

the root

151

©Jesper Larsson TräffSS23

Usefulness of list ranking: Tree computations

Make a list that traverses the

tree (often possible: Euler

tour), assign labels to list

pointers, and rank

Label: +1 Label: -1

Level 2

Level 1

Level 3

152

©Jesper Larsson TräffSS23

Technique for problem partitioning: Blocking

Linear time problem with input in n-element array, p processors.

Divide array into p independent, consecutive blocks of size Θ(n/p)

using O(f(p,n)) time steps per processor. Solve p subproblems in

parallel, combine into final solution using O(g(p,n)) time steps per

processor

The resulting parallel algorithm is cost-optimal if both f(p,n) and

g(p,n) are O(n/p)

Examples:

• Prefix-sums, partition in O(1) time

• Merging, partition in O(log n) time

List-ranking problem not really solvable by blocking

153

©Jesper Larsson TräffSS23

Other problems for parallel algorithmics

Versatile operations with simple, practical, sequential algorithms and

implementations; that are (extremely)difficult to parallelize well, in

theory and practice:

Graph search, G=(V,E) (un)directed graph with vertex set V, n=|V|

and edge set E, m=|E|, some given source vertex v in V:

• Breadth-first search (BFS)

• Depth-first search (DFS)

• Single-source shortest path (SSSP)

• Transitive closure

• …

Hard, graph structure dependent

Really Hard; perhaps impossible

Lesson: Building blocks from sequential algorithmics are highly

useful for parallel computing algorithms; but not always

154

©Jesper Larsson TräffSS23

Reduction, Scan: Other collective operations

• Broadcast: One processor has data, after operation all

processors have data

• Scatter: Data of one processor distributed in blocks to other

processors

• Gather: Blocks from all processors collected at one processor

• Allgather: Blocks from all processors collected at all processors

(aka Broadcast-to-all)

• Alltoall: Each processor has blocks of data, one block for each

other processor, each processor collects blocks from other

processor

A set of processors collectively carry out an operation in cooperation

on sets of data:

155

©Jesper Larsson TräffSS23

Lecture summary, checklist

• Merging in parallel (4 algorithms)

• Bitonic merge

• Prefix sums problem (4 algorithms)

• Blocking technique

• Prefix sums for load balancing and processor allocation

• List ranking, BFS, DFS, SSSP: Difficult to parallelize problems

