192.067 VO Deductive Databases January 28, 2022						
	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)			

1.) Consider the following two databases:

$$D_1 = \{PartOf(b, a), PartOf(c, a), PartOf(d, b)\}$$
$$D_2 = \{PartOf(a, b), PartOf(b, a)\}$$

Furthermore, consider the program P consisting of the following two rules:

$$Contains(X,Y) \leftarrow PartOf(Y,X)$$

$$Contains(X,Z) \leftarrow Contains(X,Y), PartOf(Z,Y)$$

Compute the answer to the Datalog query (P, Contains) over the database D_1 .

Compute the answer to the Datalog query (P, Contains) over the database D_2 .

2.) Consider a program P consisting of the following three rules:

$$\begin{aligned} b &\leftarrow not \ a \\ a &\leftarrow b \\ a &\leftarrow not \ b \end{aligned}$$

Present at least one stable model of P. Justify your answer (including the computation of the program reduct). (7 points)

Which of the three rules should be deleted from P so that the resulting program P' has exactly two stable models? Explain you answer. (5 points)

3.) Consider a program P consisting of the following rules:

$$\begin{aligned} a &\leftarrow b, not \ c \\ c &\leftarrow not \ a \\ b &\leftarrow a \end{aligned}$$

Present a set U_1 of atoms from P such that U_1 is unfounded w.r.t. $(P,\{\},\{\})$.

Present a set U_2 of atoms from P such that U_2 is unfounded w.r.t. $(P, \{a\}, \{\})$. It should be the case that $U_1 \neq U_2$.

Justify your answer.

- **4.)** Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfying the following:
 - $\bullet \ \Delta^{\mathcal{I}} = \{a, b, c\},\$
 - $A^{\mathcal{I}} = \{a\}$ for the concept name A,
 - $B^{\mathcal{I}} = \{b, c\}$ for the concept name B,
 - $R^{\mathcal{I}} = \{(b, b), (a, b)\}$ for the role name R, and
 - $P^{\mathcal{I}} = \{(a, a), (b, b)\}$ for the role name P.

Compute the extension of $\cdot^{\mathcal{I}}$ for the following complex concepts (i.e. compute $C^{\mathcal{I}}$ for all complex concepts C listed below):

- (1) $A \sqcup \neg B$
- (2) $\neg A \sqcap (A \sqcup B)$
- $(3) \exists R.B$
- $(4) \ \forall R.B$
- (5) $\exists P.(A \sqcup \neg A)$
- (6) $\forall R.(A \sqcap \neg A)$

5.) By defining a suitable interpretation, show that the concept $A \sqcap (\exists R.B) \sqcap (\forall R.C)$ is satisfiable.

(12 points)

Here A, B, C are concept names and R is a role name.