Problem Set 2

Problem 2.1 Let $\mathrm{x} \sim \mathcal{U}(a, b)$ be a random variable uniformly distributed in the interval $[a, b]$. Consider the transformation $\mathrm{y}=\mathrm{x}^{2}$.
a) Find the pdf of y for the case $b>a>0$.
b) Repeat a) for the case $a<0 \wedge b>0$.

Problem 2.2 Consider a random variable x, distributed according to the pdf

$$
f_{\times}(x)=\left\{\begin{array}{ll}
c\left(1-\frac{|x|}{a}\right), & -a \leq x \leq a \\
0, & \text { otherwise }
\end{array},\right.
$$

where $a>0$.
a) Specify the constant c.
b) Calculate the $\operatorname{cdf} F_{\mathrm{x}}(x)$. Sketch the pdf and the cdf of x .
c) Find the moments $m_{x}^{(k)}$ and the central moments $m_{x-\mu_{\mathrm{x}}}^{(k)}$ for $k=1,2,3$.

Problem 2.3 Let $\mathrm{y}=\tanh (\mathrm{x} / 2)$, where $\mathrm{x} \sim \mathcal{U}(a, b)$.
a) Calculate and sketch $f_{\mathrm{y}}(y)$.
b) Calculate the mean μ_{y}.

Problem 2.4 Let $\mathrm{x} \sim \mathcal{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$ be a Gaussian random variable with mean $\mu_{\mathrm{x}}=4$ and variance $\sigma_{\mathrm{x}}^{2}=5$.
a) Calculate the probability that x is in the interval $[-2,3]$.
b) A random variable y is obtained from \mathbf{x} via the clipping operation $g(\cdot)$ as follows:

$$
\mathrm{y}=g(\mathrm{x})= \begin{cases}a, & \mathrm{x} \leq 2 \\ \mathrm{x}, & 2<\mathrm{x}<6 \\ b, & \mathrm{x} \geq 6\end{cases}
$$

Find expressions for a and b such that the mean square error $E\left\{(x-y)^{2}\right\}$ is minimized and evaluate these expressions numerically. Find and sketch the pdf of y.
c) The random variable y is now quantized (binned) with Q levels (bins) yielding a new random variable z, i.e.,

$$
\mathrm{z}=q(\mathrm{y})=k \quad \text { if } \quad \mathrm{y} \in\left[g_{k-1}, g_{k}\right] \subset \mathbb{R}, k=1,2, \ldots, Q
$$

where g_{i} denotes the i th quantization boundary and $g_{0}=-\infty, g_{Q}=\infty$. For $Q=3$, find the remaining g_{i} such that $p_{\mathbf{z}}(z)=1 / Q$.

