
C2: From Scalar to Superscalar Pipelines

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Sources

V1-0 ACA 2

Literature: „Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

• https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
• Available at TU’s library:

https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
issue, Superscalar, VLIW, Multi-threading, …

Disclaimer: The book provides advanced concepts from real complex processor
designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

RECAP: Five-Stage In-Order Scalar Pipeline

• Each stage takes one cycle to complete

➢Single access cycle to instruction and data memory: Works for small and slow micro-
controller-type processors with on-chip embedded SRAM memories

➢Single cycle operations, works for simple instructions (ADD, Compare,…)

• Scalar processor: Can execute at maximum 1 instruction per cycle (IPC <=1)

V1-0 ACA 3

SLLI a2,a1,2 IF ID EX MS WB

ADD a2,a0,a2 IF ID EX MS WB

LW a0,0(a2) IF ID EX MS WB

ADD a0,a0,a1 IF ID stall EX

RET IF stall ID

WBIF EXID

• Five Stage
• In-order pipeline
• Scalar pipeline

MS

Content

• Multi-cycle Functional Units (FUs)

• Load and Store Optimizations

• Instruction Dependencies (RAW, WAW, WAR)

• Dynamic Scheduling with Scoreboard (Out of Order – OoO)

• Register Renaming

• Superscalar

• A look at a real RISC-V processor: CVA6

• Pipeline Support for Precise Traps

V1-0 ACA 4

Optional, not relevant for exam

V1-0 ACA 5

C2-1 Multi-Cycle Operations

Integer Multiplication Instructions

• Signed-signed Multiplication
• Multiplying two 32bit values can result in a value of up to 64 bit

• MUL a3,a1,a2

• Behavior: a3 ← a1*a2 // only the lower 32bit

• MULH a4,a1,a2

• Behavior: a4 ← a1*a2 // only the higher 32bit

• Example:
• MULH a4,a1,a2
• MUL a3,a1,a2

Behavior: [a4 a3] = a1*a2 // full 64 bit

• Unsigned-unsigned multiplication MULHU

• Signed-Unsigned multiplication MULHSU

V1-0 ACA 6

Integer Division Instructions

• Signed-signed Division
• DIV a3,a1,a2

• Behavior: a3 ← a1 / a2

• REM a4,a1,a2

• Behavior: a4 ← a1 modulo a2 // remainder

• Unsigned-unsigned division DIVU, REMU

V1-0 ACA 7

Pipelined Functional Units (FUs)

• Complex computations require deep circuit logic

• Critical path in deep logic limits the design’s frequency

• Similar to processor design, break FU into stages and integrate registers to build a pipeline

➢Latency (in cycles) equals to number of pipeline stages

➢ Initialization Interval: Delay (in cycles) between start of two computations

• Example: 2-stage Multiplier

V1-0 ACA 8

Cycle 1

MUL a0,a0,t0 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a1,a1,t1 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a2,a2,t2 IF ID MUL(s1) MUL(s2) MUL(s3) WWBB

Cycle 2 Cycle 3 Cycle 4

Latency = 2 Cycles

Initialization Interval = 1 Cycle
MUL

s1
MUL

s2

Stage
s1

Stage
s2

Latency

Initialization
Interval

Serial Functional Units (FUs)

• Often complex operations such as divisions can be computed by iterative algorithms

• The number of iterations (required clock cycles) often depends on the input values

• These iterations can be implemented on a serial FU, which is busy as long as it computes

➢Latency equals to number of cycles required for computation

➢ Initialization Interval equals to number of cycles required for computation

• Example: Serial Divider

V1-0 ACA 9

Latency = 1-64 Cycles

Initialization Interval = Latency

1-64 clock cycles

DIV

Latency

DIV a0,a0,t0 2 DIV DIV MUL(s3) WB

DIV a1,a1,t1 4 ID DIV DIV DIV DIV

Example: RISC-V CVA6 Processor

“Multiplier

The multiplier contains a division and multiplication unit. Multiplication is performed in two
cycles and is fully pipelined (re-timing needed). The division is a simple serial divider which
needs 64 cycles in the worst case.”*

*https://docs.openhwgroup.org/projects/cva6-user-manual/03_cva6_design/ex_stage.html

V1-0 ACA 10

Integration of Multi-cycle Functional Units

• Multi-cycle Functional Units are integrated into the EX stage

• Example only for Multiplier

V1-0 ACA 11

A
L

U

A
D

D

M
U
x

M
U
x

M UL

Extended Immediate

PC

Rs1

Rs2

M
U
x

M
U
x

Forwarded
from MS

Forwarded
from WB

BTA: Branch
Target Address

M UL

A
L

U
A

D
D

M
U
x

Result

EX/MS

BTA

Result

Simplified Illustration Style for
Multiplexing

EX/MS

Store
Value

Store
Value

M
U
x

Forwarding also sometimes called
„bypass“

Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

• Multi-cycle Functional Units are integrated into the EX stage

• Simplified diagram

V1-0 ACA 12

BTA: Branch Target Address
PCp4: PC+4
JRBTA: Register-defined
branch target address
TBTA: Taken-BTA from
Branch Target Buffer (BTB)

DIIMEM

DMEMA
L
U

A
D

D

DIV

M UL

RF

Extend

Forwarding

BTA

WBIF ID MSEX

+4

PCp4

PCp4
BTA

JRBTA

JRBTA

TBTA

PC

BTB TBTA

BIA

BIA
BTA

Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

• Multi-cycle Functional Units are integrated into the EX stage

• Further simplified diagram (PC Generation, Extend, PC+rd address not shown, but of course still needed!)

V1-0 ACA 13

DIIMEM

DMEMA
L
U

A
D

D

DIV

M UL

RF

Forwarding

WBIF ID MSEX

Focus on the
computation flow

Scalar Four-Stage Pipeline with Multi-cycle FUs with Forwarding

• The DIV and MUL do not
need to make memory
accesses

• Move the memory stage
(MS) after the ALU (which
is required for the address
computation for
load/store)

• Merges MS and EX stage
(four stages)

• Single forwarding path
required in four-stage
pipeline

• Such changes need
additional control in
control path

V1-0 ACA 14

DIIMEM

DMEMA
L
U

A
D

D

DIV

M UL

RF

Forwarding

BTA

WBIF ID EX

Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)

• We can add a
second address
computation adder
(AC) to form a
simple so-called
load/store unit (LSU)

V1-0 ACA 15

DIIMEM

DMEM

A
L
U

A
D

D

DIV

M UL

RF

Forwarding

BTA

WBIF ID EX

A
C

LSU

Execution Scheme: Four-Stage In-Order Scalar Pipeline

• The EX stage has an execution scheme defined by the processor control path

• Version 1: Static In-order Scheduling
➢Allow only one single instruction in the EX stage

➢Data hazards: Operands are forwarded by previous instruction

V1-0 ACA 16

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL MUL WB

MUL a4,a1,a4 IF ID stall MUL MUL WB

LW t1,0(a3) IF stall ID stall AC DMEM WB

ADDI t1,t1,4 stall IF stall ID stall ALU WB WB

EX still busy
Stalls backpropagate in
pipeline

RAW
dependencies

t1 is forwarded Data hazard
After load
and EX
stage still
busy

Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

• Version 2: Static In-order Scheduling exploiting Pipelined FUs

➢Allow only one single instruction in EX stage

➢Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL
(still need to check for RAW dependency between the MUL)

V1-0 ACA 17

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB

LW t1,0(a3) IF ID stall AC DMEM WB

ADDI t1,t1,4 IF stall ID stall ALU WB WB

V1-0 ACA 18

C2-2 Load / Store Optimizations

Memory System

• The memory for more complex
processors usually uses caches to
allow for fast accesses

• Memory latency depends
whether the data is found in the
cache (cache hit/miss)

• Also instructions are loaded from
caches, so also instruction fetch
may require several cycles on an
instruction cache miss.

V1-0 ACA 19

Data CacheInstruction Cache

Interconnect + Memory System (L2 Cache, Main Memory)

DMEM

DI

A
L
U

A
D

D

DIV

M UL

RF

BTA

A
C

LSU

IMEM

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF IF IF IF ID MUL MUL WB

MUL a4,a1,a4 IF ID stall IF ID MUL MUL WB WB

Instruction Cache Misses

• Instruction cache miss causes several cycles of delay for instruction fetch (IF), depending
on speed to catch fresh instruction block from memory system

• Instructions are usually reloaded to cache in blocks (cache line size) so that usually there
are several cache hits after a cache miss (depending on jumps/branches in program)

• Advanced caches pre-fetch the next block before the cache miss happens to hide cache
refill latencies.

V1-0 ACA 20

Instruction Cache Miss

Load Cache Miss

• Data cache misses lead to extra cycles for loads as the data needs to get fetched from
another memory (level 2 cache, main memory)

• Example (function vec_add, see first session): We load from two different addresses a0
and a1 (worst case both loads lead to a data cache miss)

V1-0 ACA 21

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID stall stall stall stall AC DMEM DMEM

ADD t1,t1,t2 IF stall stall stall stall ID stall stall WB

ID here because stall on
previous instruction finished

Data Cache Miss

Data Cache Miss

RAW dependencies

Example vec_add: Loads from two different addresses (a0,a1)

• Example C-Code 3
RISC-V Code

base address of a: a0,

base address of b: a1,

base address of c: a2,

i: t0, constant 4: t3

vec_add:

 LI t0,0 # i=0

 LI t3,4 # t3=4

vec_add_for:

 LW t1,0(a0) # t1 = a[i]

 LW t2,0(a1) # t2 = b[i]

 ADD t1,t1,t2 # t1 = a[i] + b[i]

 SW t1,0(a2) # c[i] = t1

 ADDI a0,a0,4 #next element is base address + 4

 ADDI a1,a1,4 #next element is base address + 4

 ADDI a2,a2,4 #next element is base address + 4

 ADDI t0,t0,1 # i++

 BLTU t0,t3,vec_add_for # for (i < 4)

 RET # void return

V1-0 ACA 22

Nonblocking Loads (1/2)

• Load accesses are for longer times in flight due to cache misses

• Most interconnects/caches allow to overlap multiple memory accesses

• Allows to execute multiple load accesses in overlapping fashion

• Example (function vec_Add): Cache observes both addresses for load accesses and may
need to reload cache lines for both accesses when both miss.

V1-0 ACA 23

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID AC DMEM DMEM DMEM DMEM WB ADD

ADD t1,t1,t2 IF ID stall stall stall stall ALU WB WB

Data Cache Misses

Nonblocking Loads (2/2)

• Cache usually returns values in-order (some caches/interconnects support to return data
out-of-order)

• Example (function 3): When only the first load misses, the second load still needs to wait
in the LSU when the LSU returns results in-order.

V1-0 ACA 24

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID AC DMEM DMEM DMEM DMEM WB ADD

ADD t1,t1,t2 IF ID stall stall stall stall ALU WB WB

No data cache miss, but we
need to wait for first cache
access to finish.

Data Cache Misses

Store Cache Miss

• Depending on Store Policy: Write-back data cache:
• Additional latencies for stores possible when a dirty cache line needs to be replaced.

• Dirty cache line needs first to be written to memory before it can be replaced

• Write through data cache:
• Long store latency because the data is written not only to cache but also to main memory.

Example: We store to two different addresses a0 and a1 (first store misses)

V1-0 ACA 25

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

SW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

SW t2,0(a1) IF ID stall stall stall stall AC DMEM WB

LI t2,4 IF stall stall stall stall ID stall ALU WB

Data Cache Misses

FIFO
Buffer

Buffers

• A buffer can store several values

• FIFO (First-in-first-out) buffer: Values can be read only from the
buffer in the same order they are written to the buffer

• Reorder buffer: We can look up and read any value in the buffer

V1-0 ACA 26

In-
order

In-
order

Reorder
BufferIn-

order
Out-of-
order

Store Buffer

• It is not really necessary to wait until a store write completes

• Store Unit (SU) with Store Buffer:
➢Put store address and data to store buffer (sometimes called “Posted stores”)

➢Store buffer performs memory store access (MSA) independently from pipeline

➢Only stall pipeline for stores when store buffer is full

• Load Unit (LU): Load more complex:
➢need to first look whether address is in store buffer then in cache

➢or need to wait until SB is empty.

V1-0 ACA 27

Nonblocking Stores with Store Buffer

• Store accesses are for longer times in flight due to cache misses

• Store Buffer store accesses and pipeline continues execution

• Store Buffer writes data to memory via Memory Store Access (MSA).

• Only stall pipeline for stores when store buffer is full

• Example:

V1-0 ACA 28

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

SW t1,0(a0) IF ID AC SB SB SB MSA WB

SW t2,0(a1) IF ID AC SB SB SB MSA WB ADD

LI t2,4 IF ID ALU WB stall stall ID ALU WB

Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs
and Load Store Optimization

• Version 3: Static Scheduling with pipelined FUs and Load Store Optimization

➢Allow only one single instruction in EX stage

➢Except for:
➢Pipelined MUL can use Initialization Interval for two consecutive MUL

➢Certain number of nonblocking Loads can be in EX stage (then EX stalls)

➢Certain number of stores can be posted in the SB depending on SB size (EX stalls when SB full).
 When Store is posted in SB, it does not count as instruction in EX stage.

V1-0 ACA 29

Cycle
1

Cycle
2

Cycle
3

Cycle
4

Cycle
5

Cycle
6

Cycle
7

Cycle
8

Cycle
9

Cycle
10

Cycle
11

Cycle
12

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB

SW a2,0(a3) IF ID stall AC SB SB MSA

ADDI a3,a3,4 IF stall ID ALU WB WB WB

SW a2,0(a3) stall IF ID AC SB SB MSA

Performance of Scalar Four-Stage Pipeline with Pipelined FUs
and Load Store Optimization

• We still only allow one instruction to execute in EX stage
except for some instruction types (MUL, Store, Load) in Version 3

• Multi-cycle operations cause many stalls (stiff scalar execution scheme)

• Can we interleave instructions to make better use of parallel units, maybe even just start
them when they are ready, possibly out-of-order (OoO)?

• We want to exploit so-called Instruction Level Parallelism

V1-0 ACA 30

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

DIV a4,a1,a4 IF ID stall DIV DIV DIV DIV WB

LW t1,0(a3) IF stall ID stall stall stall AC …

ADDI a3,a3,4 stall IF stall stall stall ID …

V1-0 ACA 31

C2-3 Challenges for Exploiting Instruction
Level Parallelism

Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

• Start instructions in EX stage when FUs are available?

• Challenge: Structural Hazards, e.g. in WB Stage

V1-0 ACA 32

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB WB

LW t1,0(a3) IF ID AC DMEM WB MA WB

ADDI a3,a3,4 IF ID ALU WB ALU WB

Two WB in same cycle!
WB collision!
Structural Hazard!

Challenges for Exploiting Instruction Level Parallelism: Instruction Dependencies

• Start instructions in EX stage when FUs are available?

➢Instructions can overtake each other due to different FU latencies.

• Challenge: The assembly program defines a program order for the instructions.

• Requires consideration of instruction dependencies during pipelined execution to
preserve program order.

V1-0 ACA 33

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL MUL WB

DIV a4,a1,a4 IF ID DIV DIV DIV DIV WB WB

SW a4,0(a3) IF ID AC MSA WB MA WB

ADDI a4,a3,4 IF ID ALU WB ALU WB

RAW dependency was ignored (data hazard!)

DIV must write back result first
So-called Write-after-Write
(WAW) dependency

V1-0 ACA 34

C2-4 Instruction Dependencies

A closer look at RAW, WAR and WAW!

Types of Instruction Dependencies

• Read-after-Write (RAW): Also „True dependency“
• Result of one instruction (write) is needed as

input for another instruction (read)
• May cause data hazards (we seen this one already)

• Write-after-Read (WAR): Also „anti-dependency“
• A value is used (read) and then updated (write)
• The update (write) is not allowed to overtake the use (read)

• Write-after-Write (WAW): Also „output dependency“
• A value us updated (write) and then updated again (write)
• The second update may not overtake the first update
• Often created when registers are reused for different

variables

V1-0 ACA 35

Example for RAW:
XOR a1,a2,a4
 RAW
ADD a3,a1,t1

Example for WAR:
SW a1,0(a2)
 WAR
ADDI a2,a3,4

Example for WAW:

LW a1,0(a2)
 WAW
LI a1,a3,4

Dep. For Example Program (vec_add)

• Example C-Code 3
base address of a: a0,
base address of b: a1,
base address of c: a2,
i: t0, constant 4: t3
vec_add:
 LI t0,0 # i=0
 LI t3,4 # t3=4
vec_add_for:
 LW t1,0(a0) # t1 = a[i]
 LW t2,0(a1) # t2 = b[i]
 ADD t1,t1,t2 # t1 = a[i] + b[i]
 SW t1,0(a2) # c[i] = t1
 ADDI a0,a0,4 #next element is base address + 4
 ADDI a1,a1,4 #next element is base address + 4
 ADDI a2,a2,4 #next element is base address + 4
 ADDI t0,t0,1 # i++
 BLTU t0,t3,vec_add_for # for (i < 4)
 RET # void return

V1-0 ACA 36

Dep. For Example Program (vec_add) (RAW)

• Mark all RAW dependencies for the
following code block:

V1-0 ACA 37

LI t0,0
LI t3,4
vec_add_for:
 LW t1,0(a0)
 LW t2,0(a1)
 ADD t1,t1,t2
 SW t1,0(a2)
 ADDI a0,a0,4
 ADDI a1,a1,4
 ADDI a2,a2,4
 ADDI t0,t0,1
 BLTU t0,t3,vec_add_for
 RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW
RAW

RAW

RAW

Dep. For Example Program (vec_add) (WAR)

• Mark all WAR dependencies for the
following code block:

V1-0 ACA 38

LI t0,0
LI t3,4
vec_add_for:
 LW t1,0(a0)
 LW t2,0(a1)
 ADD t1,t1,t2
 SW t1,0(a2)
 ADDI a0,a0,4
 ADDI a1,a1,4
 ADDI a2,a2,4
 ADDI t0,t0,1
 BLTU t0,t3,vec_add_for
 RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAR

WAR

WAR

Dep. For Example Program (vec_add) (WAW)

• Mark all WAW dependencies for the
following code block:

V1-0 ACA 39

LI t0,0
LI t3,4
vec_add_for:
 LW t1,0(a0)
 LW t2,0(a1)
 ADD t1,t1,t2
 SW t1,0(a2)
 ADDI a0,a0,4
 ADDI a1,a1,4
 ADDI a2,a2,4
 ADDI t0,t0,1
 BLTU t0,t3,vec_add_for
 RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAW

Dep. For Example Program (vec_add) (ALL)

• Mark all dependencies for the
following code block:

V1-0 ACA 40

LI t0,0
LI t3,4
vec_add_for:
 LW t1,0(a0)
 LW t2,0(a1)
 ADD t1,t1,t2
 SW t1,0(a2)
 ADDI a0,a0,4
 ADDI a1,a1,4
 ADDI a2,a2,4
 ADDI t0,t0,1
 BLTU t0,t3,vec_add_for
 RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW WAWRAW

RAW
WAR

WAR

WAR

RAW

Challenges with Interleaving Instruction Execution in EX Stage

1. We have to consider RAW, WAR and WAW dependencies.

2. Structural hazards must be avoided, e.g., FU is already busy.

3. Some instructions can cause so-called exceptions (e.g. memory fault on load/store)
(See optional content for what is required for precise exceptions).

V1-0 ACA 41

V1-0 ACA 42

C2-5 Out-of-Order (OoO, O3) Pipeline

Dynamic Scheduling With Scoreboard

Computer Architecture A Quantitative Approach – Section C7

The CDC 6600 Project [‘1964]

• First implementation of Scoreboard
(Out-of-Order)

• 16 separate non-pipelined functional units
(7 int, 4 Floating Point (FP), 5 memory)

• Out-of-order (OoO) execution is also called
dynamic instruction scheduling

V1-0 ACA 43

CC BY 2.0
Steve Jurvetson

https://creativecommons.org/licenses/by/2.0

The CDC 6600 Project [‘1964]

CDC 6600 Scoreboard

• Three main components

➢Instruction status

➢Functional unit status

➢Register result status

• For an example of use of Scoreboard
in CDC 6600 see:

• Computer Architecture
A Quantitative Approach – Section C7

V1-0 ACA 44

Split of ID Stage

“To implement out-of-order execution, we must split the ID pipe stage into two stages:

• 1. Issue—Decode instructions, check for structural hazards.

• 2. Read operands—Wait until no data hazards, then read operands.”

• “In a dynamically scheduled pipeline, all instructions pass through the issue stage in
order (in-order issue); however, they can be stalled or bypass each other in the second
stage (read operands) and thus enter execution out of order”

-- Computer Architecture A Quantitative Approach – 5th Ed. Section C7

V1-0 ACA 45

Steps in Out-of-Order Execution (Scheme 1*)

• 1. Issue
➢ Functional unit is free
➢No other active instruction has the same destination register

(guarantee that WAW hazards cannot be present)
➢ If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue

until these hazards are cleared.

• 2. Read operands
➢ When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the

registers and begin execution.
➢ The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order.

• 3. Execution
➢ The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it

has completed execution.

• 4. Write result
➢ Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards

and stalls the completing instruction, if necessary.

-- *Computer Architecture A Quantitative Approach – 5th Ed. Section C7

V1-0 ACA 46

Steps in Out-of-Order Execution (Simpler Scheme 2**)

• Issue Buffer (IB) holds multiple instructions waiting to issue.

• Instruction Decode (ID) adds next instruction to IB if
• there is space in IB and
• the instruction does not have a WAR or WAW dependency with any instruction in IB.

• Instruction Issue (IS) can issue any instruction in IB whose
• RAW hazards are satisfied to all previous instructions in IB
• FU is available.

• Note: With writeback (WB) we delete the instruction from the IB, this may enable
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez -
http://csg.csail.mit.edu/6.823S20/Lectures/L09.pdf

V1-0 ACA 47

IB WBIF RO EX

Read Operands
and Execute

Issue
(Dispatch)

IS

Complete

Example OoO Processor: Simple Scoreboard Data Structure

• Simplified CDC-style Scoreboard Data Structure to track execution

• For Scheme 2, One Issue Buffer

• Logical, not HW implementation

V1-0 ACA 48

Instruction rd rs1 rs2 Imm RO Finish

Scoreboard (ScB)
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)

RO: Instruction read operands (started the computation)
Complete: Instruction finished computation (in last EX stage)

Example OoO Processor: Scoreboard Integration

V1-0 ACA 49

Scoreboard (ScB)

ISIMEM

LSU (LU and
SU)

A
L
U

A
D

D

DIV

M UL

BTA

IB

RF

Example four-stage pipeline with
• IB size 4 and
• 4 ports to issue instructions from

buffer (4 ROs)
• 4 ports for write back (WB)

No structural hazards in RO/WB
This is costly, we will later see that
the ports are under-utilized
-> limit ports in HW and limit issue
or stall for structural hazards

Forwarding

Example OoO Processor: FUs in EX stage

For simplicity all FUs have fixed latency:

V1-0 ACA 50

FU Latency Initialization Interval

ALU 1 1

ADD 1 1

MUL 2 1 Pipelined

DIV 4 4 Serial (fixed latency)

LSU

LU 2 1 Nonblocking

SU 1 1 Store buffered

• Instruction can only be issued when FU is available.
• SU and LU share same port, cannot be issued together
• We assume instruction cannot be issued to EX same cycle it was added to IB by ID

Example OoO Processor – Pipeline Diagram - Cycle 2

V1-0 ACA 51

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO

LW x13,0(x7) IF

DIV x17,x13,x12

ADDI x18,x12,28

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8

Example OoO Processor – Pipeline Diagram - Cycle 3

V1-0 ACA 52

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO

LW x13,0(x7) IF IS

DIV x17,x13,x12 IF

ADDI x18,x12,28

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x

LW x13 x7 0

Example OoO Processor – Pipeline Diagram - Cycle 4

V1-0 ACA 53

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU

LW x13,0(x7) IF IS RO

DIV x17,x13,x12 IF IS

ADDI x18,x12,28 IF

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x

LW x13 x7 0 x

DIV x17 x13 x12

Example OoO Processor – Pipeline Diagram - Cycle 5

V1-0 ACA 54

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU

LW x13,0(x7) IF IS RO LU

DIV x17,x13,x12 IF IS IB

ADDI x18,x12,28 IF IS

MUL x19,x12,x18 IF

MUL x20,x17,x14

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

2

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x12 x9 8 x x

LW x13 x7 0 x

DIV x17 x13 x12

ADDI x18 x12 28

RAW for x13

Example OoO Processor – Pipeline Diagram - Cycle 6

V1-0 ACA 55

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO

ADDI x18,x12,28 IF IS RO

MUL x19,x12,x18 IF IS

MUL x20,x17,x14 IF

ADD x10,x20,x13

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4
Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 rs2 Imm RO Finish

LW x13 x7 0 x x

DIV x17 x13 x12 x

ADDI x18 x12 28 x

MUL x19 x12 x18

We know that LW completed and we can get x13 on forward path

Example OoO Processor – Pipeline Diagram - Cycle 7

V1-0 ACA 56

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV

ADDI x18,x12,28 IF IS RO ALU

MUL x19,x12,x18 IF IS RO

MUL x20,x17,x14 IF IS

ADD x10,x20,x13 IF

SW x10,0(x11)

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

ADDI x18 x12 28 x x

MUL x19 x12 X18 x

MUL x20 x17 x14

ADDI completed for x18

Example OoO Processor – Pipeline Diagram - Cycle 8

V1-0 ACA 57

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL

MUL x20,x17,x14 IF IS IB

ADD x10,x20,x13 IF IS

SW x10,0(x11) IF

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

MUL x19 x12 X18 x

MUL x20 x17 x14

ADD x10 x20 x13

RAW for x17

Example OoO Processor – Pipeline Diagram - Cycle 9

V1-0 ACA 58

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL

MUL x20,x17,x14 IF IS IB IB

ADD x10,x20,x13 IF IS IB

SW x10,0(x11) IF stall

LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1 1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x

MUL x19 x12 X18 x x

MUL x20 x17 x14

ADD x10 x20 x13

RAW for x17

RAW for x20

IB full

Example OoO Processor – Pipeline Diagram - Cycle 10

V1-0 ACA 59

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO

ADD x10,x20,x13 IF IS IB IB

SW x10,0(x11) IF stall IS

LW x10,4(x8) IF

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

DIV x17 x13 X12 x x

MUL x20 x17 x14 x

ADD x10 x20 x13

SW x10 x11 0

RAW for x20

Example OoO Processor – Pipeline Diagram - Cycle 11

V1-0 ACA 60

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL

ADD x10,x20,x13 IF IS IB IB IB

SW x10,0(x11) IF stall IS IB

LW x10,4(x8) IF stall

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

MUL x20 x17 x14 x

ADD x10 x20 x13

SW x10 x11 0

RAW for x20

RAW for x10

WAW for x10

Example OoO Processor – Pipeline Diagram - Cycle 12

V1-0 ACA 61

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL

ADD x10,x20,x13 IF IS IB IB IB RO

SW x10,0(x11) IF stall IS IB IB

LW x10,4(x8) IF stall stall

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

MUL x20 x17 x14 x x

ADD x10 x20 x13 x

SW x10 x11 0

RAW for x10

WAW for x10

Example OoO Processor – Pipeline Diagram - Cycle 13

V1-0 ACA 62

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU

SW x10,0(x11) IF stall IS IB IB RO

LW x10,4(x8) IF stall stall stall

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

ADD x10 x20 x13 x x

SW x10 x11 0 x

WAW for x10

Example OoO Processor – Pipeline Diagram - Cycle 14

V1-0 ACA 63

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU

LW x10,4(x8) IF stall stall stall stall

ADDI X13,x10,4

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

SW x10 x11 0 x x

WAW for x10

Example OoO Processor – Pipeline Diagram - Cycle 15

V1-0 ACA 64

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS

ADDI X13,x10,4 IF

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4

Example OoO Processor – Pipeline Diagram - Cycle 16

V1-0 ACA 65

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO

ADDI X13,x10,4 IF IS

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x

ADDI x13 x10 4

Example OoO Processor – Pipeline Diagram - Cycle 17

V1-0 ACA 66

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU

ADDI X13,x10,4 IF IS IB

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x

ADDI x13 x10 4

RAW for x10

Example OoO Processor – Pipeline Diagram - Cycle 18

V1-0 ACA 67

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU

ADDI X13,x10,4 IF IS IB RO

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

LW x10 x8 4 x x

ADDI x13 x10 4 x

Example OoO Processor – Pipeline Diagram - Cycle 19

V1-0 ACA 68

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU WB

ADDI X13,x10,4 IF IS IB RO ALU

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

1

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

ADDI x13 x10 4 x x

Example OoO Processor – Pipeline Diagram - Cycle 20

V1-0 ACA 69

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW x10,4(x8) IF stall stall stall stall IS RO LU LU WB

ADDI X13,x10,4 IF IS IB RO ALU WB

Issue Buffer (IB)

DIV MUL ALU ADD SU LU

FU Status (Ready?)
Instruction rd rs1 Rs2 Imm RO Finish

CPI = 1,6

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 20 cycles -4 cycles = 16 cycles

Terminology

V1-0 ACA 70

• Processors:

➢Scalar (CPI >= 1)

➢Some stages can be multi-
issue, e.g. four WB ports

• In-order/OoO can be
different for every stage.

➢But: OoO usually means
instructions are scheduled
OoO in EX stage.

WBIF EXID MS

IB WBIF RO EXIS

• OoO• In-order

• In-order

V1-0 ACA 71

C2-6 Register Renaming

Out-of-Order Limitations

• WAW and WAR limit further reordering
• Not real dependencies

• Artificially added: limitation of registers

• Problem with limited registers
• Number of registers limited by ISA

• Compiler optimizations limited

• Especially with different execution paths

• Approach: CPU solves problem by register renaming

V1-0 ACA 72

Register Renaming

• Approach: Rename to microarchitecture register names
• More microarchitecture registers than logical ISA registers
• Entirely eliminates WAR and WAW hazards
• Not visible to the outside world

• Introduced by Robert Tomasulo (1967)
• Reservation stations (FU-specific IBs) before FUs store instructions and reg. names
• Tomasulo Algorithm: Computer Architecture A Quantitative Approach 5th Ed. –

Chapter 3

V1-0 ACA 73

SW t1,0(a2)

ADDI a2,a2,4

WAR

SW t1,0(a2)

ADDI p2,a2,4

Example: Register Renaming removes WAW, RAW stalls

V1-0 ACA 74

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the LW stores to x10 and we use an extra physical register p1 to replace x10.
Removes WAW dependency to the store.

V1-0 ACA 75

C2-7 Simple Superscalar Processor

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode

V1-0 ACA 76

Scoreboard (ScB)

ISIMEM

LSU (LU and
SU)

A
L
U

A
D

D

DIV

M UL

BTA

IB

RF

Forwarding

IS

Instruction fetch can
fetch two instructions at once
Ideal IPC = 2

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode – Example

V1-0 ACA 77

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS IB RO LU LU WB

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS IB RO ALU WB

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
We will later see: We need to optimize code for superscalar pipeline to see benefit!

Reorder Buffer (ROB)

Challenge with OoO Pipelines and Exceptions

• Some instructions can cause exceptions
• Memory fault on load/store

• Before entering exception handling all previous instructions should have committed
(done their write back)

• No instruction after the one that caused the exception should have committed (done their write back)

V1-0 ACA 79

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

SW t1,0(a0) IF IS AC SB SB SB MSA WB

SW t2,0(a1) IF IS AC SB SB SB FAULT WB ADD

LI t2,4 IF IS ALU WB stall stall ID ALU WB

LI would have committed before we observe the
memory store fault exception (imprecise exception)

Implementing Precise Exceptions in OoO Pipelines

➢For Precise Exception:
➢Before entering exception handling all previous instructions should have committed

➢All previous stores should have written to memory or SB should continue to write them to memory

➢No instruction after the instruction that caused the exception should have committed,
instead they should be deleted (killed)

➢No store after the instruction that caused the exception should have written to memory from the SB,
instead they should be deleted (killed) from the SB

➢Scoreboard approach did not support precise exceptions

➢Different approaches to implement precise exceptions: e.g. Reorder-Buffer (ROB) sorts all
WB commits and makes sure store buffer only sends committed stores to memory

V1-0 ACA 80

Reorder Buffer (ROB)

• Reorder buffer: Orders the WBs and commits them in-order

• Also assures stores are committed in order with WBs (needed for precise exceptions)

V1-0 ACA 81

IB WBIF RO EXIS

• OoO• In-order

ROB CO

• In-order

Read Operands
and Execute

Issue
(Dispatch)

Complete Commit
(Retire)

Finish

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB

V1-0 ACA 82

Instruction fetch can
fetch two instructions at once
Ideal IPC = 2

ROB to reorder the write backs

Scoreboard, IB and ROB
can be implemented as one joint data
buffer in the hardware

Scoreboard (ScB)

ISIMEM

LSU (LU and
SU)

A
L
U

A
D

D

DIV

M UL

BTA

IB

RF

Forwarding

IS

R
O
B

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB – Example

V1-0 ACA 83

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB CO

LW x13,0(x7) IF IS IB RO LU LU WB CO

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB CO

ADDI x18,x12,28 IF IS IB RO ALU WB ROB ROB ROB ROB CO

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB ROB CO

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB CO

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB CO

SW x10,0(x11) IF stall stall IS IB IB RO SU SB SC

LW p1,4(x8) IF IS RO LU LU WB CO LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB CO

CPI = 1,2

10 instructions
5 cycles ramp-up (6-stage pipeline)
Total 17 cycles -5 cycles = 12 cycles

As we fetch more than one instruction we need more than one commit ports (but if exeption only commit the
ones before the instruction causing execption)
Store must also commit in order (SC: store commit)
WB: indicates write back to ROB buffer

A Look at a Real Processor

CVA6

Optional, not relevant for exam

CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6

V1-0 ACA 85

CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6

V1-0 ACA 86

Fetch
buffer
between IF
and ID

Scoreboard
In-order
commit.
Sorts the
OoO WB

Summary

Where we are

• Five-Stage Superscalar Out-of-order Processor Pipeline
• Exploit Instruction Level Parallelism to hide extra cycles of multi-cycle FUs.

• Scoreboard to track instruction dependencies

• Upcoming Lecture: More on Multi-Issue Processors (targeting IPC > 1)

V1-0 ACA 88

IB WBIF RO EXIS

• OoO• In-order

ROB CO

• In-order

Read Operands
and Execute

Issue
(Dispatch)

Complete Commit
(Retire)

Finish

Thank you for your attention!

	Folie 1
	Folie 2: Sources
	Folie 3: RECAP: Five-Stage In-Order Scalar Pipeline
	Folie 4: Content
	Folie 5
	Folie 6: Integer Multiplication Instructions
	Folie 7: Integer Division Instructions
	Folie 8: Pipelined Functional Units (FUs)
	Folie 9: Serial Functional Units (FUs)
	Folie 10: Example: RISC-V CVA6 Processor
	Folie 11: Integration of Multi-cycle Functional Units
	Folie 12: Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding
	Folie 13: Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding
	Folie 14: Scalar Four-Stage Pipeline with Multi-cycle FUs with Forwarding
	Folie 15: Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)
	Folie 16: Execution Scheme: Four-Stage In-Order Scalar Pipeline
	Folie 17: Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs
	Folie 18
	Folie 19: Memory System
	Folie 20: Instruction Cache Misses
	Folie 21: Load Cache Miss
	Folie 22: Example vec_add: Loads from two different addresses (a0,a1)
	Folie 23: Nonblocking Loads (1/2)
	Folie 24: Nonblocking Loads (2/2)
	Folie 25: Store Cache Miss
	Folie 26: Buffers
	Folie 27: Store Buffer
	Folie 28: Nonblocking Stores with Store Buffer
	Folie 29: Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs and Load Store Optimization
	Folie 30: Performance of Scalar Four-Stage Pipeline with Pipelined FUs and Load Store Optimization
	Folie 31
	Folie 32: Challenges for Exploiting Instruction Level Parallelism: Structural Hazards
	Folie 33: Challenges for Exploiting Instruction Level Parallelism: Instruction Dependencies
	Folie 34
	Folie 35: Types of Instruction Dependencies
	Folie 36: Dep. For Example Program (vec_add)
	Folie 37: Dep. For Example Program (vec_add) (RAW)
	Folie 38: Dep. For Example Program (vec_add) (WAR)
	Folie 39: Dep. For Example Program (vec_add) (WAW)
	Folie 40: Dep. For Example Program (vec_add) (ALL)
	Folie 41: Challenges with Interleaving Instruction Execution in EX Stage
	Folie 42
	Folie 43: The CDC 6600 Project [‘1964]
	Folie 44: The CDC 6600 Project [‘1964]
	Folie 45: Split of ID Stage
	Folie 46: Steps in Out-of-Order Execution (Scheme 1*)
	Folie 47: Steps in Out-of-Order Execution (Simpler Scheme 2**)
	Folie 48: Example OoO Processor: Simple Scoreboard Data Structure
	Folie 49: Example OoO Processor: Scoreboard Integration
	Folie 50: Example OoO Processor: FUs in EX stage
	Folie 51: Example OoO Processor – Pipeline Diagram - Cycle 2
	Folie 52: Example OoO Processor – Pipeline Diagram - Cycle 3
	Folie 53: Example OoO Processor – Pipeline Diagram - Cycle 4
	Folie 54: Example OoO Processor – Pipeline Diagram - Cycle 5
	Folie 55: Example OoO Processor – Pipeline Diagram - Cycle 6
	Folie 56: Example OoO Processor – Pipeline Diagram - Cycle 7
	Folie 57: Example OoO Processor – Pipeline Diagram - Cycle 8
	Folie 58: Example OoO Processor – Pipeline Diagram - Cycle 9
	Folie 59: Example OoO Processor – Pipeline Diagram - Cycle 10
	Folie 60: Example OoO Processor – Pipeline Diagram - Cycle 11
	Folie 61: Example OoO Processor – Pipeline Diagram - Cycle 12
	Folie 62: Example OoO Processor – Pipeline Diagram - Cycle 13
	Folie 63: Example OoO Processor – Pipeline Diagram - Cycle 14
	Folie 64: Example OoO Processor – Pipeline Diagram - Cycle 15
	Folie 65: Example OoO Processor – Pipeline Diagram - Cycle 16
	Folie 66: Example OoO Processor – Pipeline Diagram - Cycle 17
	Folie 67: Example OoO Processor – Pipeline Diagram - Cycle 18
	Folie 68: Example OoO Processor – Pipeline Diagram - Cycle 19
	Folie 69: Example OoO Processor – Pipeline Diagram - Cycle 20
	Folie 70: Terminology
	Folie 71
	Folie 72: Out-of-Order Limitations
	Folie 73: Register Renaming
	Folie 74: Example: Register Renaming removes WAW, RAW stalls
	Folie 75
	Folie 76: Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode
	Folie 77: Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode – Example
	Folie 78: Reorder Buffer (ROB)
	Folie 79: Challenge with OoO Pipelines and Exceptions
	Folie 80: Implementing Precise Exceptions in OoO Pipelines
	Folie 81: Reorder Buffer (ROB)
	Folie 82: Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB
	Folie 83: Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB – Example
	Folie 84: A Look at a Real Processor
	Folie 85: CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6
	Folie 86: CVA6 Pipeline Diagram: https://github.com/openhwgroup/cva6
	Folie 87: Summary
	Folie 88: Where we are
	Folie 89: Thank you for your attention!

