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Literature: „Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

• https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
• Available at TU’s library: 

https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
issue, Superscalar, VLIW,  Multi-threading, …

Disclaimer: The book provides advanced concepts from real complex processor 
designs. We only study the concepts at a high level. For simplicity, the used 
pipeline models in this lecture are reduced strongly in complexity. 

But: We will have a look at some current RISC-V processor designs
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RECAP: Five-Stage In-Order Scalar Pipeline

• Each stage takes one cycle to complete

➢Single access cycle to instruction and data memory: Works for small and slow micro-
controller-type processors with on-chip embedded SRAM memories

➢Single cycle operations, works for simple instructions (ADD, Compare,…) 

• Scalar processor: Can execute at maximum 1 instruction per cycle (IPC <=1)
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SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

WBIF EXID

• Five Stage
• In-order pipeline
• Scalar pipeline

MS



Content 

• Multi-cycle Functional Units (FUs)

• Load and Store Optimizations

• Instruction Dependencies (RAW, WAW, WAR)

• Dynamic Scheduling with Scoreboard (Out of Order – OoO)

• Register Renaming

• Superscalar

• A look at a real RISC-V processor: CVA6

• Pipeline Support for Precise Traps 
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Optional, not relevant for exam
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C2-1 Multi-Cycle Operations



Integer Multiplication Instructions

• Signed-signed Multiplication 
• Multiplying two 32bit values can result in a value of up to 64 bit

• MUL a3,a1,a2

• Behavior: a3 ← a1*a2 // only the lower 32bit 

• MULH a4,a1,a2

• Behavior: a4 ← a1*a2 // only the higher 32bit

• Example:
• MULH a4,a1,a2  
• MUL  a3,a1,a2

Behavior:  [a4 a3] = a1*a2 // full 64 bit

• Unsigned-unsigned multiplication MULHU

• Signed-Unsigned multiplication MULHSU
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Integer Division Instructions

• Signed-signed Division 
• DIV a3,a1,a2

• Behavior: a3 ← a1 / a2

• REM a4,a1,a2

• Behavior: a4 ← a1 modulo a2 // remainder

• Unsigned-unsigned division DIVU, REMU
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Pipelined Functional Units (FUs)

• Complex computations require deep circuit logic

• Critical path in deep logic limits the design’s frequency

• Similar to processor design, break FU into stages and integrate registers to build a pipeline

➢Latency (in cycles) equals to number of pipeline stages

➢ Initialization Interval: Delay (in cycles) between start of two computations

• Example:  2-stage Multiplier
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Cycle 1

MUL a0,a0,t0 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a1,a1,t1 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a2,a2,t2 IF ID MUL(s1) MUL(s2) MUL(s3) WWBB

Cycle 2 Cycle 3 Cycle 4

Latency = 2 Cycles

Initialization Interval = 1 Cycle
MUL

s1
MUL

s2

Stage 
s1

Stage 
s2

Latency

Initialization
Interval



Serial Functional Units (FUs)

• Often complex operations such as divisions can be computed by iterative algorithms

• The number of iterations (required clock cycles) often depends on the input values

• These iterations can be implemented on a serial FU, which is busy as long as it computes

➢Latency equals to number of cycles required for computation

➢ Initialization Interval equals to number of cycles required for computation 

• Example: Serial Divider
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Latency = 1-64 Cycles

Initialization Interval = Latency

1-64 clock cycles

DIV

Latency

DIV a0,a0,t0 2 DIV DIV MUL(s3) WB

DIV a1,a1,t1 4 ID DIV DIV DIV DIV



Example: RISC-V CVA6 Processor

“Multiplier

The multiplier contains a division and multiplication unit. Multiplication is performed in two 
cycles and is fully pipelined (re-timing needed). The division is a simple serial divider which 
needs 64 cycles in the worst case.”*

*https://docs.openhwgroup.org/projects/cva6-user-manual/03_cva6_design/ex_stage.html
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Integration of Multi-cycle Functional Units 

• Multi-cycle Functional Units are integrated into the EX stage

• Example only for Multiplier
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Scalar Five-Stage Pipeline with Multi-cycle FUs  and Forwarding

• Multi-cycle Functional Units are integrated into the EX stage

• Simplified diagram
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BTA: Branch Target Address
PCp4: PC+4
JRBTA: Register-defined 
branch target address
TBTA: Taken-BTA from 
Branch Target Buffer (BTB)
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Scalar Five-Stage Pipeline with Multi-cycle FUs  and Forwarding

• Multi-cycle Functional Units are integrated into the EX stage

• Further simplified diagram (PC Generation, Extend, PC+rd address not shown, but of course still needed!)
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Scalar Four-Stage Pipeline with Multi-cycle FUs with Forwarding

• The DIV and MUL do not 
need to make memory 
accesses

• Move the memory stage  
(MS) after the ALU (which 
is required for the address 
computation for 
load/store)

• Merges MS and EX stage 
(four stages)

• Single forwarding path 
required in four-stage 
pipeline

• Such changes need
additional control in 
control path
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Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)

• We can add a 
second address 
computation adder 
(AC) to form a 
simple so-called 
load/store unit (LSU)
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Execution Scheme: Four-Stage In-Order Scalar Pipeline 

• The EX stage has an execution scheme defined by the processor control path

• Version 1: Static In-order Scheduling
➢Allow only one single instruction in the EX stage

➢Data hazards: Operands are forwarded by previous instruction
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL MUL WB

MUL a4,a1,a4 IF ID stall MUL MUL WB

LW t1,0(a3) IF stall ID stall AC DMEM WB

ADDI t1,t1,4 stall IF stall ID stall ALU WB WB

EX still busy
Stalls backpropagate in 
pipeline

RAW 
dependencies

t1 is forwarded Data hazard
After load
and EX 
stage still 
busy



Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

• Version 2: Static In-order Scheduling exploiting Pipelined FUs

➢Allow only one single instruction in EX stage

➢Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL 
(still need to check for RAW dependency between the MUL)
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB

LW t1,0(a3) IF ID stall AC DMEM WB

ADDI t1,t1,4 IF stall ID stall ALU WB WB
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C2-2 Load / Store Optimizations



Memory System

• The memory for more complex 
processors usually uses caches to 
allow for fast accesses

• Memory latency depends 
whether the data is found in the 
cache (cache hit/miss)

• Also instructions are loaded from 
caches, so also instruction fetch 
may require several cycles on an 
instruction cache miss. 
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF IF IF IF ID MUL MUL WB

MUL a4,a1,a4 IF ID stall IF ID MUL MUL WB WB

Instruction Cache Misses

• Instruction cache miss causes several cycles of delay for instruction fetch (IF), depending 
on speed to catch fresh instruction block from memory system

• Instructions are usually reloaded to cache in blocks (cache line size) so that usually there 
are several cache hits after a cache miss (depending on jumps/branches in program)

• Advanced caches pre-fetch the next block before the cache miss happens to hide cache 
refill latencies. 
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Instruction Cache Miss



Load Cache Miss

• Data cache misses lead to extra cycles for loads as the data needs to get fetched from 
another memory (level 2 cache, main memory) 

• Example (function vec_add, see first session): We load from two different addresses a0 
and a1 (worst case both loads lead to a data cache miss)
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID stall stall stall stall AC DMEM DMEM

ADD t1,t1,t2 IF stall stall stall stall ID stall stall WB

ID here because stall on 
previous instruction finished

Data Cache Miss

Data Cache Miss

RAW dependencies



Example vec_add: Loads from two different addresses (a0,a1)

• Example C-Code 3   
RISC-V Code

# base address of a: a0, 

# base address of b: a1, 

# base address of c: a2, 

# i: t0,  constant 4: t3

vec_add:

  LI t0,0       # i=0

  LI t3,4       # t3=4 

vec_add_for:

  LW t1,0(a0)    # t1 = a[i]

  LW t2,0(a1)    # t2 = b[i]

  ADD t1,t1,t2   # t1 = a[i] + b[i]

  SW t1,0(a2)    # c[i] = t1

  ADDI a0,a0,4   #next element is base address + 4 

  ADDI a1,a1,4   #next element is base address + 4 

  ADDI a2,a2,4   #next element is base address + 4 

  ADDI t0,t0,1   # i++

  BLTU t0,t3,vec_add_for # for (i < 4)

  RET   # void return
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Nonblocking Loads (1/2)

• Load accesses are for longer times in flight due to cache misses

• Most interconnects/caches allow to overlap multiple memory accesses

• Allows to execute multiple load accesses in overlapping fashion

• Example (function vec_Add): Cache observes both addresses for load accesses and may
need to reload cache lines for both accesses when both miss.
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID AC DMEM DMEM DMEM DMEM WB ADD

ADD t1,t1,t2 IF ID stall stall stall stall ALU WB WB

Data Cache Misses



Nonblocking Loads (2/2)

• Cache usually returns values in-order (some caches/interconnects support to return data 
out-of-order)

• Example (function 3): When only the first load misses, the second load still needs to wait 
in the LSU when the LSU returns results in-order.
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID AC DMEM DMEM DMEM DMEM WB ADD

ADD t1,t1,t2 IF ID stall stall stall stall ALU WB WB

No data cache miss, but we 
need to wait for first cache 
access to finish.

Data Cache Misses



Store Cache Miss

• Depending on Store Policy: Write-back data cache: 
• Additional latencies for stores possible when a dirty cache line needs to be replaced. 

• Dirty cache line needs first to be written to memory before it can be replaced 

•  Write through data cache: 
• Long store latency because the data is written not only to cache but also to main memory.

Example: We store to two different addresses a0 and a1 (first store misses) 
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

SW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

SW t2,0(a1) IF ID stall stall stall stall AC DMEM WB

LI t2,4 IF stall stall stall stall ID stall ALU WB

Data Cache Misses



FIFO
Buffer

Buffers

• A buffer can store several values 

• FIFO (First-in-first-out) buffer: Values can be read only from the 
buffer in the same order they are written to the buffer

• Reorder buffer: We can look up and read any value in the buffer
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Store Buffer

• It is not really necessary to wait until a store write completes

• Store Unit (SU) with Store Buffer:
➢Put store address and data to store buffer (sometimes called “Posted stores”)

➢Store buffer performs memory store access (MSA) independently from pipeline

➢Only stall pipeline for stores when store buffer is full

• Load Unit (LU): Load more complex:
➢need to first look whether address is in store buffer then in cache 

➢or need to wait until SB is empty.
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Nonblocking Stores with Store Buffer

• Store accesses are for longer times in flight due to cache misses

• Store Buffer store accesses and pipeline continues execution

• Store Buffer writes data to memory via Memory Store Access (MSA). 

• Only stall pipeline for stores when store buffer is full

• Example:

V1-0 ACA 28

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

SW t1,0(a0) IF ID AC SB SB SB MSA WB

SW t2,0(a1) IF ID AC SB SB SB MSA WB ADD

LI t2,4 IF ID ALU WB stall stall ID ALU WB



Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs 
and Load Store Optimization

• Version 3: Static Scheduling with pipelined FUs and Load Store Optimization

➢Allow only one single instruction in EX stage

➢Except for: 
➢Pipelined MUL can use Initialization Interval for two consecutive MUL 

➢Certain number of nonblocking Loads can be in EX stage (then EX stalls)

➢Certain number of stores can be posted in the SB depending on SB size (EX stalls when SB full).
 When Store is posted in SB, it does not count as instruction in EX stage. 
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Cycle 
1

Cycle 
2

Cycle 
3

Cycle 
4

Cycle
5

Cycle
6

Cycle 
7

Cycle 
8

Cycle 
9

Cycle
10

Cycle 
11

Cycle 
12

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB

SW a2,0(a3) IF ID stall AC SB SB MSA

ADDI a3,a3,4 IF stall ID ALU WB WB WB

SW a2,0(a3) stall IF ID AC SB SB MSA



Performance of Scalar Four-Stage Pipeline with Pipelined FUs 
and Load Store Optimization

• We still only allow one instruction to execute in EX stage 
except for some instruction types (MUL, Store, Load) in Version 3

• Multi-cycle operations cause many stalls (stiff scalar execution scheme)

• Can we interleave instructions to make better use of parallel units, maybe even just start 
them when they are ready, possibly out-of-order (OoO)?

• We want to exploit so-called Instruction Level Parallelism
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

DIV a4,a1,a4 IF ID stall DIV DIV DIV DIV WB

LW t1,0(a3) IF stall ID stall stall stall AC …

ADDI a3,a3,4 stall IF stall stall stall ID …
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C2-3 Challenges for Exploiting Instruction 
Level Parallelism



Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

• Start instructions in EX stage when FUs are available?

• Challenge: Structural Hazards, e.g. in WB Stage 
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB WB

LW t1,0(a3) IF ID AC DMEM WB MA WB

ADDI a3,a3,4 IF ID ALU WB ALU WB

Two WB in same cycle!
WB collision!
Structural Hazard!



Challenges for Exploiting Instruction Level Parallelism: Instruction Dependencies

• Start instructions in EX stage when FUs are available?

➢Instructions can overtake each other due to different FU latencies.

• Challenge: The assembly program defines a program order for the instructions. 

• Requires consideration of instruction dependencies during pipelined execution to 
preserve program order.
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL MUL WB

DIV a4,a1,a4 IF ID DIV DIV DIV DIV WB WB

SW a4,0(a3) IF ID AC MSA WB MA WB

ADDI a4,a3,4 IF ID ALU WB ALU WB

RAW dependency was ignored (data hazard!)

DIV must write back result first
So-called Write-after-Write 
(WAW)  dependency
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C2-4 Instruction Dependencies

A closer look at RAW, WAR and WAW!



Types of Instruction Dependencies

• Read-after-Write (RAW): Also „True dependency“
• Result of one instruction (write) is needed as 

input for another instruction (read)
• May cause data hazards (we seen this one already)

• Write-after-Read (WAR): Also „anti-dependency“
• A value is used (read) and then updated (write)
• The update (write) is not allowed to overtake the use (read)

• Write-after-Write (WAW): Also „output dependency“
• A value us updated (write) and then updated again (write)
• The second update may not overtake the first update
• Often created when registers are reused for different 

variables 
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Example for RAW:
XOR a1,a2,a4
                RAW
ADD a3,a1,t1

Example for WAR:
SW a1,0(a2)
                  WAR
ADDI a2,a3,4

Example for WAW:

LW a1,0(a2)
           WAW
LI a1,a3,4



Dep. For Example Program (vec_add) 

• Example C-Code 3   
# base address of a: a0, 
# base address of b: a1, 
# base address of c: a2, 
# i: t0,  constant 4: t3
vec_add:
  LI t0,0       # i=0
  LI t3,4       # t3=4 
vec_add_for:
  LW t1,0(a0)    # t1 = a[i]
  LW t2,0(a1)    # t2 = b[i]
  ADD t1,t1,t2   # t1 = a[i] + b[i]
  SW t1,0(a2)    # c[i] = t1
  ADDI a0,a0,4   #next element is base address + 4 
  ADDI a1,a1,4   #next element is base address + 4 
  ADDI a2,a2,4   #next element is base address + 4 
  ADDI t0,t0,1   # i++
  BLTU t0,t3,vec_add_for # for (i < 4)
  RET   # void return
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Dep. For Example Program (vec_add) (RAW)

• Mark all RAW dependencies for the 
following code block:
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LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW
RAW

RAW

RAW



Dep. For Example Program (vec_add) (WAR)

• Mark all WAR dependencies for the 
following code block:
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LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAR

WAR

WAR



Dep. For Example Program (vec_add) (WAW)

• Mark all WAW dependencies for the 
following code block:
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LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAW



Dep. For Example Program (vec_add) (ALL)

• Mark all dependencies for the 
following code block:
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LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW WAWRAW

RAW
WAR

WAR

WAR

RAW



Challenges with Interleaving Instruction Execution in EX Stage

1. We have to consider RAW, WAR and WAW dependencies.

2. Structural hazards must be avoided, e.g., FU is already busy.

3. Some instructions can cause so-called exceptions (e.g. memory fault on load/store)
(See optional content for what is required for precise exceptions).
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C2-5 Out-of-Order (OoO, O3) Pipeline

Dynamic Scheduling With Scoreboard

Computer Architecture A Quantitative Approach – Section C7



The CDC 6600 Project [‘1964]

• First implementation of Scoreboard 
(Out-of-Order)

• 16 separate non-pipelined functional units 
(7 int, 4 Floating Point (FP), 5 memory)

• Out-of-order (OoO) execution is also called
dynamic instruction scheduling
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The CDC 6600 Project [‘1964]

CDC 6600 Scoreboard

• Three main components

➢Instruction status

➢Functional unit status

➢Register result status

• For an example of use of Scoreboard 
in CDC 6600 see:

• Computer Architecture 
A Quantitative Approach – Section C7
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Split of ID Stage

“To implement out-of-order execution, we must split the ID pipe stage into two stages:

• 1. Issue—Decode instructions, check for structural hazards.

• 2. Read operands—Wait until no data hazards, then read operands.”

• “In a dynamically scheduled pipeline, all instructions pass through the issue stage in 
order (in-order issue); however, they can be stalled or bypass each other in the second 
stage (read operands) and thus enter execution out of order”

-- Computer Architecture A Quantitative Approach –  5th Ed. Section C7
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Steps in Out-of-Order Execution (Scheme 1*)

• 1. Issue
➢ Functional unit is free 
➢No other active instruction has the same destination register

(guarantee that WAW hazards cannot be present) 
➢ If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue 

until these hazards are cleared. 

• 2. Read operands
➢ When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the 

registers and begin execution. 
➢ The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order. 

• 3. Execution 
➢ The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it 

has completed execution. 

• 4. Write result
➢ Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards 

and stalls the completing instruction, if necessary. 

-- *Computer Architecture A Quantitative Approach –  5th Ed. Section C7
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Steps in Out-of-Order Execution (Simpler Scheme 2**)

• Issue Buffer (IB) holds multiple instructions waiting to issue.

• Instruction Decode (ID) adds next instruction to IB if 
• there is space in IB and
• the instruction does not have a WAR or WAW dependency with any instruction in IB.

• Instruction Issue (IS) can issue any instruction in IB whose 
• RAW hazards are satisfied to all previous instructions in IB 
• FU is available.

• Note: With writeback (WB) we delete the instruction from the IB, this may enable 
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez - 
http://csg.csail.mit.edu/6.823S20/Lectures/L09.pdf

V1-0 ACA 47

IB WBIF RO EX

Read Operands
and Execute

Issue
(Dispatch)

IS

Complete



Example OoO Processor: Simple Scoreboard Data Structure  

• Simplified CDC-style Scoreboard Data Structure to track execution 

• For Scheme 2, One Issue Buffer

• Logical, not HW implementation
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Instruction rd rs1 rs2 Imm RO Finish

Scoreboard (ScB)
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)

RO: Instruction read operands (started the computation)
Complete: Instruction finished computation (in last EX stage)



Example OoO Processor: Scoreboard Integration 

V1-0 ACA 49

Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L
U

A
D

D

DIV

M UL

BTA

IB

RF

Example four-stage pipeline with
• IB size 4 and
• 4 ports to issue instructions from

buffer (4 ROs)
• 4 ports for write back (WB) 

No structural hazards in RO/WB
This is costly, we will later see that
the ports are under-utilized
-> limit ports in HW and limit issue
or stall for structural hazards

Forwarding



Example OoO Processor: FUs in EX stage

For simplicity all FUs have fixed latency:
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FU Latency Initialization Interval

ALU 1 1

ADD 1 1

MUL 2 1 Pipelined

DIV 4 4 Serial (fixed latency)

LSU

LU 2 1 Nonblocking

SU 1 1 Store buffered

• Instruction can only be issued when FU is available. 
• SU and LU share same port, cannot be issued together
• We assume instruction cannot be issued to EX same cycle it was added to IB by ID



Example OoO Processor – Pipeline Diagram - Cycle 2
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO

LW x13,0(x7) IF

DIV x17,x13,x12

ADDI x18,x12,28

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8



Example OoO Processor – Pipeline Diagram - Cycle 3
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO

LW x13,0(x7) IF IS

DIV x17,x13,x12 IF

ADDI x18,x12,28

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x

LW x13 x7 0



Example OoO Processor – Pipeline Diagram - Cycle 4
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU

LW x13,0(x7) IF IS RO

DIV x17,x13,x12 IF IS

ADDI x18,x12,28 IF

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x

LW x13 x7 0 x

DIV x17 x13 x12



Example OoO Processor – Pipeline Diagram - Cycle 5
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU

LW x13,0(x7) IF IS RO LU

DIV x17,x13,x12 IF IS IB

ADDI x18,x12,28 IF IS

MUL x19,x12,x18 IF

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

2

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x x

LW x13 x7 0 x

DIV x17 x13 x12

ADDI x18 x12 28

RAW for x13



Example OoO Processor – Pipeline Diagram - Cycle 6
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO

ADDI x18,x12,28 IF IS RO

MUL x19,x12,x18 IF IS

MUL x20,x17,x14 IF

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x13 x7 0 x x

DIV x17 x13 x12 x

ADDI x18 x12 28 x

MUL x19 x12 x18

We know that LW completed and we can get x13 on forward path



Example OoO Processor – Pipeline Diagram - Cycle 7
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV

ADDI x18,x12,28 IF IS RO ALU

MUL x19,x12,x18 IF IS RO

MUL x20,x17,x14 IF IS

ADD x10,x20,x13 IF

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

ADDI x18 x12 28 x x

MUL x19 x12 X18 x

MUL x20 x17 x14

ADDI completed for x18



Example OoO Processor – Pipeline Diagram - Cycle 8
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL

MUL x20,x17,x14 IF IS IB

ADD x10,x20,x13 IF IS

SW x10,0(x11) IF

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

MUL x19 x12 X18 x

MUL x20 x17 x14

ADD x10 x20 x13

RAW for x17



Example OoO Processor – Pipeline Diagram - Cycle 9
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL

MUL x20,x17,x14 IF IS IB IB

ADD x10,x20,x13 IF IS IB

SW x10,0(x11) IF stall

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

MUL x19 x12 X18 x x

MUL x20 x17 x14

ADD x10 x20 x13

RAW for x17

RAW for x20

IB full



Example OoO Processor – Pipeline Diagram - Cycle 10
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO

ADD x10,x20,x13 IF IS IB IB

SW x10,0(x11) IF stall IS

LW x10,4(x8) IF

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x x

MUL x20 x17 x14 x

ADD x10 x20 x13

SW x10 x11 0

RAW for x20



Example OoO Processor – Pipeline Diagram - Cycle 11
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL

ADD x10,x20,x13 IF IS IB IB IB

SW x10,0(x11) IF stall IS IB

LW x10,4(x8) IF stall

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

MUL x20 x17 x14 x

ADD x10 x20 x13

SW x10 x11 0

RAW for x20

RAW for x10

WAW for x10



Example OoO Processor – Pipeline Diagram - Cycle 12
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL

ADD x10,x20,x13 IF IS IB IB IB RO

SW x10,0(x11) IF stall IS IB IB

LW x10,4(x8) IF stall stall

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

MUL x20 x17 x14 x x

ADD x10 x20 x13 x

SW x10 x11 0

RAW for x10

WAW for x10



Example OoO Processor – Pipeline Diagram - Cycle 13
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU

SW x10,0(x11) IF stall IS IB IB RO

LW x10,4(x8) IF stall stall stall

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

ADD x10 x20 x13 x x

SW x10 x11 0 x

WAW for x10



Example OoO Processor – Pipeline Diagram - Cycle 14
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU

LW x10,4(x8) IF stall stall stall stall

ADDI X13,x10,4

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

SW x10 x11 0 x x

WAW for x10



Example OoO Processor – Pipeline Diagram - Cycle 15
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS

ADDI X13,x10,4 IF

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4



Example OoO Processor – Pipeline Diagram - Cycle 16
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO

ADDI X13,x10,4 IF IS

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x

ADDI x13 x10 4



Example OoO Processor – Pipeline Diagram - Cycle 17
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU

ADDI X13,x10,4 IF IS IB

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x

ADDI x13 x10 4

RAW for x10



Example OoO Processor – Pipeline Diagram - Cycle 18

V1-0 ACA 67

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU

ADDI X13,x10,4 IF IS IB RO

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x x

ADDI x13 x10 4 x



Example OoO Processor – Pipeline Diagram - Cycle 19
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU WB

ADDI X13,x10,4 IF IS IB RO ALU

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

ADDI x13 x10 4 x x



Example OoO Processor – Pipeline Diagram - Cycle 20
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU WB

ADDI X13,x10,4 IF IS IB RO ALU WB

Issue Buffer (IB) 

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

CPI = 1,6

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 20 cycles -4 cycles = 16 cycles



Terminology
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• Processors:

➢Scalar (CPI >= 1)

➢Some stages can be multi-
issue, e.g. four WB ports

• In-order/OoO can be 
different for every stage. 

➢But: OoO usually means 
instructions are scheduled 
OoO in EX stage.

WBIF EXID MS

IB WBIF RO EXIS

• OoO• In-order

• In-order
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C2-6 Register Renaming



Out-of-Order Limitations

• WAW and WAR limit further reordering
• Not real dependencies

• Artificially added: limitation of registers

• Problem with limited registers
• Number of registers limited by ISA

• Compiler optimizations limited

• Especially with different execution paths

• Approach: CPU solves problem by register renaming
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Register Renaming

• Approach: Rename to microarchitecture register names 
• More microarchitecture registers than logical ISA registers
• Entirely eliminates WAR and WAW hazards
• Not visible to the outside world

• Introduced by Robert Tomasulo (1967)
• Reservation stations (FU-specific IBs) before FUs store instructions and reg. names
• Tomasulo Algorithm: Computer Architecture A Quantitative Approach 5th Ed. – 

Chapter 3
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SW t1,0(a2)

ADDI a2,a2,4

WAR

SW t1,0(a2)

ADDI p2,a2,4



Example: Register Renaming removes WAW, RAW stalls
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the LW stores to x10 and we use an extra physical register p1 to replace x10. 
Removes WAW dependency to the store.
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C2-7 Simple Superscalar Processor



Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode
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Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L
U

A
D

D

DIV

M UL

BTA

IB

RF

Forwarding

IS

Instruction fetch can
fetch two instructions at once
Ideal IPC = 2



Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode – Example
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS IB RO LU LU WB

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS IB RO ALU WB

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
We will later see: We need to optimize code for superscalar pipeline to see benefit!



Reorder Buffer (ROB)



Challenge with OoO Pipelines and Exceptions 

• Some instructions can cause exceptions 
• Memory fault on load/store

• Before entering exception handling all previous instructions should have committed 
(done their write back)

• No instruction after the one that caused the exception should have committed (done their write back)
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

SW t1,0(a0) IF IS AC SB SB SB MSA WB

SW t2,0(a1) IF IS AC SB SB SB FAULT WB ADD

LI t2,4 IF IS ALU WB stall stall ID ALU WB

LI would have committed before we observe the 
memory store fault exception (imprecise exception)



Implementing Precise Exceptions in OoO Pipelines

➢For Precise Exception: 
➢Before entering exception handling all previous instructions should have committed 

➢All previous stores should have written to memory or SB should continue to write them to memory

➢No instruction after the instruction that caused the exception should have committed,
instead they should be deleted (killed)

➢No store after the instruction that caused the exception should have written to memory from the SB,
instead they should be deleted (killed) from the SB

➢Scoreboard approach did not support precise exceptions

➢Different approaches to implement precise exceptions: e.g. Reorder-Buffer (ROB) sorts all 
WB commits and makes sure store buffer only sends committed stores to memory
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Reorder Buffer (ROB)

• Reorder buffer: Orders the WBs and commits them in-order

• Also assures stores are committed in order with WBs (needed for precise exceptions)
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IB WBIF RO EXIS

• OoO• In-order

ROB CO

• In-order

Read Operands
and Execute

Issue
(Dispatch)

Complete Commit
(Retire)

Finish



Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB 
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Instruction fetch can
fetch two instructions at once
Ideal IPC = 2

ROB to reorder the write backs

Scoreboard, IB and ROB
can be implemented as one joint data
buffer in the hardware

Scoreboard (ScB)
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Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB – Example
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB CO

LW x13,0(x7) IF IS IB RO LU LU WB CO

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB CO

ADDI x18,x12,28 IF IS IB RO ALU WB ROB ROB ROB ROB CO

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB ROB CO

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB CO

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB CO

SW x10,0(x11) IF stall stall IS IB IB RO SU SB SC

LW p1,4(x8) IF IS RO LU LU WB CO LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB CO

CPI = 1,2

10 instructions
5 cycles ramp-up (6-stage pipeline)
Total 17 cycles -5 cycles = 12 cycles

As we fetch more than one instruction we need more than one commit ports (but if exeption only commit the
ones before the instruction causing execption)
Store must also commit in order (SC: store commit)
WB: indicates write back to ROB buffer



A Look at a Real Processor

CVA6

Optional, not relevant for exam



CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6
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CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6
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Fetch
buffer
between IF 
and ID

Scoreboard
In-order 
commit.
Sorts the
OoO WB



Summary



Where we are

• Five-Stage Superscalar Out-of-order Processor Pipeline
• Exploit Instruction Level Parallelism to hide extra cycles of multi-cycle FUs.

• Scoreboard to track instruction dependencies

• Upcoming Lecture: More on Multi-Issue Processors (targeting IPC > 1)
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IB WBIF RO EXIS

• OoO• In-order

ROB CO

• In-order

Read Operands
and Execute

Issue
(Dispatch)

Complete Commit
(Retire)

Finish



Thank you for your attention!
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