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Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER | issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
o A Quawtiative Apprack ; Disclaimer: The book provides advanced concepts from real complex processor
‘ designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735
* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:
https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi askewsholts vlebooks 9780123838735
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RECAP: Five-Stage In-Order Scalar Pipeline

»
»

* Five Stage
* In-order pipeline

* Each stage takes one cycle to complete * Scalar pipeline

»Single access cycle to instruction and data memory: Works for small and slow micro-
controller-type processors with on-chip embedded SRAM memories

»Single cycle operations, works for simple instructions (ADD, Compare,...)

ADD a0,a0,al stall

RET stall

 Scalar processor: Can execute at maximum 1 instruction per cycle (IPC <=1)
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e Multi-cycle Functional Units (FUs)

Load and Store Optimizations
Instruction Dependencies (RAW, WAW, WAR)
Dynamic Scheduling with Scoreboard (Out of Order — 000)

Register Renaming

Superscalar

Optional, not relevant for exam
A look at a real RISC-V processor: CVA6 _

Pipeline Support for Precise Traps
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C2-1 Multi-Cycle Operations
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Integer Multiplication Instructions

e Signed-signed Multiplication
 Multiplying two 32bit values can result in a value of up to 64 bit

e MUL a3,al,aZ
* Behavior: a3 <& al*a2 // only the lower 32bit

* MULH a4,al,a?
* Behavior: a4 & al*a2 // only the higher 32bit

* Example:
* MULH a4,al,aZ?

e MUL a3,al,az
Behavior: [a4 a3] =al*a2 // full 64 bit

* Unsigned-unsigned multiplication MULHU
* Signed-Unsigned multiplication MULHSU
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Integer Division Instructions

* Signed-signed Division
e DIV a3,al,az
e Behavior:a3 &< al/a2

* REM a4,al,az
* Behavior: a4 & al modulo a2 // remainder

* Unsigned-unsigned division DIVU, REMU
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Pipelined Functional Units (FUs)

* Complex computations require deep circuit logic

 Critical path in deep logic limits the design’s frequency

» Similar to processor design, break FU into stages and integrate registers to build a pipeline
» Latency (in cycles) equals to number of pipeline stages

» Initialization Interval: Delay (in cycles) between start of two computations

Stage Stage
sl s2

Latency = 2 Cycles
Initialization Interval = 1 Cycle

 Example: 2-stage Multiplier

Cyclel Cycle2 Cycle3 Cycle4

MUL a0,a0,t0 MUL(s1) | MUL(s2)
MUL al,al,tl MUL(s1) | MUL(s2)
MUL a2,a2,t2 SR 'UL(s1) | MUL(s2) |

Initialization

Interval Latency
V1-0 ACA 8




Serial Functional Units (FUs)

* Often complex operations such as divisions can be computed by iterative algorithms

* The number of iterations (required clock cycles) often depends on the input values

* These iterations can be implemented on a serial FU, which is busy as long as it computes
» Latency equals to number of cycles required for computation

> Initialization Interval equals to number of cycles required for computation

* Example: Serial Divider
____, Latency =1-64 Cycles

Initialization Interval = Latency

1-64 clock cycles

Latency

DIV a0,a0,t0 2 DIV DIV

V1-0 ACA 9



Example: RISC-V CVA6 Processor

“Multiplier

The multiplier contains a division and multiplication unit. Multiplication is performed in two
cycles and is fully pipelined (re-timing needed). The division is a simple serial divider which
needs 64 cycles in the worst case.”*

*https://docs.openhwgroup.org/projects/cva6-user-manual/03_cva6_design/ex_stage.html
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Integration of Multi-cycle Functional Units

* Multi-cycle Functional Units are integrated into the EX stage
* Example only for Multiplier

F ded Forwarded i i
orwarde Forwardllng also sometimes called simplified lllustration Style for
from MS from WB ,bypass . .
Multiplexing
> M
o I EX/MS _
:)L(J / EX/MS
N M ut " Result 7 M UL "
> U A > —_— >
P X [ |
__, Result
M
»l U W — %w
Rs1 X -]
- - > >
RE :
Rs2 :‘U/ > J —J] -
X
:m . »/\—— Store
e g’A » Store Value
: V Value —T
Extended Immediate ‘ BTA
o \8 BTA: Branch — —
"< Target Address
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Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

* Multi-cycle Functional Units are integrated into the EX stage

BTA —»
BIATS BTB [ TBTA

TBTA —>»

JRBTA —> [ T

PCp4 — -
BTA: Branch Target Address _'Eo BTA

PCp4: PC+4 —

JRBTA
JRBTA: Register-defined t R
branch target address

TBTA: Taken-BTA from
Branch Target Buffer (BTB)

e Simplified diagram

Forwarding

VvV

v

4

vy {

v

v

v

\ 4

¥

v
v

v
\ 4

\ 4

v

\ 4 \ 4
v V JV

PCp BIA
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Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

e Multi-cycle Functional Units are integrated into the EX stage
* Further simplified diagram (PC Generation, Extend, PC+rd address not shown, but of course still needed!)

Forwarding

I

Focus on the M , ]
computation flow " 1
N
> |—>
/\ N YA\
ACA 13
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Scalar Four-Stage Pipeline with Multi-cycle FUs with Forwarding

e The DIV and MUL do not
need to make memory
accesses

+ Move the memory stage RN e[ ws

(MS) after the ALU (which Forwarding
is required for the address

computation for
load/store)

* Merges MS and EX stage M
(four stages)

* Single forwarding path
required in four-stage
pipeline

y

y
\ 4

v

A
\ 4

\

* Such changes need
additional control in
control path -

v

v
\ 4
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Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)

* We can add a
second address

computation adder “ “m

(AC) to form a Forwarding

simple so-called

load/store unit (LSU)

y

v
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Execution Scheme: Four-Stage In-Order Scalar Pipeline

* The EX stage has an execution scheme defined by the processor control path

e Version 1: Static In-order Scheduling
» Allow only one single instruction in the EX stage
» Data hazards: Operands are forwarded by previous instruction

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0 Cyclell

MUL a4,al,a4 “ stall m
LW t1,0(a3) RAW “ stall stall m

ADDI tT,::l,4 dependencies stall “ stall stall m
Data hazard tlis forwarded
v
EX still busy : After load
. and EX
f)fggfi::\ckpropagate in stage still
busy
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Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

* Version 2: Static In-order Scheduling exploiting Pipelined FUs

» Allow only one single instruction in EX stage

» Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL
(still need to check for RAW dependency between the MUL)

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10

stall stall m

ADDI t1,tl1,4
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C2-2 Load / Store Optimizations
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Memory System

* The memory for more complex
processors usually uses caches to

allow for fast accesses

 Memory latency depends
whether the data is found in the
cache (cache hit/miss)

\ 4

l

=

v
v

* Also instructions are loaded from
caches, so also instruction fetch
may require several cycles on an
instruction cache miss.

>

\ 4 \ 4 \ 4 L

Instruction Cache Data Cache

Jv 4 v J' T

Interconnect + Memory System (L2 Cache, Main Memory)
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Instruction Cache Misses

* Instruction cache miss causes several cycles of delay for instruction fetch (IF), depending
on speed to catch fresh instruction block from memory system

* Instructions are usually reloaded to cache in blocks (cache line size) so that usually there
are several cache hits after a cache miss (depending on jumps/branches in program)

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10

ADD a2,tl,t2 “
MUL a2,a0,a2 “

MUL a4,al,a4

Instruction Cache Miss

* Advanced caches pre-fetch the next block before the cache miss happens to hide cache
refill latencies.
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Load Cache Miss

» Data cache misses lead to extra cycles for loads as the data needs to get fetched from
another memory (level 2 cache, main memory)

* Example (function vec_add, see first session): We load from two different addresses a0
and al (worst case both loads lead to a data cache miss)

Data Cache Miss
Cycle 1 Cycle 2 Cycle 3 Cycle 5 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD tl1,tl,t2 “ stall stall stall stall stall stall

RAW dependencies /
ID here because stall on
previous instruction finished
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Example vec_add: Loads from two different addresses (a0,al)

RISC-V Code
e Example C-Code 3 # base address of a: a0,
# base address of b: al,
void vec_add(int[4] a, int[4] b, int[4] c) { # base address of c: a2,
unsigned int i; # i: t0, constant 4: t3
gi=':ji:;i<i_l;i++} { vec add:
c[i] = a[1] + b[1]; LI t0,0 # i=0
LI t3,4 # t3=4
vec_add for:
LW t1,0(a0) ¥ t1l = a[i]
LW t2,0(al) # t2 = b[i]
ADD tl1,tl,t2 # tl = a[i] + b[i]
SW t1,0(a2) # c[i] = t1

ADDI a0,al0,4 #next element is base address + 4
ADDI al,al,4 #next element is base address + 4
ADDI a2,a2,4 #next element is base address + 4
ADDI tO0,t0,1 # i++

BLTU t0,t3,vec_add for # for (i < 4)

RET # void return
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Nonblocking Loads (1/2)

Load accesses are for longer times in flight due to cache misses

Most interconnects/caches allow to overlap multiple memory accesses

Allows to execute multiple load accesses in overlapping fashion

Example (function vec_Add): Cache observes both addresses for load accesses and may
need to reload cache lines for both accesses when both miss.

Data Cache Misses
Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) “ DMEM | DMEM | DMEM | DMEM m

LW t2,0(al) “ AC DMEM | DMEM | DMEM | DMEM WB

stall stall stall
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Nonblocking Loads (2/2)

* Cache usually returns values in-order (some caches/interconnects support to return data
out-of-order)

* Example (function 3): When only the first load misses, the second load still needs to wait
in the LSU when the LSU returns results in-order.

Data Cache Misses
Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) “ DMEM | DMEM | DMEM | DMEM m

LW t2,0(al) OF AC DMEM | DMEM | DMEM | DMEM | WB
ADD tl1,tl,t2 “ stall / stall stall stall mm

No data cache miss, but we
need to wait for first cache
access to finish.
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Store Cache Miss

* Depending on Store Policy: Write-back data cache:

* Additional latencies for stores possible when a dirty cache line needs to be replaced.
* Dirty cache line needs first to be written to memory before it can be replaced

* Write through data cache:
* Long store latency because the data is written not only to cache but also to main memory.

Example: We store to two different addresses a0 and a1l (first store misses)

Data Cache Misses
Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle10 Cyclel1

LT t2,4 B s stall stall stall stall
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* A buffer can store several values

* FIFO (First-in-first-out) buffer: Values can be read only from the
buffer in the same order they are written to the buffer

* Reorder buffer: We can look up and read any value in the buffer

FIEO Reorder

In- Buffer In- In- Buffer Out-of-
order order order order
— S — —  ——
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Store Buffer

* |tis not really necessary to wait until a store write completes

e Store Unit (SU) with Store Buffer:

» Put store address and data to store buffer (sometimes called “Posted stores”)
» Store buffer performs memory store access (MSA) independently from pipeline
» Only stall pipeline for stores when store buffer is full

* Load Unit (LU): Load more complex:
> need to first look whether address is in store buffer then in cache
» or need to wait until SB is empty.
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Nonblocking Stores with Store Buffer

Store accesses are for longer times in flight due to cache misses

Store Buffer store accesses and pipeline continues execution

Store Buffer writes data to memory via Memory Store Access (MSA).

Only stall pipeline for stores when store buffer is full

Example:

Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

sw t1,0(20) [N SB SB SB MSA
SW t2,0 (al) OF SB SB SB MSA

V1-0 ACA
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Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

and Load Store Optimization

* Version 3: Static Scheduling with pipelined FUs and Load Store Optimization
» Allow only one single instruction in EX stage

» Except for:

» Pipelined MUL can use Initialization Interval for two consecutive MUL
» Certain number of nonblocking Loads can be in EX stage (then EX stalls)

» Certain number of stores can be posted in the SB depending on SB size (EX stalls when SB full).
When Store is posted in SB, it does not count as instruction in EX stage.

Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
1 2 3 4 5 6 7 8 9 10 11

MUL a4,al,a4 “ MUL(s2)
SW a2,0 (a3) F | stall
ADDI a3,a3,4 “ stall

SW a2,0(a3) stall

SB SB MSA

“aw | we

V1-0
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Performance of Scalar Four-Stage Pipeline with Pipelined FUs

and Load Store Optimization

* We still only allow one instruction to execute in EX stage
except for some instruction types (MUL, Store, Load) in Version 3

* Multi-cycle operations cause many stalls (stiff scalar execution scheme)

Cycle 1 Cycle2 Cycle3 Cycle4d Cycle5 Cycle6 Cycle?7 Cycle8 Cycle9 Cycle10

o

LW t1,0(a3) stall stall stall stall

ADDI a3,a3,4 stall “ stall stall stall

e Can we interleave instructions to make better use of parallel units, maybe even just start
them when they are ready, possibly out-of-order (000)?

* We want to exploit so-called Instruction Level Parallelism
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C2-3 Challenges for Exploiting Instruction
Level Parallelism

ACA
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Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

e Start instructions in EX stage when FUs are available?

e Challenge: Structural Hazards, e.g. in WB Stage

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10

LW t1,0(a3) “ m WB Two WB in same cycle!
ADDI a3,a3,4 “ WB WB collision!

Structural Hazard!
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Challenges for Exploiting Instruction Level Parallelism: Instruction Dependencies

e Start instructions in EX stage when FUs are available?
»Instructions can overtake each other due to different FU latencies.
* Challenge: The assembly program defines a program order for the instructions.

* Requires consideration of instruction dependencies during pipelined execution to
preserve program order.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle9 Cycle 10

MUL a2,a0,a2 “ mm RAW dependency was ignored (data hazard!)
DIV a4,al,ad F - oV | DIV DV | wB |
I

SW a4,0(a3) MSA

ADDI a4,a3,4 “ mm DIV must write back result first

So-called Write-after-Write
(WAW) dependency
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C2-4 Instruction Dependencies

A closer look at RAW, WAR and WAW!

ACA
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Types of Instruction Dependencies

* Read-after-Write (RAW): Also ,, True dependency” Example for RAW:
* Result of one instruction (write) is needed as XOR al,a2,a4
input for another instruction (read) ., RAW
* May cause data hazards (we seen this one already) ADD a3,al,tl
* Write-after-Read (WAR): Also ,,anti-dependency* Example for WAR:
e Avalue is used (read) and then updated (write) SW al,0(a2)
* The update (write) is not allowed to overtake the use (read) »/ WAR
ADDI a2,a3,4

* Write-after-Write (WAW): Also ,,output dependency*

. . _ Example for WAW:
* A value us updated (write) and then updated again (write)

* The second update may not overtake the first update LW a1,0(a2)
e Often created when registers are reused for different / WAW
variables Ll a1,a3,4
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Dep. For Example Program (vec_add)

# base address of a: a0,

e Example C-Code 3 # base address of b: al,

# base address of c: a2,
void vec_add(int[4] a, int[4] b, int[4] c) { #i:tO, constant 4: t3
unsigned int 1ij; dd:
(i=0;i<4;i++) { vec_add:
c[i] = a[i] + b[i]; LI t0,0 #i=0

' LI t3,4 #13=4

vec_add_for:

LW t1,0(a0) #t1 =ali]

LW t2,0(al) #t2 = bli]

ADD t1,t1,t2 #1t1 = ali] + b[i]

SWt1,0(a2) #cli]=t1

ADDI a0,a0,4 #next element is base address + 4
ADDI al,al,4 #next element is base address + 4
ADDI a2,a2,4 #next element is base address + 4
ADDI t0,t0,1 # i++

BLTU t0,t3,vec_add_for # for (i < 4)

RET # void return
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Dep. For Example Program (vec_add) (RAW)

* Mark all RAW dependencies for the
following code block:

LI t0,0

LI t3,4

vec add for:
LW t1,0(a0)
LW t2,0(al)
ADD t1,t1,t2
SW t1,0(a2)
ADDI a0,a0,4
ADDIl al,al,4
ADDI a2,a2,4
ADDI t0,t0,1
BLTU t0,t3,vec_add_for

RET

V1-0

LW t1,0(a0)

RA

LW t2,0(al)

ADD t1,t1,t2

RAW

SW t1,0(a2)

ADDI a0,a0,4

ADDI al,al,4

ADDI a2,a2,4

RAW

ADDI +0,t0,1

BLTU t0,t3,vec_add for

> RAW

ACA
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Dep. For Example Program (vec_add) (WAR)

LW t1,0(a0)

 Mark all WAR dependencies for the

following code block: LW t2,0(al)

LI t3,4
vec add for: SW t1,0(a2) WAR
LW t1,0(a0)

LW t2,0(al) ADDI a0,a0,4

ADD t1,t1,t2

SW t1,0(a2) ADDI al,al,4

ADDI a0,a0,4 ADDI 22, a2,4

ADDI al,al,4

ADDI a2,a2,4

ADDI t0,t0,1 ADDI t0,t0,1

Egru t0,t3,vec_add_for BLTU t0,t3,vec _add for
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Dep. For Example Program (vec_add) (WAW)

LW t1,0(a0)

* Mark all WAW dependencies for the

following code block: LW t2,0(al) WAW

L1t0,0 ADD t1,tl,t2

Ll t3,4
vec add for: SW tl1,0(a2)

LW t1,0(a0)

LW t2,0(al) ADDI a0,a0,4

ADD t1,t1,t2

SW t1,0(a2) ADDI al,al,4

ADDI a0,a0,4 ADDI a2 22 4

ADDIl al,al,4

ADDI a2,a2,4

ADDI t0,0,1 ADDI t0,t0,1

;I;':_U 10,13, vec_add_for BLTU t0,t3,vec_add for

V1-0 ACA 39



Dep. For Example Program (vec_add) (ALL)

. LW t1,0(a0) ,
* Mark all dependencies for the
following code block: LW t2,0(al) RA

ADD t1,tl,t2 :J WAR

LI t0,0
LI t3,4
vec add for: SW tl1,0(a2) WAR
LW t1,0(a0)
LW t2,0(al) ADDI a0,a0,4
ADD t1,t1,t2
SW t1,0(a2) ADDI al,al,4
ADDI a0,a0,4 ADDI 22, a2, 4
ADDI al,al,4
A0DI 1010, ADDI £0,50,1
BLTU 0.t3.vec_add_ f > RAW
RET L2, Vee are o BLTU t0,t3,vec _add for
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Challenges with Interleaving Instruction Execution in EX Stage

1. We have to consider RAW, WAR and WAW dependencies.

2. Structural hazards must be avoided, e.g., FU is already busy.

3. Some instructions can cause so-called exceptions (e.g. memory fault on load/store)
(See optional content for what is required for precise exceptions).
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C2-5 Out-of-Order (000, 03) Pipeline

Dynamic Scheduling With Scoreboard

Computer Architecture A Quantitative Approach — Section C7

ACA
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The CDC 6600 Project [1964]

 First implementation of Scoreboard
(Out-of-Order)

* 16 separate non-pipelined functional units
(7 int, 4 Floating Point (FP), 5 memory)

* Out-of-order (Oo0) execution is also called
dynamic instruction scheduling

Steve Jurvetson
CCBY 2.0
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The CDC 6600 Project [1964]

Instruction status

Write
CD C 6 600 Scoreboar d :_n.ztrunl::'n{nz] Iss\ue Readoferands Ex&unun\cumplem re\sult
. L.D  F2,85(R3) N v N N
 Three main components BEE BT - x \
> Instruction status o et : : :
> Functional unit status Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
» Register result status meger Mo
Multl Y Mult Fi F2 F4 No No
:IL::IIL :“ Add 6 F& F2 Mo MNo
Divide ¥ Div Fl0 FO F Multl No Yes
* For an example of use of Scoreboard
. . Register result status
In CDC 6600 See' FO F2 F4 Fé& F& F10 F12 «ss F30

FU Mult 1 Add Divide

 Computer Architecture —
A Quantitative Approach — Section C7
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Split of ID Stage

“To implement out-of-order execution, we must split the ID pipe stage into two stages:
e 1. Issue—Decode instructions, check for structural hazards.

e 2. Read operands—Wait until no data hazards, then read operands.”

* “In a dynamically scheduled pipeline, all instructions pass through the issue stage in
order (in-order issue); however, they can be stalled or bypass each other in the second
stage (read operands) and thus enter execution out of order”

-- Computer Architecture A Quantitative Approach — 5% Ed. Section C7
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Steps in Out-of-Order Execution (Scheme 1%*)

1. Issue
> Functional unit is free

» No other active instruction has the same destination register
(guarantee that WAW hazards cannot be present)

» If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue
until these hazards are cleared.

2. Read operands

» When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the
registers and begin execution.

» The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order.

3. Execution
» The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it
has completed execution.
4. Write result

» Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards
and stalls the completing instruction, if necessary.

-- *Computer Architecture A Quantitative Approach — 5% Ed. Section C7
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Steps in Out-of-Order Execution (Simpler Scheme 2**)

L E e Lws
) )

Issue Read Operands
(Dispatch)  and Execute

Complete

Issue Buffer (IB) holds multiple instructions waiting to issue.

Instruction Decode (ID) adds next instruction to IB if
* there is spaceinIB and
* the instruction does not have a WAR or WAW dependency with any instruction in IB.

Instruction Issue (IS) can issue any instruction in IB whose
* RAW hazards are satisfied to all previous instructions in IB
* FU is available.

Note: With writeback (WB) we delete the instruction from the IB, this may enable
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez -
http://csg.csail.mit.edu/6.823520/Lectures/L09.pdf
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Example OoO Processor: Simple Scoreboard Data Structure

* Simplified CDC-style Scoreboard Data Structure to track execution
* For Scheme 2, One Issue Buffer

* Logical, not HW implementation

Scoreboard (ScB)
FU Status (Ready?)

DIV MUL ALU ADD SU LU

Issue Buffer (IB)

Instruction | rd rsl rs2 Imm | RO Finish

RO: Instruction read operands (started the computation)
Complete: Instruction finished computation (in last EX stage)
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Example OoO Processor: Scoreboard Integration

Example four-stage pipeline with

* IB Size 4 and _____________________________ Scoreboard (SCB) :’:::»::’::”;
* 4 ports to issue instructions from DR
buffer (4 ROs) Bl

* 4 ports for write back (WB)

vV V

=

Y \ A 4

v

IB

2

A 4

o4

vV V

>

v

v

i

No structural hazards in RO/WB
This is costly, we will later see that
the ports are under-utilized

-> limit ports in HW and limit issue
or stall for structural hazards

vV V

A 4

vV V

=
!

\ 4

>
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Example OoO Processor: FUs in EX stage

For simplicity all FUs have fixed latency:

FU Latency Initialization Interval

ALU 1 1

ADD 1 1

MUL 2 1 Pipelined

DIV 4 4 Serial (fixed latency)
LSU

LU 2 1 Nonblocking

SU 1 1 Store buffered

* Instruction can only be issued when FU is available.
* SU and LU share same port, cannot be issued together
* We assume instruction cannot be issued to EX same cycle it was added to IB by ID
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Example OoO Processor — Pipeline Diagram - Cycle 2

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
=) LW x12,8 (x9)

LW x13,0(x7)

DIV x17,x13,x12
ADDI x18,x12,28
MUL x19,x12,x18
MUL x20,x17,x14
ADD x10,x20,x13
SW x10,0(x11)

LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl rs2 | Imm RO Finish
= \W x12 X9 8
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Example OoO Processor — Pipeline Diagram - Cycle 3

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
LW x12,8(x9)

=) LW x13,0 (x7)

DIV x17,x13,x12 n

ADDI x18,x12,28

MUL x19,x12,x18
MUL x20,x17,x14
ADD x10,x20,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm RO Finish
LW x12 9 3 x DIV MUL ALU ADD SU LU
= \W x13 x7 0
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Example OoO Processor — Pipeline Diagram - Cycle 4

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LW x12,8(x9)

LW x13,0(x7)
- DIV x17,x13,x12

ADDI x18,x12,28

MUL x19,x12,x18
MUL x20,x17,x14
ADD x10,x20,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm | RO Finish
LW x12 9 3 « DIV MUL ALU ADD SU LU
LW x13 X7 0 X :
= DIV x17 | x13 | x12
ACA 53




Example OoO Processor — Pipeline Diagram - Cycle 5

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
LW x13,0(x7) LU

DIV x17,x13,x12

=) ADDI x18,x12,28 n
MUL x19,x12,x18 n

MUL x20,x17,x14

IB RAW for x13

ADD x10,x20,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

Instruction rd rsl rs2 | Imm | RO Finish FU Status (Ready?)
LW x12 9 3 « . DIV MUL ALU ADD SU LU
LW x13 X7 0 X 2
= DIV x17 | x13 | x12
ADDI x18 | x12 28 ACA 54




Example OoO Processor — Pipeline Diagram - Cycle 6

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

w s
R
I -

LW x12,8(x9)

DIV x17,x13,x12

ADDI x18,x12,28 n
#MUL x19,x12,x18 n
MUL x20,x17,x14 n

ADD x10,x20,x13

We know that LW completed and we can get x13 on forward path

SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

Instruction rd rsl rs2 | Imm | RO Finish FU Status (Ready?)
LW x13 7 0 x « DIV MUL ALU ADD SU LU
DIV x17 | x13 | x12 X .
ADDI x18 | x12 28 X
q MUL x19 | x12 | x18 ACA 55




Example OoO Processor — Pipeline Diagram - Cycle 7

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DIV x17,x13,x12

ADDI x18,x12,28 n
MUL x19,x12,x18 n
=) MUL x20,x17,x14 n

ADD x10,x20,x13

ADDI completed for x18

SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rs1 | Rs2 [ Imm | RO Finish
DIV 17 | x13 | x12 y DIV MUL ALU ADD SU LU
ADDI x18 | x12 28 X X : .
MUL x19 | x12 | X18 X
q MUL x20 | x17 | x14 ACA 56




Example OoO Processor — Pipeline Diagram - Cycle 8

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DIV x17,x13,x12 IB
D
a

IB RAW for x17

ADDI x18,x12,28

MUL x19,x12,x18

MUL x20,x17,x14

=) ADD x10,x20,x13 “
SW x10,0 (x11) “

LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rs1 | Rs2 [ Imm | RO Finish
DIV 17 | 13 | x12 y DIV MUL ALU ADD SU LU
MUL x19 | x12 | X18 X ! :
MUL x20 | x17 | x14
q ADD x10 | x20 | x13 ACA 57




Example OoO Processor — Pipeline Diagram - Cycle 9

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o s il o[
. 5292, I
-

MUL x20,x17,x14 IB RAW for x17
m) ADD x10,x20,x13 “ 1B RAW for x20

SW x10,0 (x11) “ stall IB full

LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rs1 | Rs2 [ Imm | RO Finish
DIV 17 | x13 | x12 y DIV MUL ALU ADD SU LU
MUL x19 | x12 | X18 X X ! :
MUL x20 | x17 | x14
q ADD x10 | x20 | x13 ACA 58




Example OoO Processor — Pipeline Diagram - Cycle 10

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e . QS o | ov o Lo
o .82 o [N o [
R o o

MUL x19,x12,x18
IB IB

ADD x10,x20,x13 “ IB IB RAW for x20

=) SW x10,0 (x11) “ stall
LW x10,4 (x8) n

ADDI X13,x10,4

MUL x20,x17,x14

Issue Buffer (IB)

Instruction rd rs1 | Rs2 | Imm | RO Finish FU Status (Ready?)
DIV x17 | x13 | x12 . y DIV MUL ALU ADD SU LU
MUL x20 | x17 | x14 X !
ADD x10 x20 | x13
mp SW x10 | x11 | O ACA .




Example OoO Processor — Pipeline Diagram - Cycle 11

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LW x12,8(x9)

LW x13,0 (x7)

w [
o .10 QI o | ov | ov [ov [we-
ADDT x18,x12,28 n m
- JRRY  v  wo
I

o o

IB IB IB RAW for x20
SW x10,0 (x11) “ stall IB RAW for x10
m) LW x10,4 (x8) n stall  \WAW for x10

ADDI X13,x10,4

MUL x19,x12,x18

MUL x20,x17,x14

ADD x10,x20,x13

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rs1 | Rs2 [ Imm | RO Finish
MUL 20 | x17 | x14 x DIV MUL ALU ADD SU LU
ADD x10 | x20 | x13 :
SW x10 | x11 0
= ACA 60




Example OoO Processor — Pipeline Diagram - Cycle 12

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e . QRSN o | ov o Lov [ v
[

ADDI x18,x12,28 n
- o[

MUL x20,x17,x14

ADD x10,x20,x13 IB IB IB
SW x10,0 (x11) “ stall IB IB  RAW for x10
m) LW x10,4 (x8) B st st waw for x10

ADDI X13,x10,4

Issue Buffer (IB)

Instruction rd rs1 | Rs2 | Imm | RO Finish FU Status (Ready?)
MUL x20 | x17 | x14 « . DIV MUL ALU ADD SU LU
ADD x10 | x20 | x13 X !
SW x10 | x11 | O
= ACA 61




Example OoO Processor — Pipeline Diagram - Cycle 13

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e . QRSN o | ov o Lov [ v
[

ADDI x18,x12,28 n
MUL x19,x12,x18 m
s e L ETNCTIETY
B 1B

IB

MUL x20,x17,x14

ADD x10,x20,x13
SW x10,0(x11) “ stall IB IB
m) LW x10,4 (x8) n stall stall stall \WAW for x10

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl Rs2 | Imm RO Finish

ADD x10 | x20 | x13 x . DIV MUL ALU ADD SU LU
1

SW x10 x11 0 X

q ACA 62




Example OoO Processor — Pipeline Diagram - Cycle 14

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 03,0020 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

v
o e

ADD x10,x20,x13 “ IB IB m

SW x10,0 (x11) “ stall 1B m

m) LW x10,4 (x8) n stall stall stall stall \WAW for x10

MUL x20,x17,x14

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl Rs2 | Imm RO Finish

SW x10 x11 0 X X

q ACA 63




Example OoO Processor — Pipeline Diagram - Cycle 15

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 03,0020 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

v
o e

ADD x10,x20,x13 “ IB IB m

SW x10,0 (x11) “ stall 1B m

m) LW x10,4 (x8) nstall stall stall stall

ADDI X13,x10,4 n

Issue Buffer (IB)

MUL x20,x17,x14

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl Rs2 | Imm RO Finish

=) LW x10 x8 4
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Example OoO Processor — Pipeline Diagram - Cycle 16

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 13,0000 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

v

o e
ADD x10,x20,x13 “ IB IB m
SW x10,0 (x11) “ stall 1B m

LW x10,4 (x8) nstall stall stall stall

=) ADDI X13,x10,4 n

Issue Buffer (IB)

MUL x20,x17,x14

FU Status (Ready?)

Instruction rd rsl Rs2 | Imm RO Finish
LW x10 x8 4 « DIV MUL ALU ADD SU LU
=) ADDI x13 x10 4
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Example OoO Processor — Pipeline Diagram - Cycle 17

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 13,0000 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

v

o e
ADD x10,x20,x13 “ IB IB m
SW x10,0 (x11) “ stall 1B m

LW x10,4 (x8) n stall stall stall stall
=) ADDI X13,x10,4 n 1B RAW for x10

Issue Buffer (IB)

MUL x20,x17,x14

FU Status (Ready?)

Instruction rd rsl Rs2 | Imm RO Finish
LW x10 x8 4 « DIV MUL ALU ADD SU LU
1
=) ADDI x13 x10 4
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Example OoO Processor — Pipeline Diagram - Cycle 18

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 03,0020 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

CCED

o e

ADD x10,x20,x13 “ IB IB m

SW x10,0 (x11) “ stall 1B m

LW x10,4 (x8) n stall stall stall stall
=) ADDI X13,x10,4 n IB

Issue Buffer (IB)

MUL x20,x17,x14

FU Status (Ready?)

Instruction rd rs1 | Rs2 | Imm | RO Finish
LW <10 | x8 4 « « DIV MUL ALU ADD SU LU
1
=) ADDI x13 | x10 4 X
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Example OoO Processor — Pipeline Diagram - Cycle 19

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 03,0020 (o w W

DIV x17,x13,x12 IB

ADDI x18,x12,28 n

MUL x19,x12,x18

o [ov Lo L

CCED
o e
« w ' LT
SW x10,0 (x11) N stan IB N ss

LW x10,4 (x8) nstall stall stall stall

ADDI X13,x10,4 n

Issue Buffer (IB)

MUL x20,x17,x14

ADD x10,x20,x13

FU Status (Ready?)

DIV MUL ALU ADD SU LU
1

Instruction rd rsl Rs2 | Imm RO Finish

ADDI x13 x10 4 X X
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Example OoO Processor — Pipeline Diagram - Cycle 20

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o 13,0000 (o w W

DIV x17,x13,x12 IB

10 instructions
DIV | DIV | DIV | DIV
----m 4 cycles ramp-up (5-stage pipeline)

ADDI x18,x12,28 “ -m Total 20 cycles -4 cycles = 16 cycles

MUL x19,x12,x18

o | e
» "o L EIETET
oy -

SW x10,0 (x11) “ stall IB

LW x10,4 (x8) nstall stall stall stall m

MUL x20,x17,x14

ADD x10,x20,x13

ADDI X13,x10,4 IB

Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl Rs2 | Imm RO Finish
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Terminology

»
»

»Scalar (CPI>=1) * In-order

»Some stages can be multi-
issue, e.g. four WB ports

* Processors:

o B x| ws
* |n-order/000 can be

different for every stage. e In-order * 000

v
v

»But: 000 usually means
instructions are scheduled
000 in EX stage.
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C2-6 Register Renaming
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Out-of-Order Limitations

* WAW and WAR limit further reordering

* Not real dependencies
 Artificially added: limitation of registers

* Problem with limited registers
* Number of registers limited by ISA
* Compiler optimizations limited
* Especially with different execution paths

e Approach: CPU solves problem by register renaming
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Register Renaming

* Approach: Rename to microarchitecture register names
* More microarchitecture registers than logical ISA registers

* Entirely eliminates WAR and WAW hazards
* Not visible to the outside world

SW t1,0(a2) SW t1,0 (a2)
> WAR

ADDI a2,a2,4 ADDI p2,a2,4

* Introduced by Robert Tomasulo (1967)
» Reservation stations (FU-specific IBs) before FUs store instructions and reg. names

e Tomasulo Algorithm: Computer Architecture A Quantitative Approach 5% Ed. —
Chapter 3
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Example: Register Renaming removes WAW, RAW stalls

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LW x12,8(x9)

LW x13,0(x7)

DIV x17,x13,x12

ADDI x18,x12,28

W | we N
m éllocyllrc]:lslur(;trl::up (5-stage pipeline)
@

Total 16 cycles -4 cycles = 12 cycles

MUL x19,x12,x18

ool
o o LN COCINETY
B 1B IB m
SW x10,0 (x11) “ stall 1B m
e " R o [ e
ADDI X13,pl,4 n IB m

MUL x20,x17,x14

ADD x10,x20,x13

We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the LW stores to x10 and we use an extra physical register p1 to replace x10.
Removes WAW dependency to the store.
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C2-7 Simple Superscalar Processor
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Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode

Instruction fetch can

fEtCh tWO InStrUCtlonS at Once _____________________________ Scoreboard (SCB) :
Ideal IPC =2 pasn
_ B o \—s :@ >
—> - ]
> - - >
=p> >
: L —rE
* B »
- > > >
* I
A o — _»E‘BTA
;A — :E >
- LA
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Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LW x12,8 (x9)

LW x13,0(x7)

DIV x17,x13,x12 IB IB

ADDI x18,x12,28 IB

W we
m 10 instructions
4 cycles ramp-up (5-stage pipeline)
A m Total 16 cycles -4 cycles = 12 cycles
n stall stall m
MUL x20,x17,x14 n stall stall stall IB IB m -
ADD x10,x20,x13 n IB IB m
SW x10,0 (x11) B stan st IB N ss
i 1,400 L W L e
ADDI X13,pl,4 n IB m

MUL x19,x12,x18

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
We will later see: We need to optimize code for superscalar pipeline to see benefit!
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Reorder Buffer (ROB)



Challenge with OoO Pipelines and Exceptions

* Some instructions can cause exceptions
* Memory fault on load/store

* Before entering exception handling all previous instructions should have committed
(done their write back)

* No instruction after the one that caused the exception should have committed (done their write back)

Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

sw t1,0(20) [N SB SB sB MSA
LI would have committed before we observe the
memory store fault exception (imprecise exception)
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Implementing Precise Exceptions in 000 Pipelines

» For Precise Exception:

» Before entering exception handling all previous instructions should have committed
» All previous stores should have written to memory or SB should continue to write them to memory

» No instruction after the instruction that caused the exception should have committed,
instead they should be deleted (killed)

» No store after the instruction that caused the exception should have written to memory from the SB,
instead they should be deleted (killed) from the SB

»Scoreboard approach did not support precise exceptions

» Different approaches to implement precise exceptions: e.g. Reorder-Buffer (ROB) sorts all
WB commits and makes sure store buffer only sends committed stores to memory
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Reorder Buffer (ROB)

 Reorder buffer: Orders the WBs and commits them in-order

* Also assures stores are committed in order with WBs (needed for precise exceptions)

* In-order e 000 * In-order
) I ) )
Issue Read Operands Complete Commit
(Dispatch)  and Execute (Retire)
Finish
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Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode with ROB

Instruction fetch can

fetch two instructionsatonce =~ Scoreboard(SeB) |
Ideal IPC =2
ROB to reorder the write backs l
_ 1B T
—> -1 ]
—» —> >

v

=
>

v

v

vV V

>

v V

Scoreboard, IB and ROB

can be implemented as one joint data
buffer in the hardware

4
b4
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Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode with ROB — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LW x13,0(x7)

w | w i o

5 cycles ramp-up (6-stage pipeline)
AOPE 182,28 '8 m e TR OB OB Total 17 cycles -5 cycles = 12 cycles

MUL x19,x12,x18

MUL x20,x17,x14 n stall stall stall IB IB m -
ADD x10,x20,x13 n IB IB IB m

SW x10,0 (x11) B st st 1B su I sc |
- e P w [ we e

ADDI X13,pl,4 n IB IB m

As we fetch more than one instruction we need more than one commit ports (but if exeption only commit the
ones before the instruction causing execption)

Store must also commit in order (SC: store commit)

WB: indicates write back to ROB buffer
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Optional, not relevant for exam

A Look at a Real Processor

CVAG6



CVAG6 Pipeline Diagram: https://github.com/openhwgroup/cvab

¢
4

: Cache Subsystem N :
| DS Mem D$ Controller DS Buffer — D$ 3
! ] I
: I
. I
:_ Frontend ID Issue Execute Commit |
R R \- - - - - -~ -~ - -~ - -~ -~ -~ °]9°"-~"-~"-~"T-" -~ -~ - - -- - - °-°--= - - - - - - - - -~ T - T T T T T 7 - T~ I__________________:_'_i
| Speculative Regime | | | In-order Issue ' 000 WB I In-order =
| | | | | Architectural =
| ‘ | | | Commit ] 5 i
| | | _O =
. = 0]
: : Instr. Queue ) € E,
Re-aligner [=] =
| Decoded Instr. --> © |
| \ -PTW Lsu o £
! | Valid --> o S_g
| M = x |
| | DTLB ITLB g UEJ g 1
: | <-- Instr. ACK Eis o == 15 :
! ‘ (i = a Ack Data [ Commit Instr. > |
: | [} g ALU Commit :
X | o Tl ] Exception --> Logic 1
| s pPC —> m 5| | !ssueRead | Y T |
| g =) Compressed £ o * g CSR Data --> 1
! ! w | D d 5 A‘u @ S CSR Buffer '— =] |
| || @ | taken? v ecoder < £ 7] [ Regfile |
' || @ BHT ° S 18 |8 2 3 <-- RF Enable| | Write !
[ = @ o 2 |z - o nable !
| e I S35 |8 |2 |F A 3 FPU w : '
I CSR 2 |call /et ? I w @ - i 5 A ] <-- Commit Ack 1
! : ] N T av T VoE sl T & '
|| Write = '+ E ol -1 w5 <-- Commit CSR| | CSR !
! | branch? y Vo3l g Mul I Div Write '
I . : 5 m <-- Commit Store |
I
: ‘ | Decoder L u o 1
I epc --> [ I L || - |
Branch Unit
: mivec --> ‘ : \m Scoreboard - '7 |
! epc —-> ‘ : :
| |
| ‘ | Issue Entry —> —  To/From - | |
I ‘ I I Commit I I |
: ‘ : | : : Privilege :
| | | | | | Check |
| | 1 | | | |
I I I |
| | = | | |
| | | 1 E . |
Xception
! | from MMU u from Decoder u ! ! v |
| a £ | | |
| | -9 < | | |
! PC o o [ ' Int t'
| Select I o 5 ] ! nterrupt = |
| | o | | |
| w w I I I
| | T | | |
| | | | |
i I I |
| ‘ I I I
I \ f I |
i ! ! |
| | 1 1 |
| | |

____________ L L L L L L L L L L L L L L L L LI I O =
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CVAG6 Pipeline Diagram: https://github.com/openhwgroup/cvab

Fetch

buffer
between IF
and ID

Scoreboard

V1-0

Cache Subsystem

CSR
Write

PC
Select

from MMU

e

\'i

—| EPC | CAUSE

Q_

from Decoder

[V]-— - -]

w
0
=2
4
o
Qo
o
[}

DS Mem D$ Controller DS Buffer — D$
Frontend ID Issue Execute
________________________________ me———————————— e
|In-order Issue I 00O WB
|
| |
' l
Instr. Queue L ]
Re-aligner
Decoded Instr. --> -
PTW LSU
Valid -->
DTLB ITLB
— <-- Instr. ACK Eis
imm --> Ack FU
n Data o
Z i1 ALU
= b Issue Read A
% PC —> o é —] — %
3 2 Compressad 2 ¥ |5 g CSR Buffer
L2 4 Decoder m |£ |9 &
=l
— g |3 |§ 2
— o @ -t
m o
B L L2 T O A 3 FPU
2 |callfret? [ - i 5t A ]
a > F_____W (I g-v o B % v % L] [ m
S ' & D8l = -
- o 0O =
branch? & Vo3| @ Mul | Div
I 6| o
| Decoder L u
I L] ||
Branch Unit
: Valid-=>| | b Scoreboard —|
[ S
Issue Entry —> To/From l T
Commit

Scoreboard

Commit
In-order E
Architectural =
Commit ] =
— e
o @©
e E
o =
o ©
JERE
[}
=] =
=
g &
efe
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Where we are

* Five-Stage Superscalar Out-of-order Processor Pipeline
* Exploit Instruction Level Parallelism to hide extra cycles of multi-cycle FUs.
* Scoreboard to track instruction dependencies

* In-order e 000 * In-order
) I ) )
Issue Read Operands Complete Commit
(Dispatch)  and Execute (Retire)
Finish

e Upcoming Lecture: More on Multi-Issue Processors (targeting IPC > 1)

V1-0 ACA 88



Thank you for your attention!
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