
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
June 15, 2021

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Platz
(seat)

1.) Coverage
Consider the following program fragment and test suite:

unsigned gcd (unsigned x, unsigned y)

{
unsigned min, max, t;

if (x<y) {
min = x;

max = y;

} else {
min = y;

max = x;

}
for (t = min; t>0; t--) {
if ((x%t==0) && (y%t==0))

return t;

}
return max;

}

Inputs Outputs
x y return value
0 1 1
1 0 1
2 3 1

Remarks:

• Here, branch coverage also requires unconditional branches (return) to be covered!

• t-- is short for t = t - 1.

• Variable declarations are not definitions.

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above.

satisfied
Criterion yes no
statement coverage
decision coverage
branch coverage
MC/DC

For each coverage criterion that is not satisfied, explain why this is the case:

(5 points)

(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, the return statement
is a c-use):

satisfied
Criterion yes no
all-defs
all-p-uses
all-c-uses
all-c-uses/some-p-uses
all-du-paths

For each coverage criterion that is not satisfied, explain why this is the case:

(8 points)

(c) Consider the two coverage criteria below.

• If the test-suite from above does not satisfy the coverage criterion, augment it with
the minimal number of test-cases such that this criterion is satisfied. If full coverage
cannot be achieved, explain why.

• If the coverage criterion is already achieved, explain why.

all-c-uses

Inputs Outputs
x y result

MC/DC

Inputs Outputs
x y result

(2 points)

2.) Hoare Logic

Prove the Hoare Triple below (assume that t variable m is of type unsigned integer). You
need to find a sufficiently strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it, and the premise(s) of that rule. If you
strengthen or weaken conditions, explain your reasoning.

Note: No points for assertions that were not clearly derived by using one of the rules from
the lecture!

{true}

¬

if ((m + n) % 2 != 0) {

m = m + 1;

®

} else {

¯

skip;

°

}

±

while ((m != 0) && (n != 0)) {

²

m = m - 1;

³

n = n - 1;

´

}

µ

{(m%2 == 0)}

(10 points)

3.) Invariants Consider the following program, where a, b, x and y are integer values in Z (that
means no over- or underflow can happen):

if (x == y) {

a = b;

}

while (x < 42) {

x = x + 1;

y = y + 1;

}

Consider the formulas below; tick the correct box (2X) to indicate whether they are loop
invariants for the program above.

• If the formula is an inductive invariant for the loop, provide an informal argument that
the invariant is inductive.

• If the formula P is an invariant that is not inductive, give values of x and y before and
after the loop body demonstrating that the Hoare triple

{P ∧B} x = x + 1; y = y + 1; {P}

(where B is (x < 42)) does not hold.

• Otherwise, provide values of a, b, x, and y that correspond to a reachable state showing
that the formula is not an invariant.

(a− b) = (x− y) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(a 6= b) ∨ (x = y) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(x 6= y) ∨ (a = b) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(10 points)

4.) Temporal Logic

(a) Consider the following Kripke Structure:

a

s0

a

s1

b

s2

For each formula, give the states of the Kripke structure for which the formula holds.
In other words, for each of the states from the set {s0, s1, s2}, consider the computation
trees starting at that state, and for each tree, check whether the given formula holds on
it or not.

i. AG a

ii. EG a

iii. AF G b

iv. AF EG b

v. EF G b

vi. EX b

vii. EG F a

viii. A(bU a)

ix. A(aU b)

x. E(aU b)

(10 points)

5.) Decision procedures

(a) Consider the following formula in propositional logic; is it satisfiable? If yes, provide a
satisfying assignment, if not, give the reasoning that leads to this conclusion.

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧
(¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x5) ∧ (¬x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x6) ∧

(¬x3 ∨ ¬x5) ∧ (¬x4 ∨ ¬x5) ∧ (x6 ∨ ¬x5 ∨ x1) (1)

(4 points)

(b) Consider the following formulas in Equality Logic and Equality Logic with Uninter-
preted Functions (EUF); are they satisfiable? If yes, provide a satisfying assignment
over integers, if not, give the reasoning based on equivalence classes that leads to this
conclusion.

i = j ∧ j = k ∧ k = l ∧ l 6= m ∧ l 6= n ∧ m = n ∧ o 6= p ∧ o = q (2)

i = j ∧ j = k ∧ k = l ∧ l 6= n ∧ m = n ∧ g(i) 6= g(m) ∧ f(i) 6= f(l) (3)

(2 points)

(c) Construct an Ordered Binary Decision Diagram that encodes the following Boolean
formula:

(x1 ⊕ x2) ∧ (x1) (4)

(where ⊕ is the exlusive or operator).

Ilustrate the construction steps and not just the final result!

(4 points)

