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First parallel algorithm: Merging

Useful building block in many other algorithms, e.g., mergesort

Problem:

Two ordered arrays A and B of size n and m, A[i]≤A[i+1] for 0≤i<n-1, 

and B[j]≤B[j+1] for 0≤j<m-1.

Merge A and B into array C of size n+m, C[i]≤C[i+1] for 0≤i<n+m-1, 

and each C[i] is either from A or B, and any element of A and B is in 

C
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Note:

• Sometimes helpful to assume that all elements from A and B are 

distinct.

• This assumption is without loss of generality (wlog): Make 

elements distinct by ordering pairs (A[i],i) lexicographically: 

(A[i],i)<(A[j],j) if either A[i]<A[j], or A[i]=A[j] and i<j

Problem:

Two ordered arrays A and B of size n and m, A[i]≤A[i+1] for 0≤i<n-1, 

and B[j]≤B[j+1] for 0≤j<m-1.

Merge A and B into array C of size n+m, C[i]≤C[i+1] for 0≤i<n+m-1, 

and each C[i] is either from A or B, and any element of A and B is in 

C

Drawback:

This textbook trick can cost an extra n-element integer array (of 

original indices of the input elements), and extra time for comparison
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Terminology/property:

Merge is stable, if the original (index) order of equal input elements 

in A and B is preserved in C, and if A[i]=B[j] for some i and j, then A[i] 

comes before B[j] in C

Stability is often desirable, and sometimes required (e.g., Radix sort)
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i = 0; j = 0; k = 0;

while (i<n&&j<m) {

C[k++] = (A[i]<=B[j]) ? A[i++] : B[j++];

}

while (i<n) C[k++] = A[i++];

while (j<m) C[k++] = B[j++];

Standard, strictly sequential solution:

<A:

<B:

n

m

<C: < < < < < < < < <

n+m

Tseq(n+m) 

= O(n+m),

m+n

element 

reads and 

writes

NB: Not “best known” sequential implementation (See Knuth, Vol. 3 

and many more recent papers: cache, branch avoidance, …)
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i = 0; j = 0; k = 0;

while (i<n&&j<m) {

C[k++] = (A[i]<=B[j]) ? A[i++] : B[j++];

}

while (i<n) C[k++] = A[i++];

while (j<m) C[k++] = B[j++];

Parallel solution?

No obvious parallelism in the sequential algorithm: Each iteration of 

the loop depends on what happened in previous iterations (i and j), 

and this depends on the input

Parallelization approach: Divide input arrays into smaller parts of 

more or less the same size that can be merged independently. But 

how?

No hope for “automatic parallelization”?
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Solution 1:

Assume p=n+m processors, as many as elements in the input array. 

Assign a processor to each element in A and B

Definition:

Given an element x of a set A not containing x, rank(x,A) is the 

number of elements in A that are smaller than x

Parallel solution: 

We try without specific assumptions about the parallel architecture. 

For now, just p processors that can access (part of) the input and 

output arrays

Idea: Merging by ranking
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<A:

<B:

n

m

<C: < < < < < < < < <

n+m

Processor i, 0≤i<n, assigned to element A[i]

rank(A[i],B)

i+rank(A[i],B)

Processor j, n≤j<n+m assigned to element B[j-n]

• Element A[i] is written to C[i+rank(A[i],B)]

• Element B[j] is written to C[j+rank(B[j],A)]

• All elements can be handled independently, in parallel
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if (i<n) C[i+rank(A[i],B)] = A[i]; 

else if (i<n+m) {

j = i-n;

C[j+rank(B[j],A)] = B[j];

}

Processor i, 0≤i<n+m

Parallel algorithm (and implementation) 1:

Assumes access to input arrays A and B such that ranks can be 

computed efficiently. Convenient to have A, B, C in shared memory.

If not possible (distributed memory system), communication is 

needed for rankings and accessing elements

Explicit 

parallelization: We 

specify what each 

processor has to do
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Observation:

For an ordered sequence stored in an array A, rank(x,A) can be 

computed sequentially by binary search. The number of operations 

per x (work, time) is O(log n) for input n-element array A

Tpar(n+m,n+m) = O(log (max(m,n))

Wpar(n+m,n+m) = O((m+n)log(max(n,m)) ≤ O(2n log n) = O(n log n) 

The algorithm is not work-optimal:

Sp(n) = O(n/(n log n)/p) = O(p/log n) 

Exponential improvement 

in time, with linear number 

of processors

Bad! Speed-up decreases 

with n
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Problems:

• Algorithm is not efficient, work a factor (log n) too large

• Normally, n»p

• When is the computation finished (processors synchronized)?

if (i<n) C[i+rank(A[i],B)] = B[i]; 

else if (i<n+m) {

j = i-n;

C[j+rank(B[j],A)] = B[j];

}

barrier; // synchronization construct

Explicit synchronization needed to ensure that any processor can 

access any C[k] element. Now merge finished

Processor i, 0≤i<n+m
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Logical processor synchronization:

At synchronization point (code, instruction, …) no processor i can 

continue before all other processors j have also reached 

synchronization point. Different programming models have different 

ways of expressing barriers

Barrier synchronization pattern (from slide set on par. patterns)

for (i=n[j]; i<n[j+1]; i++) {

tmp[i]  =a[i-1]+a[i]+a[i+1];

}

barrier;

x = tmp; tmp = a; a = x; // swap

Processor j, 0≤j<p

synchronize

For correctness, 

synchronization 

needed. Can be explicit 

(barrier), implicit, or 

provided by 

programming or 

architecture model
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<A:

n

Solution 2 (use fewer processors, some fixed p):

Divide A into p blocks of size approx. n/p, rank only first element of 

each block, in parallel merge blocks of A with blocks of B 

sequentially

< <<

<

m

B:

i*n/p

C:

n+m

i*n/p+rank(A[i*n/p],B)

(i+1)*n/p+rank(A[(i+1)*n/p],B)

(i+1)*n/p
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merge(&A[i*(n/p)],n/p,

&B[rank(A[i*(n/p)],B)],

rank(A[(i+1)*(n/p)],B)-rank(A[i*(n/p)],B),

&C[i*(n/p)+rank(A[i*(n/p)],B)]);

barrier;

Processor i, 0≤i<p

Structure:

• Parallel preprocessing – rank: binary search  - to divide problem 

into p independent pieces

• Sequential algorithm to process subproblems in parallel

Work optimal (for p≤(m+n)/log m): 

Wpar(p,n) = O(p log m + p*(n/p)+m) = O(p log m + (n+m)) = O(n+m)

merge(A,n,B,m,C): (sequentially) merges A of size n and B of 

size m into C of size n+m

Explicit parallelization
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Problems:

• Assumed that p divides n (can be fixed)

• Severe load imbalance in worst case

<A:

n

< <<

<

m

B:

One processor does almost all work O(n/p+m), time Tpar(p,n+m) is 

O(n/p+m+log n)
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n

Now at most 2p smaller merge problems, all of size O(n/p+m/p). 

Load balance achieved

Solution 3a (fix load imbalance):

Divide A into p blocks of size approx. n/p, rank only first element of 

each block. For all balanced pairs (good segments) where 

rank(A[(i+1)*n/p],B)-rank(A[i*n/p],B)≤m/p, do sequential merge. For 

unbalanced pairs, divide bad segments 

B[rank(A[i*n/p],B),…,rank(A[(i+1)*n/p],B)[ into smaller parts and rank 

first elements in A. Merge resulting pairs 

<A:

n

< <<

<

m

B:

Bad segment, 

rank(A[(i+1)*n/p],B)-rank(A[i*n/p],B)>m/p
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Problems:

• Assigning processors to indices i*(n/p) for 0≤i<p easy.

• What about re-assigning to the start-indices of the blocks of the 

bad segments?

• What if there is more than one bad segment? Load balance must 

be done so that all blocks in bad segments have size at most 

m/p. This load balancing problem can be solved with prefix-sums 

(see later)
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Solution 3b (avoid load imbalance):

Divide A into p blocks of size approx. n/p, rank only first element of 

each block. Divide B into p blocks of size approx. m/p, rank only first 

element of each block. This gives 2p merge pairs, all of size 

O(n/p+m/p); case analysis shows that they are independent. Merge 

resulting pairs sequentially in parallel

<A:

n

< <<

<

m

B: << <

Torben Hagerup, Christine Rüb: Optimal Merging and Sorting on the 

EREW PRAM. Inf. Process. Lett. 33(4): 181-185 (1989)]

Jesper Larsson Träff: Simplified, stable parallel merging. CoRR

abs/1202.6575 (2012)
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Solution 4 (turning upside-down, merging by co-ranking):

Assume that for any given index i in the output array C, the (unique) 

two indices j and k in the input arrays A and B such that

C[0,…i-1] = merge(A[0,…j-1],j,B[0,k-1],k) 

can be determined. Call j and k the co-ranks of i. 

Divide the output array C of size n+m into p blocks of size (n+m)/p. 

The start index of block i, 0≤i<p, is i*(n+m)/p. 

For each block i:

• determine the co-ranks j(i) and k(i)

• merge the subsequences A[j(i),j(i+1)-1] and B[k(i),k(i+1)-1] into 

C[i*(n+m)/p,(i+1)*(n+m)/p-1]
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<A:

n

<

m

B:

i*(n+m)/p

C:

n+m

(i+1)*(n+m)/p

Co-ranks of i*(n+m)/p are j(i), k(i), and satisfy j(i)+k(i)=i*(n+m)/p

j(i) j(i+1)

k(i) k(i+1)
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// coj[]: array of j-coranks

// cok[]: array of k-coranks

corank(i*(n+m)/p,A,n,&coj[i],B,m,&cok[i]);

barrier; // processor i will need coranks of i+1

merge(&A[coj[i]],coj[i+1]-coj[i],

&B[cok[i]],cok[i+1]-cok[i],

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Clearly work-optimal:

Wpar(p,n+m) ≈ p O((m+n)/p+log(n+m)) = O(m+n+p log(n+m))

which is O(m+n) when p log(n+m) in O(m+n)
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// coj[]: array of j-coranks

// cok[]: array of k-coranks

corank(i*(n+m)/p,A,n,&coj[i],B,m,&cok[i]);

barrier; // processor i will need coranks of i+1

merge(&A[coj[i]],coj[i+1]-coj[i],

&B[cok[i]],cok[i+1]-cok[i],

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Perfectly load balanced:

The co-ranking assumption helps to determine exactly the segments 

of A and B needed to merge the part C[i*(n+m)/p,…,(i+1)*(n+m)/p-1], 

and each processor handles a segment of C of the same size 

(difference at most 1 element if p does not divide (n+m))
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corank(i*(n+m)/p,A,n,&j1,B,m,&k1);

corank((i+1)*(n+m)/p,A,n,&j2,B,m,&k2);

merge(&A[j1],j2-j1,

&B[k1],k2-k1,

&C[i*(n+m)/p]); // sequentially

barrier;

Processor i, 0≤i<p

Previous implementation needs synchronization (and 

communication?) after co-ranking, because processor i needs a 

result computed by processor i+1

Tradeoff: At the cost of a redundant co-rank computation, this 

synchronization step can be avoided. Which is better?

“Synchronization

-free, perfectly 

load-balanced, 

stable parallel 

merge”
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How can co-ranks be computed?

First: Observe that j+k=i (this will be an invariant): j and the k are the 

number of elements from A and B needed to produce the first i

elements of C

Second: Let C[i-1] be the i’th output element of the merge, and let j 

and k be the co-ranks of i. Since C=merge(A,B), it holds that C[i’-

1]≤C[i-1]≤C[i’’-1] for any i’,i’’ with i’<i<i’’

• Both A[j-1] and B[k-1] are in C[0,…,i-1], and the last element C[i-

1] must be either A[j-1] or B[k-1].

• Neither A[j] nor B[k] are in C[0,…,i-1].
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Doing the case analysis:

• C[i-1]=A[j-1] implies A[j-1]≤B[k], and since A[j-1]≤A[j], trivially B[k-

1]<A[j] because B[k-1]=C[i’-1] for some i’<i and B[k-1]<A[j-1].

• C[i-1]=B[k-1] implies B[k-1]<A[j], and trivially A[j-1]≤B[k].

• Therefore, for j and k to be co-ranks of i, both A[j-1]≤B[k] and B[k-

1]<A[j] must hold.
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Lemma:

For any i, 0≤i<n+m, there are unique j and k, j+k=i, such that

• Either j=0 or A[j-1]≤B[k], and

• Either k=0 or B[k-1]<A[j]

These j and k fulfill merge(A[0,…,j-1],B[0,…,k-1] ) = C[0,…,i-1]

The co-ranking algorithm uses the lemma in a binary-search like 

fashion to find the unique co-ranks of the given i

Christian Siebert, Jesper Larsson Träff: Perfectly Load-Balanced, 

Stable, Synchronization-Free Parallel Merge. Parallel Processing 

Letters 24(1) (2014)
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<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the 

invariant k=i-j

k

j

If A[j-1]>B[k]: j was too large, halve it (need jlow), increase k 

correspondingly

jlow
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<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the 

invariant k=i-j

k

jjlow

klow

If B[k-1]≥A[j]: k was too large, halve it (need klow), increase j 

correspondingly
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<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: Set j=min(i,n), by the 

invariant k=i-j

k

jjlow

klow

If B[k-1]≥A[j]: k was too large, halve it, increase j correspondingly

When halving j, j=(j-jlow)/2, klow is set to old value of k

When halving k, k=(k-klow)/2, jlow is set to old value of j
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<A:

n

<

m

B:

i

C:

n+m

Start by assuming all C elements from A: set j=min(i,n), by the 

invariant k=i-j

k

jjlow

klow

Iterate until j and k are found that satisfy the lemma. This happens 

after at lost log(n+m) iterations
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j = min(i,n); k = i-j; jlow = max(0,i-m);

done = 0;

do {

if (j>0&&k<m&&A[j-1]>B[k]) {

d = (1+j-jlow)/2;

klow = k;

j -= d; k += d;

} else if (k>0&&j<n&&B[k-1]>=A[j]) {

d = (1+k-klow)/2;

jlow = j;

k -= d; j += d;

} else done = 1;

} while (!done) 

The co-ranking algorithm determines co-ranks j and k for given index 

i and ordered arrays A and B
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• Merging as a (data dependent, adaptive) load balancing problem: 

divide the two sequences into parts of combined size (n+m)/p that 

can be merged independently

• Convenient to assume a shared-memory programming model 

abstraction: merge, binary search, and co-ranking can be given 

straight-forward, sequential implementations

• Programming model must support allocation of p processing 

elements to array indices

• Synchronization necessary after certain steps (barrier)

• In a distributed memory programming model, binary search and 

co-ranking less obvious (communication needed to access parts 

of input stored with other processes); some data redistribution 

may be necessary before local merge

Merge solution: Issues and observations
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Parallelization (of merge problem):

• Focus on the problem

• Consider potential for parallelization of known sequential 

algorithm, new idea if necessary

• Make parallel work comparable to sequential work

• Look for good load balance

• Minimize number of synchronization points

• (Communication: not yet seen)

• Use sequential algorithms as subalgorithms

Theorem:

On a shared-memory system, two ordered sequences of size n and 

m can be merged in time O((n+m)/p+log n)
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“Automatic parallelization” will most probably not work. The needed 

preprocessing idea (binary search, co-ranking) is found nowhere in 

the sequential algorithm

Parallelization (of merge problem):

• Focus on the problem

• Consider potential for parallelization of known sequential 

algorithm, new idea if necessary

• Make parallel work comparable to sequential work

• Look for good load balance

• Minimize number of synchronization points

• (Communication: not yet seen)

• Use sequential algorithms as subalgorithms
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Foster‘s “methodology”

Ian Foster. Designing and building parallel programs - concepts and 

tools for parallel software engineering. Addison-Wesley 1995

1. Partitioning: Divide the computation into independent tasks

2. Communication: Determine communication needed between 

tasks

3. Agglomeration/aggregation: Combine tasks and communications 

together into larger (independent) chunks

4. Mapping: Assign tasks and communications to processes, 

threads, …

Often cited, “general”, 4-step strategy for parallelizing computations
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1. Partitioning: Divide the computation into independent tasks

2. Communication: Determine communication needed between 

tasks

3. Agglomeration/aggregation: Combine tasks and communications 

together into larger (independent) chunks

4. Mapping: Assign tasks and communications to processes, 

threads, …

Rules of thumb, important issues to consider; but unspecific. 

Parallelization is problem/algorithm and architecture dependent

There is no general strategy for parallelizing an algorithm, or for 

finding the right algorithm to parallelize
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1. Partitioning: Algorithmic idea needed; rank/co-rank exposes 

“tasks” (blocks that can be merged) to be performed 

independently in parallel

2. Communication: How to rank/co-rank? Which data needs to be 

exchanged before blocks can be merged

3. Agglomeration/aggregation: Ranking/binary search per element 

too fine-grained, too much communication, too much work. 

Divide into larger blocks of size n/p, m/p

4. Mapping: Processors close to blocks merge blocks

Four steps only partially applicable to the developed merge 

algorithm (later: implementation). Helpful?

Foster’s “methodology” applied to the merge problem
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Oblivious merging: Bitonic merge/Even-odd merge

Problem with merge by co-ranking and rank-based algorithms:

• Many processors may need to read the same array elements at 

the same time. What if this is not allowed (EREW PRAM)? What 

if this is not efficient (by serialization when several processors 

read the same value)?

• What if only O(p) elements need to be merged on p processors? 

(Solution 1 can be of help here)
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(Data) Oblivious parallel algorithms

Definition:

Parallel algorithm is oblivious if its data access pattern (array 

accesses, communication) is independent of (oblivious to) actual 

data, dependent only on n and p

Two classical, oblivious merge algorithms

• Even/odd merge

• Bitonic merge

Kenneth E. Batcher: Sorting Networks and Their Applications. AFIPS 

Spring Joint Computing Conference 1968: 307-314

Kenneth E. Batcher: On Bitonic Sorting Networks. ICPP (1) 1990: 

376-379
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Bitonic merge

A sequence (a0,a1,…,an-1) is bitonic if either

1. There is an index i such that a0≤a1≤…≤ai and ai+1≥ai+2≥…≥an-1

2. There is a cyclic shift of the sequence, such that 1. holds

≤ ≥

i

≤ ≥ ≤

Case 1

Case 2≤
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A sequence (a0,a1,…,an-1) is bitonic if either

1. There is an index i such that a0≤a1≤…≤ai and ai+1≥ai+2≥…≥an-1

2. There is a cyclic shift of the sequence, such that 1. holds

Case 1 Case 2
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Lemma:

Let a = (a0,a1,…,an-1) be a bitonic sequence of even length n. The 

two sequences

• a’ = (min(a0,an/2),min(a1,an/2+1),…,min(an/2-1,an-1))

• a’’ = (max(a0,an/2), max(a1,an/2+1),…,max(an/2-1,an-1)) 

of length n/2 are 

1. bitonic, and 

2. a’ ≤ a’’ (all elements of a’ no larger than all elements of a’’)

≤ ≥ ≤

a’i=min(ai,ai+n/2)

a’’i=max(ai,ai+n/2)
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Example:

• a = (1,1,2,3,4,7,7,6,5,4,4,3) = (1,1,2,3,4,7)||(7,6,5,4,4,3)

• a’ = (1,1,2,3,4,3)

• a’’ = (7,6,5,4,4,7)

Example (sequence cyclically shifted):

• a = (3,4,7,7,6,5,4,4,3,1,1,2) = (3,4,7,7,6,5)||(4,4,3,1,1,2)

• a’ = (3,4,3,1,1,2)

• a’’ = (4,4,7,7,6,5)

Bitonic

Bitonic
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Proof of lemma:

1. Any subsequence of a bitonic sequence is bitonic. The 

subsequences a’ and a’’ obviously partition a (a’ and a’’ disjoint, 

union of a’ and a’’ is a)

2. Assume there is some a’i>a’’j. Exhaustive case analysis in all 

cases leads to a contradiction

1.
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Proof of lemma:

1. Any subsequence of a bitonic sequence is bitonic. The 

subsequences a’ and a’’ obviously partitions a (a’ and a’’ disjoint, 

union of a’ and a’’ is a)

2. Assume there is some a’i>a’’j. Exhaustive case analysis in all 

cases leads to a contradiction

2.

n/2

ai
aj Assume a’i = min(ai,ai+n/2) = ai

Then it must be that aj<ai, 

contradicting either that a’i is 

min, or a’’j is max

ai+n/2
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Ordering bitonic sequences:

Given bitonic sequence a:

• Split a into sequences a’ of minima and sequence a’’ of maxima

• Recursively order the two bitonic sequences a’ and a’’

Lemma can easily be extended to odd length sequences. Virtually 

repeat the last element an-1 to get an even length sequence (helping 

observation: Element in a bitonic sequence can be repeated, and 

still give a bitonic sequence). The bitonic split will put the real an-1 in 

either a’ or a shifted a’’.

But note: This extension is no longer oblivious. There are other ways 

of extending bitonic ordering to odd sequence lengths

Wolfgang J. Paul: A Note on Bitonic Sorting. Inf. Process. Lett. 49(5): 

223-225 (1994)
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bitonic_merge(int a[], int n)

{

if (n==1) return;

int nn = n/2; int s = n/2;

if (n%2==1) { // n odd

nn++; 

if (a[n/2]<a[n-1]) s++;

}

for (i=0; i<n/2; i++) {

int mina, maxa;

mina = min(a[i],a[i+nn]);

maxa = max(a[i],a[i+nn]);

a[i] = mina; a[i+nn] = maxa;

}

bitonic_merge(a,s);

bitonic_merge(a+s,n-s);

}

Parallelizable loop

Convert to iteration

trick

Implement as swap
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Let W(n) be the work (number of operations) for the bitonic merge of 

a sequence a of length n. We have

• W(1) = O(1)

• W(n) = O(n)+2W(n/2)

with solution W(n) = O(n log n)

Proof:

Expand recursion a few times, and guess solution. By induction, 

ignoring O-constants:

W(n) = n + 2(n/2 log2n/2) = n + n log2n/2 = n + n log2n –n = n log2n

By same arguments, recursion depth is ceil(log2n)

Induction hypothesis
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Theorem:

On a shared-memory system, a bitonic sequence of length p can be 

ordered into a sequence in increasing order in ceil(log2p) parallel 

steps and O(p log p) operations. A bitonic sequence of length n can 

be ordered in time O((n log n)/p+log p).

Bitonic ordering can be done in-place

When n>p, do bitonic merge recursion until n/2k = n/p, then merge 

bitonic subsequences of length n/p sequentially on the p processors. 

Still 2k = p  k = log2p and work per recursion step O(n), so total 

work is O(n log p). The algorithm is not work-optimal

Note: Bitonic ordering is not stable
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≤A:

≤B:

n

m

Merging ordered sequences A and B by bitonic ordering

≤ Reverse B: ≥

n+m

Resulting sequence is bitonic, but n+m may not be a power of two.

To get a bitonic sequence of length a power of two, pad from below 

with virtual -∞ elements to nearest power of two.
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≤A:

≤B:

n

m

Merging ordered sequences A and B by oblivious bitonic ordering

≤ Reverse B: ≥

n+m

-∞

Observation: The virtual elements will stay in front after bitonic split, 

and can be kept as virtual elements
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Comparator networks as a model for parallel sorting

x

y

min(x,y)

x

y
min(x,y)

x0

x1

x2

x3

Sorting network for n=4

Size: Number of comparators (≈ number of operations)

Depth: Longest path from an input to an output

Comparator (min/max)
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D. E. Knuth: The Art of Computer Programming, Vol. 3. Addison-

Wesley, 1973.

Section 5.3.4, Exercise 51 [M50]: Prove that the asymptotic value of 

Ŝ(n) is not O(n log n)

Question:

What is the minimal depth and size required for sorting n number 

with a sorting network?

Is there a sorting network of depth O(log n) of size O(n log n)?

Long standing, open question in parallel computing

Bather’s bitonic sorting network has depth O(log2n) and size O(n 

log2n)
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Miklós Ajtai, János Komlós, Endre Szemerédi: An O(n log n) Sorting 

Network. STOC 1983: 1-9

Miklós Ajtai, János Komlós, Endre Szemerédi: Sorting in c log n 

parallel sets. Combinatorica 3(1): 1-19 (1983)

Question resolved in 1983 with the O(n log n) size AKS network

Complex construction (expander graphs), excessive constants; not 

practical. 

Another milestone in parallel sorting: O((n log n)/p + log n) EREW 

PRAM mergesort; not practical

Richard Cole: Parallel Merge Sort. SIAM J. Comput. 17(4): 770-785 

(1988)

Richard Cole: Correction: Parallel Merge Sort. SIAM J. Comput. 

22(6): 1349 (1993)
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Reduction and prefix sums in parallel

Reduction problem: Given sequence x0, x1, x2, …, xn-1, compute

y = ∑0≤i<nxi = x0+x1+x2+…+xn-1

• xi integers, real numbers, vectors, structured values…

• “+” any applicable operator, sum, product, min, max, bitwise and, 

logical and, vector sum, …

Algebraic properties of “+”: Associative [x+(y+z)=(x+y)+z], possibly 

commutative, …

Parallel reduction problem:

Given sequence (array) of elements (xi), associative operation “+”, 

compute the sum y = ∑xi
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Collective operation pattern:

Set of processors (threads, processes, …) “collectively” invoke some 

operation, each contribute a subset of the n elements, process order 

determine element order

• Reduction-to-one: All processors participate in the operations, 

resulting “sum” stored with one specific processor (“root”)

• Reduction-to-all: All processors participate, results available to all 

processes

• Reduction-with-scatter: Reduction of vectors, result vector stored 

in blocks over the processors according to some rule

Reduction is a fundamental, primitive operation, used in many, many 

applications (recall: Map-Reduce). Available in some form in most 

parallel programming models/interfaces as “collective operation”
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Definitions:

i’th prefix sum: Sum of the first i elements of xi sequence

yi = ∑0≤j<ixj = x0+x1+x2+…+xi-1

a) Exclusive prefix (i>0) sum: up to, but not including xi in sum 

(special definition for i=0) 

yi = ∑0≤j≤ixj = x0+x1+x2+…+xi

b) Inclusive prefix sum: up to and including xi in sum.

Note: Inclusive prefix trivially computable from exclusive prefix (add 

xi), not vice versa unless “+” has inverse

Parallel prefix sums problem: Given sequence xi, compute all n 

prefix sums y0, y1, …, yn-1
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The collective prefix-sums operation often referred to as Scan: 

Process i, i≤i<p, has xi

• Scan: Process i computes inclusive prefix sum yi

• Exscan: Process i computes exclusive prefix sum yi

Prefix-sums is a fundamental, primitive operation, used for 

bookkeeping and load balancing purposes (and others) in many, 

many applications. Available in some form in most parallel 

programming models/interfaces.

Reduction, Scan:

Input sequence x0, x1, x2, …, xn-1 in array, distributed array, … in form 

suitable to programming model
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Parallel reduction problem:

Given sequence (array) of elements, associative operation “+”, 

compute the sum y = ∑xi

Parallel prefix-sums problem:

Compute all n (inclusive or exclusive) prefix sums y0, y1, …, yn-1

Sequentially, both problems can be solved in O(n) operations, and n-

1 applications of “+”. 

This is optimal (best possible), since the output depends on each 

input xi. Complexity is Θ(n).



61

©Jesper Larsson TräffSS23

How to solve prefix sums problem efficiently in parallel?

• Total number of operations (work) proportional to Tseq(n) = O(n)

• Total number of actual “+” applications close to n-1

• Parallel time Tpar(n) = O(n/p+T∞(n)) for large range of p

• As fast as possible, T∞(n) = O(log n)

Remark:

In most reasonable architecture models, Ω(log n) would be a lower 

bound on the parallel running time for a work-optimal solution
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Sequential solution (both reduction and scan): Simple scan through 

array with running sum

register int sum = x[0];

for (i=1; i<n; i++) {

sum += x[i]; x[i] = sum;

}

Tseq(n) = n-1 summations, O(n), 1 read, 1 write per iteration

for (i=1; i<n; i++) {

x[i] = x[i-1]+x[i];

}

Direct solution, not “best 

sequential implementation”:

2(n-1) memory reads

Register solution possibly 

better, but far from best

Questions: What can the compiler do? How much dependence on 

basetype (int, long, float, double)? On content?
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Some results (the two solutions and the compiler):

Implementation with OpenMP:

traff 60> gcc –o pref –fopenmp <optimization> …

traff 61> gcc --version

gcc (Debian 4.7.2-5) 4.7.2

Copyright (C) 2012 Free Software Foundation, Inc.

This is free software; see the source for copying 

conditions.  There is NO warranty; not even for 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Execution on small Intel system

traff 62> more /proc/cpuinfo

…

Model name: Intel (R) Core (TM) i7-2600 CPU @ 3.40 GHz
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traff 98> ./pref -n 100000 -t 1

n is 100000 (0 MBytes), threads 1(1)

Basetype 4, block 1 MBytes, block iterations 0

Algorithm Seq straight Time spent 502.37 microseconds 

(min 484.67 max 566.68)

Algorithm Seq Time spent 379.09 microseconds (min 296.97 

max 397.58)

Algorithm Reduce Time spent 249.39 microseconds (min 

210.75 max 309.59)

traff 99> ./pref -n 1000000 -t 1

n is 1000000 (3 MBytes), threads 1(1)

Basetype 4, block 1 MBytes, block iterations 3

Algorithm Seq straight Time spent 3532.19 microseconds 

(min 2875.97 max 4552.18)

Algorithm Seq Time spent 2304.72 microseconds (min 

2256.46 max 2652.57)

Algorithm Reduce Time spent 1625.14 microseconds (min 

1613.68 max 1645.12)
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int

No opt -O3

Direct Register Direct Register

100,000 502 379 73 72

1,000,000 3532 2304 615 552

10,000,000 28152 23404 5563 5499

Small custom benchmark, omp_get_wtime() to measure time, 25 

repetitions, average running times of prefix-sums function (including 

function invocation)

Optimizer (-O3) can do a lot (discover register/running sum 

improvement)

Time in microseconds
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double

No opt -O3

Direct Register Direct Register

100,000 451 653 145 144

1,000,000 3926 4454 1466 1162

10,000,000 30411 44344 10231 10001

Surprisingly, non-optimized, direct solution faster than register 

running sum. Optimization a must: Look into other optimization 

possibilities (flags)

Time in microseconds

Lessons:

For “best sequential implementation”, explore what compiler can do 

(a lot). Document used compiler options (for reproducibility)
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Reduction application: Cutoff computation

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// convergence check

done = …;

} while (!done)

done: if x[i]<ε for all i

Each process locally computes 

localdone = (x[i]<ε) for all local i

done = allreduce(localdone,AND); 

Collective operation: 

perform reduction over 

set of involved processes, 

distribute result to all 

processesLocal input

Associative reduction operation
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Prefix-sums application: Array compaction, load balancing

for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Given arrays a and active, execute loop efficiently in parallel:

Work O(n) for the loop plus O(|active| f) for the function 

evaluations, where |active| is the number of indices for which 

active[i] is true
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for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Data parallel computation

Given arrays a and active, execute loop efficiently in parallel:

No 

dependencies 

between loop 

iterations

for (i=j*(n/p); i<(j+1)*(n/p); i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Processor j, 0≤j<p

Static 

assignment of 

work to 

processors
Work: O(n+|active| f). Time Tpar(p,n)?
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Processor j, 0≤j<p

a: …

Loop split across p processors can be inefficient: Some processors 
(those with active[i] false) do little work, while others take the 

major part. In worst case, Tpar(p,n) = O(|active| f), if all the work is 

done by one processor. Typical load balancing problem

for (i=j*(n/p); i<(j+1)*(n/p); i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Problem with static division of loop iteration space into fixed blocks
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for (i=0; i<n; i++) {

if (active[i]) a[i] = f(b[i]+c[i]);

}

Solution:
Reduce work to O(|active| f) by compacting active indices into 

consecutive positions of new array, parallelize over smaller array

Data parallel computation

Given arrays a and active, execute loop efficiently in parallel:

Work O(n) for the loop plus O(|active| f) for the function 

evaluations, where |active| is the number of indices for which 

active[i] is true
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Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

Smaller array of active indices: split into evenly sized blocks of size 
|active|/p

…

…

p0 p1 p2 p-1

a:
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Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

Approach: Count and index active elements

1. Mark active elements with index 1

2. Mark non-active element with index 0

3. Exclusive prefix-sums operation over new index array

4. Store original indices in smaller array

…

Work, time:

1+2.O(n), O(n/p)

3. We don’t know yet

4. O(n), O(n/p)

Last prefix 

sum is 

(almost) equal 
to |active|

a:
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a:

Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

for (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

for (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

index: 0 0 0 0 0 1 1 1 0 0 0 1 0 0 … 0 0 0 0 0 1 0 … 0 … 1 0 0 … 0 0 1

Exscan 0 0 0 0 0 0 1 2 3 3 3 3 4 4 4 …  4 4 4 4 4 4 5 5 … 5 …  5 6 6

…
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Iteration space:
for (i=0; i<n; i++) if (active[i]) a[i] = f(b[i]+c[i]);

for (j=0; j<m; j++) {

i = oldindex[j];

a[i] = f(b[i]+c[i]);

}

1. First load balance (prefix-

sums)

2. Then execute (data parallel 

computation) 

…

for (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

for (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

a:



76

©Jesper Larsson TräffSS23

par (j=0; j<m; j++) {

i = oldindex[j];

a[i] = f(b[i]+c[i]);

}

1. First load balance (prefix-

sums)

2. Then execute (data parallel 

computation) 

par (i=0; i<n; i++) index[i] = active[i] ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

m = index[n-1]+(active[n-1) ? 1 : 0);

par (i=0; i<n; i++) {

if (active[i]) oldindex[index[i]] = i;

}

Work: O(n) + O(|active| f)

Time: O(n/p) + Texscan(p,n) + O((|active| f)/p)

Data parallel computation over independent indices; 

concrete assignment to processors ignored here
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Prefix-sums application: Partitioning for Quicksort

Quicksort(a,n):

1. Select pivot a[k]

2. Partition a into a[0,…,n1-1], a[n1,…,n2-1], a[n2,…,n-1] of 

elements smaller, equal, and larger than pivot

3. In parallel: Quicksort(a,n1), Quicksort(a+n2,n-n2)

Task parallel Quicksort algorithm

Running time T∞ (assuming good choice of pivot, at most n/2 

elements in either segment):

T∞(n) ≤ T∞(n/2)+O(n) with solution T∞(n) = O(n)

Maximum speedup over sequential O(n log n) Quicksort is therefore 

O(log n). Need to parallelize partition step
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Partition:

1. Mark elements smaller than a[k], compact into a[0,…,n1-1]

2. Mark elements equal to a[k], compact into a[n1,…,n2-1]

3. Mark elements greater than a[k], compact into a[n2,…,n-1]

par (i=0; <n; i++) index[i] = (a[i]<a[k]) ? 1 : 0;

Exscan(index,n); // exclusive prefix computation

n1 = index[n-1]+(active[n-1] ? 1 : 0);

par (i=0; i<n; i++) {

if (a[i]<a[k]) aa[index[i]] = a[i]; 

}

// same for equal to and larger than pivot elements

…

// copy back

par (i=0; i<n; i++) a[i] = aa[i];
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Remaining load balancing problem: 

Assign processors proportionally to smaller and larger segments, 

Quicksort-recurse in parallel

Partition:

Three applications of prefix-sums (Exscan). How fast can prefix-

sums be computed?

Answer (how? See later):

In time O(n/p+log n) operations with p processors for array of n 

elements

OpenMP tasks (or Cilk) will help
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Quicksort(a,n):

1. Select pivot a[k]

2. Parallel Partition of a into a[0,…,n1-1], a[n1,…,n2-1], 

a[n2,…,n-1] of elements smaller, equal, and larger than 

pivot

3. In parallel: Quicksort(a,n1), Quicksort(a+n2,n-n2)

Task parallel Quicksort algorithm with parallel partition

T∞(n) ≤ T∞(n/2) + O(log n) with solution T∞(n) = O(log2 n)

Maximum possible speed-up is now O(n/log n)
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Prefix-sums application: Load balancing for merge algorithm

<B:

Bad segments: rank[i+1]-rank[i]>m/p

Possible solution:

1. Compute total size of bad segments (parallel reduction)

2. Assign a proportional number of processors to each bad 

segment

3. Compute array of size O(p), each entry corresponding to a 

processor assigned to a bad segment: start index of segment, 

size of segment, relative index in segment 
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b0 b1 b2

p Processors corresponding to 

bad indices

b = ∑bi 
Prefix-sums compaction, 

Reduction, bad segment size bi 

a0 0 0 0 … 0 a1 0  0 a2 …

Processors allocated to bi

Number of processors for bi is 

ai ≈ p*bi/b

A0 A0 … A0 A1…A1 A2 …

0   1  …   2 3 4 … 7 8 …

ix0 ix0 … ix1 ix1 ix2…

1. Ai = ∑0≤j<iaj (exclusive 

prefix-sums)

2. Running index by prefix-

sums (relative index: 

running ix-A(i-1))

3. Start index by prefix-sums 

with max-operation

4. Bad segment start and 

size, prefix-sums

1.

2.

3.

4.

<p

Start, size
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1. Recursive: Fast, work-optimal

2. Iterative: Fast, work-optimal

3. Doubling: Fast(er), not work-optimal (but still useful)

Key to solution: Associativity of “+”:

x0+x1+x2+…+xn-2+xn-1 = ((x0+x1)+(x2+…))+…+(xn-2+xn-1))

All three solutions quite different from sequential solution

Three theoretical solutions to the parallel prefix-sums problem

Questions:

• How fast can these algorithms really solve the prefix-sums 

problem?

• How many operations do they require (work)?
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Instead of W(n) = O(n), T∞(n) = O(n)

++ +++ ++

++ +

+

+

+

+

a[0]

a[1] a[5]a[2] a[4]a[3] a[7]a[6]

a[0] a[1] a[5]a[2] a[4]a[3] a[7]a[6]

something tree-like
W(n) = O(n)

T∞(n) = O(log n)
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Scan(x,n) 

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

for (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

1. Recursive solution: Sum pairwise, recurse on smaller problem

Reduce problem

Solve recursively

Take back
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Scan(x,n) 

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

for (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

1. Recursive solution: Parallelization

Data parallel loop

All processors must have 

completed loop before call

Data parallel loop

Implicit or explicit “barrier”

All processors must have 

completed call before loop



87

©Jesper Larsson TräffSS23

Scan

Pair Pair Pair PairPair …

Return

Scan

Pair Pair Pair PairPair …

Fork-join parallelism, parallel recursive calls

Implied Barrier
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1. Recursive solution: Complexity and correctness

Scan(x,n) 

{

if (n==1) return;

for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(n) operations, perfectly parallelizable: O(n/p)

Solve same type of problem, now of size n/2

Total number of “+” operations W(n) satisfies:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)
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1. Recursive solution: Complexity and correctness

Scan(x,n) 

{

if (n==1) return;

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(n) operations, perfectly parallelizable: O(n/p)

Solve same type of problem, now of size n/2

Total number of “+” operations W(n) satisfies:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)
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Total number of operations:

• W(1) = O(1)

• W(n) ≤ n+W(n/2)

Expand recurrence: W(n) = n+W(n/2) = n + (n/2) + (n/4)+…+1

Guess solution: W(n) ≤ 2n (recall: geometric series…)

Verify guess by induction:

W(1) = 1 ≤ 2

W(n) = n+W(n/2) ≤ n+2(n/2) = n+n = 2n

By induction hypothesis
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1. Recursive solution: Complexity and correctness

Scan(x,n) 

{

if (n==1) return;

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

…

O(1) time steps, if n/2 processors available

Solve same problem of size n/2

Number of recursive calls T(n) (which will be T∞) satisfies

• T(1) = O(1)

• T(n) ≤ 1+T(n/2)
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Number of recursive calls

• T(1) = O(1)

• T(n) ≤ 1+T(n/2)

T(n) = 1+T(n/2) = 1+1+T(n/4) = 1+1+1+T(n/8) = …

2k≥n  k≥log2 n

Guess: T(n) ≤ 1+log2 n

Guess is correct, by induction:

T(1) = 1 = 1+log2(1) = 1+0

T(n) = 1+T(n/2) ≤ 1+(1+log2(n/2)) = 1+(1+log2 n – log2(2)) =

1+(1+log2 n -1) = 1+log2 n
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Scan(x,n) 

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Claim:

The algorithm computes the inclusive prefix-sums of x0,x1,x2,…, that 

is, xi = Σ0≤j≤iXj, where Xj is the value of xj before the call
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Scan(x,n) 

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2);

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Proof by induction:

Base n=1 is correct, algorithm does nothing
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Scan(x,n) 

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2); // by induction hypothesis

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

Proof by induction: 

By induction hypothesis, yi = ∑0≤j≤iYj, where Yj is the value of yj

before the recursive Scan call, so yi = ∑0≤j≤iYj = ∑0≤j≤i(X2j+X2j+1)
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Scan(x,n) 

{

if (n==1) return; // base

par (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1];

Scan(y,n/2); // by induction hypothesis

x[1] = y[0];

par (i=1; i<n/2; i++) {

x[2*i] = y[i-1]+x[2*i];

x[2*i+1] = y[i];

}

if (odd(n)) x[n-1] = y[n/2-1]+x[n-1];

}

By induction hypothesis yi = ∑0≤j≤iYj = ∑0≤j≤i(X2j+X2j+1)

Thus, xi = y(i-1)/2 for i odd, and xi = yi/2-1+Xi for i even fulfill the claim. 

This is what the algorithm computes after the recursive call
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1. Recursive solution: Summary

• With enough processors, T∞(n) = 2 log n parallel steps (recursive 

calls) needed, two barrier synchronizations per recursive call

• Number of operations, W(n) = O(n), all perfectly parallelizable 

(data parallel)

• Tpar(p,n) = W(n)/p + T∞(n) = O(n/p+log n)

• Linear speed-up up to Tseq(n)/T∞(n) = n/log n processors
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1. Recursive solution: Summary (practical considerations)

Drawbacks:

• Space: extra n/2 sized array in each recursive call, n in total

• About 2n “+” operations (compared to sequential scan: n-1)

• 2(log2n) parallel steps

Advantages:

• Smaller y array may fit in cache, pair-wise summing has good 

spatial locality (see later)
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Aside: Master Theorem for simple, regular recurrence relations

Given recurrence of the form

T(n) = a T(n/b) + O(nd logen)

for constants a≥1, b>1, d≥0, e≥0, and T(1) some constant. This has 

closed-form solution

1. T(n) = O(nd logen) if a/bd < 1

2. T(n) = O(nd loge+1n) if a/bd = 1

3. T(n) = O(nlog
b
a) if a/bd > 1

Mnemonics:

a: Branching (expansion, proliferation) factor for subproblems

b: Shrinkage factor for subproblem sizes

The missing c is for the hidden constant in O(nd logen)

Saves us from doing the 

induction proof every time. We 

need this later
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Proof: Algorithms lecture, any good algorithms book, the script…

• Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. 3rd

edition. MIT Press, 2009

• Dasgupta, Papadimitriou, Vazirani: Algorithms. McGraw Hill, 2007

• Kleinberg, Tardos: Algorithm Design. Addison-Wesley, 2005

• Tim Roughgarden: Algorithms Illuminated. Soundlikeyourself

Publishing, 2017

It is not as difficult as it may look, try yourself. See also AMP lecture

Note:

There are other versions of the Master Theorem, covering even 

more recurrences, and/or estimating constants. And theorems for 

other kinds of recurrences
Such things are clearly useful!
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Example:

For the recursive Scan implementation, the Master Theorem applies 

to both work and depth:

• W(1) = O(1)

• W(n) = W(n/2) + n

a=1, b=2, d=1, e=0 gives W(n) = O(n), Case 1 applies

• T(1) = O(1)

• T(n) =T(n/2) + 1

a=1, b=2, d=0, e=0 gives T(n) = O(log n), Case 2 applies

More interesting use later
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2. Iterative solution: Eliminate recursion and extra space

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

And almost done, now x[2k-1] = ∑0≤i<2
k xi

Perform log2n rounds, in round i, i≥0, a “+” operation is done for 

every 2i+1’th element

A synchronization operation (barrier) is needed after each round
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Lemma:

Reduction can be performed out in r = log2 n synchronized rounds, 

for n a power of 2. Total number of “+” operations are 

n/2+n/4+n/8+…<n (=n-1)

• Shared memory (programming) model: synchronization after 

each round

• Distributed memory programming model:           represent 

communication

Recall, geometric series: ∑0≤i≤nari = a(1-rn+1)/(1-r) 
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

for (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Data parallel 

computation, n/2(k+1) 

operations for round r, 

r=0, 1, …

Explicit synchronization
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}
Beware of 

dependencies

Data parallel 

computation, n/2(k+1) 

operations for round r, 

r=0, 1, …
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

But here are none. 

Why?

k is kk/2, so no 

update to x[i-k] 

Data parallel 

computation, n/2(k+1) 

operations for round r, 

r=0, 1, …

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}
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x:

Distributed memory programming model

0 1 2 3 4 5 6 7 8 14 15 16
…

Prefix-sums problem solved with explicit communication: Message 

passing programming model

Beware: Much too costly for large n relative to p (see later what to 

do)
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15

round 0

round 3

round 2

round 1

Communication pattern in distributed memory solutions

round 0 round 1 round 2

0
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15

Property 1:

Root active in all rounds

This communication pattern is called Binomial Tree

round 0

round 3

round 2

round 1

round 0 round 1 round 2

0
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15

Property 2:

For l-level tree, number of nodes 

at level k, 0≤k<l is choose(k,l-1), 

the binomial coefficient

Home exercise: 

Easy induction 

proof

This communication pattern is called Binomial Tree

0
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So far, algorithm can compute the sum for arrays with n=2k elements 

for k≥0

• Repair for n not a power of 2?

• Extend to parallel prefix-sums?

Observation/invariant: let X be original content of array x before 

round k, k=0,…,floor(log2n)

x[i] = X[i-2k+1]+…+X[i]

for i=j2k-1, j=1, 2, 3, …

Idea:

Prefix sums computed for certain elements, use anther log2n rounds 

to extend partial prefix sums
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Proof by invariant

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Invariant true before 0‘th 

iteration

If I true before k‘th

iteration, must be true 

before (k+1)‘th

Invariant must imply 

conclusion/intended result

Home-work: prove 

correctness of this 

algorithm
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Invariant: X be original content of x. Before round k, 

k=0,…,floor(log2n), it holds that

x[i] = ∑i-2
k
+1≤j≤iX[j] for i=j2k-1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

Before round k=0, x[i] = ∑i-2
k
+1≤j≤iX[j] = ∑i≤j≤iX[j] = X[i]

True by definition, invariant holds before iterations start

Homework solution

In program, k doubles, 

so round number is 

log(k); do not to confuse 

with k in invariant
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Invariant: X be original content of x. Before round k, 

k=0,…,floor(log2n), it holds that

x[i] = ∑i-2
k
+1≤j≤iX[j] for i=j2k-1

for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

In round k, x[i] is updated by x[i-2k]+x[i]. By the invariant this is (∑i-2
k
-

2
k
+1≤j≤i-2

kX[j]) + (∑i-2
k
+1≤j≤iX[j]) = (∑i-2

k
-2

k
+1≤j≤iX[j]) =

∑i-2
(k+1)

+1≤j≤iX[j]. The invariant therefore holds before the k+1’st 

iteration

In program, k doubles, 

so round number is 

log(k); do not to confuse 

with k in invariant
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

“Good indices: have correct ∑0≤j≤ix[i] 

Extending to prefix-sums

Idea: Use another log n rounds to make remaining indices “good”
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

Up phase

Down phase

Extending to prefix-sums
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for (k=1; k<n; k=kk) {

kk = k<<1; // double

par (i=kk-1; i<n, i+=kk) {

x[i] = x[i-k]+x[i];

}

barrier;

}

for (k=k>>1; k>1; k=kk) {

kk = k>>1; // halve

par (i=k-1; i<n-kk; i+=k) {

x[i+kk] = x[i]+x[i+kk];

}

barrier;

}

“Up-phase”: 

log2 n rounds, 

n/2+n/4+n/8+… < n 

summations

“Down phase”:

log2 n rounds, 

n/2+n/4+n/8+… < n 

summations

Total work ≈ 2n = O(Tseq(n))

But: factor 2 off from sequential n-1 work

Non-recursive, data parallel implementation

These could be data dependencies, but 

are not
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for (k=k>>1; k>1; k=kk) {

kk = k>>1; // halve

par (i=k-1; i<n-kk; i+=k) {

x[i+kk] = x[i]+x[i+kk];

}

barrier;

}

Correctness: Need to prove that down-phase makes all indices 

good.

Prove invariant: x[i] = ∑0≤j≤iX[i], for i=j2k-1, j=1,2,3,…, k=floor(log n), 

floor(log2n)-1, …

Check at home
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

phase 0

phase 1

Sp(n) at most p/2: Half the processors are “lost”
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

x:

round 0

round 3

round 2

round 1

round 0

round 2

round 1

phase 0

phase 1

For p=n: Work optimal, but not cost optimal. The p processors are 

occupied in 2log p rounds = O(p log p) 
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2. Non-recursive solution: Summary

Advantages:

• In-place, needs no extra so space, input and output in same array

• Work-optimal, simple, parallelizable loops

• No recursive overhead

Drawbacks:

• Less cache-friendly than recursive solution, element access with 

increasing stride 2k, less spatial locality (see later)

• 2 floor(log2n) rounds

• About 2n “+” operations
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Prefix-sums on the PRAM

With some care, both recursive and non-recursive prefix-sums 

algorithms for the inclusive-prefix-sums problem can be 

implemented on the PRAM

Theorem:

The (inclusive/exclusive) prefix-sums problem for an array of n 

elements with an associative binary operator “+” can be solved on an 

EREW PRAM with p processors in O(n/p+log n) time steps.

Home exercise
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Theorem:

The (inclusive/exclusive) prefix-sums problem for an array of n 

elements with an associative binary operator “+” can be solved on an 

EREW PRAM with p processors in O(n/p+log p) time steps.

With the blocking technique explained next, the result can be 

improved.
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Aside: A lower bound/tradeoff for prefix-sums

Marc Snir: Depth-Size Trade-Offs for Parallel Prefix Computation. J. 

Algorithms 7(2): 185-201 (1986)

Haikun Zhu, Chung-Kuan Cheng, Ronald L. Graham: On the 

construction of zero-deficiency parallel prefix circuits with minimum 

depth. ACM Trans. Design Autom. Electr. Syst. 11(2): 387-409 (2006)

Theorem (paraphrase): For computing the prefix sums for an n input 

sequence, the following tradeoff between “size” s (number of “+” 

operations) and “depth” t (T∞) holds: s+t≥2n-2

Proof by examining “circuits” (model of parallel computation) that 

compute prefix sums

Roughly, this means: For fast parallel prefix sums algorithms, 

speedup (in terms of + operations) is at most p/2
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Prefix-sums for distributed memory models

Distributed memory programming model:              represents 

communication

Algorithm takes 2log2n communication rounds, each with n/2k

concurrent communication operations, total of 2n communication 

operations. Since often n»p, much too expensive

Blocking technique:

Reduce number of communication/synchronization steps by dividing 

problem into p similar, smaller problems (of size n/p) that can be 

solved sequentially (in parallel), apply parallel algorithm on  selected 

element from p blocks
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1. Processor i has block of n/p elements, x[i n/p,…,(i+1)n/p-1] 

2. Processor i computes prefix sums of x[j], total sum in y[i]

3. Exscan(y,p);

4. Processor i adds exclusive prefix sum y[i] to all x[i

n/p,…,(i+1)n/p-1]

Observation:

Total work (“+” operations) is 2n+p log p; at least twice Tseq(n)

Blocking technique for prefix-sums algorithms

Processors locally, without synchronization, compute prefix-sums on 

local (part of) array of size n/p (block). Exscan (exclusive prefix-

sums) operation takes O(log p) communication 

rounds/synchronization steps, and O(p) work. Processors complete 

by local postprocessing (block).
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Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]
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Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]

After solving local problems on blocks: p elements, p processors.

Algorithm that is as fast as possible (small number of rounds) 

needed, does not need to be work optimal!

Note: This is not the best possible application of the blocking 

technique (hint: Better to divide into p+1 parts)
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Prefix-∑ Prefix-∑ Prefix-∑ Prefix-∑x:

y: y[i] = ∑x[i][j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

Add z[i] Add z[i] Add z[i]

Sequential computation per processor
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∑ ∑ ∑ ∑x:

y: y[i] = ∑x[i][j]

Exscan(y,z) z[i] = y[0]+…+y[i-1]

+ Prefix- ∑ + Prefix- ∑ + Prefix- ∑

Observation: Possibly better by reduction first, then prefix-sums

Naïve (per block) analysis:

• Prefix first: 2n read, 2n write operations (per block)

• Reduction first: 2n read operations, n write operations

• Both: ≥2n-1 “+” operations

Why?
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Blocking technique summary

Technique:

1. Divide problem into p roughly equal sized parts (subproblems)

2. Assign subproblem to each processor

3. Solve subproblems using sequential algorithm

4. Use parallel algorithm to combine subproblem results

5. Apply combined result to subproblem solutions

Analysis:

1-2: Should be fast, O(1), O(log n), …

3: perfectly parallelizable, e.g. O(n/p)

4: Should be fast, e.g., O(log p), total cost must be less than O(n/p)

5: Perfectly parallelizable
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Blocking technique summary

Technique:

1. Divide problem into p roughly equal sized parts (subproblems)

2. Assign subproblem to each processor

3. Solve subproblems using sequential algorithm

4. Use parallel algorithm to combine subproblem results

5. Apply combined result to subproblem solutions

Use when applicable BUT blocking is not always applicable!

Examples:

• Prefix-sums – data independent

• Cost-optimal merge – data dependent Step 1 quite non-trivial



134

©Jesper Larsson TräffSS23

Blocking technique: Another view

Technique:

1. Use work-optimal algorithm to shrink problem enough

2. Use fast, possibly non work-optimal algorithm on shrunk problem

3. Unshrink, compute final solution with work-optimal algorithm

Remark:

1. Typically from O(n) to O(n/log n) using O(n/log n) processors

2. Use O(n/log n) processors on O(n/log n) sized problem in O(log 

n) time steps
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Complexity:

1. O(1)

2. T = n/p, W = n

3. T = O(n/p), W = O(n) with p procesors (e.g. O(log p) for p in 

O(n/log n))

4. T = n/p, W = n

If conditions in Step 3 fulfilled, blocked prefix-sums algorithm 

is work-optimal. Use fastest possible prefix-sums with work not

exceeding O(n)

1. Processor i has block of n/p elements, x[i n/p,…,(i+1)n/p-1] 

2. Processor i computes prefix sums of x[j], total sum in y[i]

3. Exscan(y,p);

4. Processor i adds exclusive prefix sum y[i] to all x[i

n/p,…,(i+1)n/p-1]
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3. Yet another data parallel prefix-sums algorithm: Doubling

0 1 32 4 5 76 8

Round k‘, k=2k‘

Idea: In each round, let each processor compute sum 

x[i] = x[i-k]+x[i]  (not only every k’th processor, as in Solution 2)

Only ceil(log2n) rounds 

needed, almost all 

processors active in each 

round; correctness by 

similar argument as 

solution 2

W. Daniel Hillis, Guy L. Steele Jr.: Data Parallel Algorithms. 

Commun. ACM 29(12): 1170-1183 (1986)
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for (k=1; k<n; k<<=1) {

for (i=k; i<n; i++) x[i] = x[i-k]+x[i];

barrier;

}

3. Yet another data parallel prefix-sums algorithm: Doubling

Data parallel?

Why might it not be correct? 

There are dependencies

• How could this implementation be correct? Why? Invariant?

• All indices i≥1 active in each rounds, total work O(n log n)

• But only log n rounds
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int *y = (int)malloc(n*sizeof(int));

int *t;

for (k=1; k<n; k<<=1) {

par (i=0; i<k; i++) y[i] = x[i];

par (i=k; i<n; i++) y[i] = x[i-k]+x[i];

barrier;

t = x; x = y; y = t; // swap

}

Iterations in update-loop not independent, thus loop not immediately 

parallelizable: Eliminate dependencies

Eliminate 

dependencies 

with extra 

array. Both 

loops now 

data parallel
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int *y = (int)malloc(n*sizeof(int));

int *t;

for (k=1; k<n; k<<=1) {

par (i=0; i<k; i++) y[i] = x[i];

par (i=k; i<n; i++) y[i] = x[i-k]+x[i];

barrier;

t = x; x = y; y = t; // swap

}

invariant

Invariant:

before iteration step k, x[i] = ∑max(0,i-2
k
+1)≤j≤iX[j] for all i

It follows that the algorithm solves the inclusive prefix-sums problem
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3. Doubling prefix-sums algorithm: Summary

Advantages:

• Only ceil(log2p) rounds (synchronization/communication steps)

• Simple, parallelizable loops

• No recursive overhead

Drawbacks:

• NOT work-optimal

• Less cache-friendly than recursive solution, element access with 

increasing stride k, less spatial locality (see later)

• Extra array of size n needed to eliminate dependencies
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Some results:

We implemented (ca. 2015) prefix-sums algorithms (with some extra 

optimizations, and not exactly as just described), and executed on

• saturn: 48-core AMD system, 4*2*6 NUMA-cores, 3-level cache

• mars: 80-core Intel system, 8*10 NUMA-cores, 3-level cache

and computed speedup relative to a good (but probably not “best 

known/possible”) sequential implementation (25 repetitions of 

measurement)
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mars, basetype double
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mars, basetype int
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saturn, basetype int
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saturn, basetype double
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A generalization of the prefix-sums problem: List-ranking

Given list x0 -> x1 -> x2 -> … -> xn-1, compute all n list-prefix sums

yi = xi+xi+1+xi+2+…+xn-1

by following -> from xi to end of list, “+” some associative operation 

on type of list elements

Sequentially, looks like an easy problem (similar to prefix sums 

problem): Find list head, follow the pointers and sum up, O(n)

The list ranking problem is to compute, for each list element, the sum 

of the values of all following elements. The problem is sometimes 

called the “data-dependent prefix sums problem”
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Standard assumption: List stored in array

x0

Head: 

first 

element

Tail: last 

element

x3 x2 x1 x5xn’ x4x6… … …

• Input compactly in array, index of first element may or may not be 

known

• Index of element in array has no relation to position in list

x:
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Standard assumption: List stored in array

x0

Head: 

first 

element

Tail: last 

element

x3 x2 x1 x5xn’ x4x6… … …

A difficult problem for parallel computing: What are the subproblems

that can be solved independently?

Major, theoretical result (PRAM model): The list ranking problem can 

be solved in O(n/p+log n) parallel time steps. 

Parallel list ranking 

in practice can work 

for very large n

x:
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Standard assumption: List stored in array

x0

Head: 

first 

element

Tail: last 

element

x3 x2 x1 x5xn’ x4x6… … …

Richard J. Anderson, Gary L. Miller: Deterministic Parallel List 

Ranking. Algorithmica 6(6): 859-868 (1991)

x:

Major, theoretical result (PRAM model): The list ranking problem can 

be solved in O(n/p+log n) parallel time steps. 
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Usefulness of list ranking: Tree computations

Example (sketch): 

Finding levels in 

rooted tree, tree 

given as array of 

parent pointers

Level 0

Level 3

Level 2

Level 1

Level 4

Level 5

Task: Assign each node in 

tree a level, which is the 

length of the unique path to 

the root
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Usefulness of list ranking: Tree computations

Make a list that traverses the 

tree (often possible: Euler 

tour), assign labels to list 

pointers, and rank 

Label: +1 Label: -1

Level 2

Level 1

Level 3
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Technique for problem partitioning: Blocking

Linear time problem with input in n-element array, p processors. 

Divide array into p independent, consecutive blocks of size Θ(n/p) 

using O(f(p,n)) time steps per processor. Solve p subproblems in 

parallel, combine into final solution using O(g(p,n)) time steps per 

processor

The resulting parallel algorithm is cost-optimal if both f(p,n) and 

g(p,n) are O(n/p)

Examples:

• Prefix-sums, partition in O(1) time

• Merging, partition in O(log n) time

List-ranking problem not really solvable by blocking
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Other problems for parallel algorithmics

Versatile operations with simple, practical, sequential algorithms and 

implementations; that are (extremely)difficult to parallelize well, in 

theory and practice:

Graph search, G=(V,E) (un)directed graph with vertex set V, n=|V| 

and edge set E, m=|E|, some given source vertex v in V:

• Breadth-first search (BFS)

• Depth-first search (DFS)

• Single-source shortest path (SSSP)

• Transitive closure

• …

Hard, graph structure dependent

Really Hard; perhaps impossible

Lesson: Building blocks from sequential algorithmics are highly 

useful for parallel computing algorithms; but not always
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Reduction, Scan: Other collective operations

• Broadcast: One processor has data, after operation all 

processors have data 

• Scatter: Data of one processor distributed in blocks to other 

processors

• Gather: Blocks from all processors collected at one processor

• Allgather: Blocks from all processors collected at all processors 

(aka Broadcast-to-all)

• Alltoall: Each processor has blocks of data, one block for each 

other processor, each processor collects blocks from other 

processor

A set of processors collectively carry out an operation in cooperation 

on sets of data:
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Lecture summary, checklist

• Merging in parallel (4 algorithms)

• Bitonic merge

• Prefix sums problem (4 algorithms)

• Blocking technique

• Prefix sums for load balancing and processor allocation

• List ranking, BFS, DFS, SSSP: Difficult to parallelize problems


