
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
15. Juni 2022

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Platz
(seat)

1.) Coverage
Consider the following program fragment and test suite:

bool prime (unsigned n) {
unsigned i = 2;

bool flag = true;

if (n == 0 || n == 1) {
flag = false;

}
while ((i <= n/2) && flag) {
if (n % i == 0) {

flag = false;

}
i = i + 1;

}
return flag;

}

Input (n) Output
0 false
3 true
4 false

(Hint: Assume that division always rounds towards 0.)

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above.
Assume that the Boolean constants (true and false) don’t constitute decisions, but
that flag in the return statement does.

satisfied
Criterion yes no
statement coverage
decision coverage
branch coverage
condition coverage

For each coverage criterion that is not satisfied, explain why this is the case:

(5 points)

(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameter n of the function does not constitute a definition, and the return

statement is a c-use as well as a a p-use):

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses

For each coverage criterion that is not satisfied, explain why this is the case:

(7 points)

(c) Consider the two coverage criteria below.

• If the test-suite from above does not satisfy the coverage criterion, augment it
with the minimal number of test-cases such that this criterion is satisfied. If full
coverage cannot be achieved, explain why.

• If the coverage criterion is already achieved, explain why.

all-p-uses/some-c-uses

Input (n) Output

MC/DC

Input (n) Output

(4 points)

(d) Mutation Testing

Assume that the condition (i <= n/2) is changed to (i < n/2). Provide a test case
that strongly kills the resulting mutant (i.e., a test case for which the mutant provides
a return value different from the one provided by the original program.)

Test Case

Input (n) Output

(2 points)

2.) (a) Hoare Logic

Prove the Hoare Triple below. Assume that the domain of all variables in the program
are the natural numbers including 0, i.e., i, n, s ∈ N0. You need to find a sufficiently
strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it, and the premise(s) of that rule. If
you strengthen or weaken conditions, explain your reasoning.

Note: No points for assertions that were not clearly derived by using one of the rules
from the lecture!

{true}

if (n % 2 == 0) {

n = n + 1;

} else {

skip;

}

i = 0;

s = 0;

while (i != n) {

i = i + 1;

s = s + (i % 2);

}

{(s ≤ n)}

(7 points)

(b) Hoare Logic - BONUS TASK (5 bonus points):

Prove that {(1 ≤ s) ∧ (s ≤ n)} holds at the end of the program!

Important: Prove the original assertion {(s ≤ n)} on the previous page first!

Use this page for the bonus task only – it can be ignored if you don’t want to solve it.

{true}

if (n % 2 == 0) {

n = n + 1;

} else {

skip;

}

i = 0;

s = 0;

while (i != n) {

i = i + 1;

s = s + (i % 2);

}

{(1 ≤ s) ∧ (s ≤ n)}

(5 points)

3.) Invariants Consider the following program, where a, b, t, x and y are integer values in Z
(that means no over- or underflow can happen):

if (x > y) {

int t = x; x = y; y = t;

}

if (a > b) {

x = b; y = a;

}

while (y > x) {

a = a - 1;

y = y - 1;

}

Consider the formulas below; tick the correct box (2X) to indicate whether they are loop
invariants for the program above.

• If the formula is an inductive invariant for the loop, provide an informal argument that
the invariant is inductive.

• If the formula P is an invariant that is not inductive, give values of a, b, x, and y before
and after the loop body demonstrating that the Hoare triple

{P ∧B} a = a− 1; y = y− 1; {P}

(where B is (y > x)) does not hold.

• Otherwise, provide values of a, b, x, and y that correspond to a reachable state showing
that the formula is not an invariant.

(a > b)⇒ (y ≥ x) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(a > b)⇒ (y > x) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(x > y)⇒ (a > b) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(10 points)

4.) Temporal Logic

(a) Consider the following Kripke Structure:

a

s0

b

s1

a

s2

For each formula, give the states of the Kripke structure for which the formula holds.
In other words, for each of the states from the set {s0, s1, s2}, consider the computation
trees starting at that state, and for each tree, check whether the given formula holds on
it or not.

i. EG a

ii. AF EG a

iii. A(a ∧ EX b)

iv. A(aU b)

v. E(aU b)

(5 points)

(b) Consider the following Kripke Structure with initial state s0:

a

s0

b

s1

a

s2

Use the tableaux algorithm from the lecture to compute the sets of states in which
the following formula (and its subformulas) hold!

• For every subformula, compute the states for which it holds!

• For fixpoints, list every step of the computation!

EF (EX a)

(5 points)

5.) Decision procedures

(a) Consider the following formula in propositional logic; is it satisfiable? If yes, provide a
satisfying assignment, if not, provide the steps of the CDCL algorithm that led
to this conclusion:

• illustrate the conflict graphs for the relevant implication levels and

• provide the learned clauses.

(¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧
(¬x3 ∨ ¬x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ ¬x5) ∧ (x4 ∨ x5) ∧
(¬x5 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (¬x6 ∨ ¬x7) ∧ (x6 ∨ x7) ∧

(¬x1 ∨ ¬x7) ∧ (x1 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)

(4 points)

(b) Consider the following formulas in Equality Logic with Uninterpreted Functions (EUF);
are they satisfiable?

• If yes, provide a satisfying interpretation,

• If not,

i. encode the formula as an equisatisfiable formula in equality logic without
uninterpreted functions and

ii. give the reasoning based on equivalence classes that leads to this conclusion.

g = h ∧ a = b ∧ a = c ∧ e 6= i ∧ d = e ∧ f = e ∧ h = i ∧ f(a) 6= f(h) ∧ a = i (1)

g = h ∧ a = b ∧ a = c ∧ e 6= i ∧ d = e ∧ f = e ∧ h = i ∧ f(a) 6= f(d) (2)

i = j ∧ j = k ∧ l 6= n ∧ m = n ∧ g(k) = g(l) ∧ f(i) 6= f(m) (3)

(6 points)

6.) General Questions

(a) Indicate whether the following statements are true or false!

Statement True False

If a test-suite achieves all-c-uses/some-p-uses and
all-p-uses/some-c-uses coverage, it also achieves all-uses

coverage.

© ©

Let the bit-vectors x and y be represented by x2, x1, x0 and y2,
y1, y0, respectively (where x0 and y0 are the least significant
bits). Then there exists a BDD with variable order x2 > y2 >
x1 > y1 > x0 > y0 that represents the operation x 6= y whose
size is polynomial in the number of variables.

© ©

AG F p and AG EF p are logically equivalent. © ©

Any unsatisfiable Boolean formula with n variables for which
there exists an Ordered Binary Decision Diagram (OBDD) of
constant size can be disproved by a SAT Solver in O(n).

© ©

All temporal logic formulas in (LTL∩CTL) can be expressed in
CTL∗ without using the X operator.

© ©

(5 points)

