Problem Set 2

Problem 2.1 Let $x \sim \mathcal{U}(a, b)$ be a random variable uniformly distributed in the interval [a,b]. Consider the transformation $y = x^2$.

- a) Find the pdf of y for the case b > a > 0.
- b) Repeat a) for the case $a < 0 \land b > 0$.

Problem 2.2 Consider a random variable x, distributed according to the pdf

$$f_{\mathsf{x}}(x) = \begin{cases} c\left(1 - \frac{|x|}{a}\right), & -a \le x \le a\\ 0, & \text{otherwise} \end{cases},$$

where a > 0.

- a) Specify the constant c.
- b) Calculate the cdf $F_{x}(x)$. Sketch the pdf and the cdf of x.
- c) Find the moments $m_{\mathsf{x}}^{(k)}$ and the central moments $m_{\mathsf{x}-\mu_{\mathsf{x}}}^{(k)}$ for k = 1, 2, 3.

Problem 2.3 Let $y = \tanh(x/2)$, where $x \sim \mathcal{U}(a, b)$.

- a) Calculate and sketch $f_{y}(y)$.
- b) Calculate the mean μ_{y} .

Problem 2.4 Let $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2)$ be a Gaussian random variable with mean $\mu_{\mathbf{x}} = 4$ and variance $\sigma_{\mathbf{x}}^2 = 5$.

- a) Calculate the probability that x is in the interval [-2, 3].
- b) A random variable y is obtained from x via the clipping operation $g(\cdot)$ as follows:

$$\mathbf{y} = g(\mathbf{x}) = \begin{cases} a, & \mathbf{x} \le 2\\ \mathbf{x}, & 2 < \mathbf{x} < 6\\ b, & \mathbf{x} \ge 6 \end{cases}$$

Find expressions for a and b such that the mean square error $E\{(x - y)^2\}$ is minimized and evaluate these expressions numerically. Find and sketch the pdf of y.

c) The random variable y is now quantized (binned) with Q levels (bins) yielding a new random variable z, i.e.,

$$\mathbf{z} = q(\mathbf{y}) = k$$
 if $\mathbf{y} \in [g_{k-1}, g_k] \subset \mathbb{R}, \ k = 1, 2, \dots, Q$,

where g_i denotes the *i*th quantization boundary and $g_0 = -\infty$, $g_Q = \infty$. For Q = 3, find the remaining g_i such that $p_z(z) = 1/Q$.