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Real-Time   Visualisation   Summary   
“Usually   on   the   exam”   

Real-Time   Molecular   Visualization   
Visualization   on   a   molecular   level,   i.e.   cross   section   of   a   bacteria   
because   i.e.   DNA,   molecules   cannot   be   seen   with   microscopes   
How   to   visualize?   
painting   ?   lots   of   work   (lots   of   repainting)   
computer   support   -   description   with   rules   and   generated   
size:   (protons,   ..   not   interesting)   <   nano   (atoms   visualized   of   spheres)   <   meso   <   micro   (cells)   
Small   molecules   -   solvent   (water,   etc.)   -   ligand   (messenger)   -   lipids   (form   membranes)   
Larger   molecules   -   Nucleic   Acids   (dna,   rna),   sequence   of   molecules   (i.e.   4   bases   form   a   
message);   protein   chains   of   amino   acids   (dna);   
How   do   molecules   look   like?   mesoscale   -   microscope;   atomic   structure   -   x-rays   =>   combine   
for   atomistic   model   
How   to   create   them?   Surface   container   →   (molecular   ingredients)   pack   them   overlapping)   
Optimisations:     
Procedural   impostors    -   billboards:   render   a   quad   -   calculate   depth   for   each   pixel   →   correct   
z   order;   emitting   geometry   (instance   on   the   gpu,   only   use   position);   
Level   of   detail    -   less   detail   the   further   away   (use   i.e.   k-means   to   cluster   molecules   →   
represent   them   as   sphere;   or   affinity   propagation,   hierarchical)   
Approach   for   Nucleic   Acids    -   defined   through   cubic   spline   (reparametrize   it;   place   points   in   
regular   intervals)   -   calculate   tangents   (use   principal   direction)   -   rotate   tangents   (same   angle   
as   bases   and   dna)   -   place   molecule   along   the   curve   (tangents)   →   use   geometry   shader;   
only   parametric   curve   representation   necessary   
Occlusion   Culling    -   i.e.   use   hierarchical   z-buffer;   mip-map   levels   are   created;   compare   a   
molecule   with   lowest   resolution   of   the   z-buffer   
Illumination    screen   space   AO   or   object   space   AO;   (2   level   space   screen   space   AO   is   good)   
to   create   shading   between   two   compartments   (shows   depth   better)   
Multi-Scale   models    use   colors   for   departments   for   rough   scale   (adaptive   coloring)   
Multiscale   ID   Buffer   render   buffer   in   a   fragment   to   the   ID   buffer   -   i.e.   type   of   molecule,   do   it   
for   several   levels;   look   up   the   buffer   and   determine   by   the   distance   which   color   is   used   
use   color   wheel   (the   more   parts   of   one   type   are   shown   the   bigger   the   color   range   is)   
Multi-Instance   Cutaway   Visualization    choose   which   molecules   are   in   the   scene   (increase   
their   amount   with   the   slider   i.e)   multiple   cutting   planes,   spheres,   rectangles,   view   aligned   
cutaway,   
Multi-scale   and   Multi-instance   Labeling    use   again   an   id   buffer   (label   levels   buffer   -   
representative   label   (choose   rules   how   to   pick   representatives   i.e.   well   visible,   centered)   

General   Purpose   Computing   on   GPUs   
Perfect   fit   for   everything   that   can   be   parallelized   (i.e.   machine   learning)   
Graphics   Processing   Units,   flexible   massive   number   of   FLOPs,   not   as   easy   programmable   



/

Host   =   CPU,   (Compute)   Device   =   GPU;   Host   program   on   CPU   sets   up   GPU   (manages   
memory,   schedule);   Kernel   program   (run   parallel)   on   GPU;   
Global   size   (i.e.   full   image   size)   >   Work   Group   (one   Block)   >   Work   Item/Thread   (instance   of   
kernel)   
Host   Memory   →   Global   /   constant   memory   (GPU)   →   Local   (shared)   memory   (for   each   block)   
→   Private   Memory   (each   kernel   /   work   item)   
Single   Instruction,   Multiple   Thread    Commands   are   executed   concurrently   (collection   of   32   
threads);   branching   causes   thread   disabling   etc.   
CUDA    kernel   function   needs   entry   point   from   host   __global__   void   kernel(params…)   
call   with   kernel<<<grid,block>>>(params);   identify   “which   items   are   yours”   by   getting   
threadId,   blockId   etc.   
GPU   Profiling    is   a   bottleneck   search;   performance   depends   on   memory   transfer,   memory   
throughput   and   instruction   throughput   
Sequential   access     
Cache   line   is   loaded   (128   byte);   each   k-th   thread   accesses   every   k-th   4   bytes;   
problematic   if   each   warp   accesses   the   next   line   instead   of   its   own   (twice   the   amount   of   data   
loaded);     
worse:   strided   access   (wants   to   access   every   x-th   entry)   →   multiple   lines   need   to   be   loaded;   
Shared   Memory     
All   of   the   memory   can   be   accessed   (caching   does   not   matter   so   much);   Problems   if   threads   
access   the   same   part   of   the   memory   (sequentialization)   
if   all   threads   want   to   access   a   single   data   it   is   broadcasted   and   not   a   problem   
Warp   divergence    affects   instruction   throughput   (some   threads   will   do   different   “things”   and   
others   go   a   different   path   (i.e.   a   if   condition)   →   different   paths   within   the   same   warp   should   
be   avoided   
Streams,   Concurrent   Execution    Several   operations   can   operate   concurrently;   split   data   
into   parts   and   execute   (faster   than   long   loading   and   executing   once)   
Optimizing   Parallel   Reduction     
Addition?   Divide   and   conquer.   Problem?   Global   Synchronisation.   Tree   based   approach   used   
within   each   thread   block;     
Use   Kernel   Decomposition:   Call   kernel   multiple   times   (level   0:   8   blocks),   (level   1:   1   block)   
Goal    Reach   GPU   peak   performance,   choose   right   metric   (Gflops,   Bandwidth);   reductions   
have   very   low   arithmetic   intensity;     
Benchmarking   is   important   (right   metric)   →   to   improve   the   solution   (right   functions?   data   
accessed   efficiently?   etc.)   
Reduction   -    Interleaved   Addressing     each   thread   loads   one   element   from   global   to   shared   
mem   →   sync   →   do   reduction   in   shared   mem   →   sync   →   write   result   for   this   block   to   global   
mem   
but   there   is   a   problem:   highly   divergent   (with   if   statements),   %   operator   is   slow   
Solve   this   by   strided   access   →   new   problem   (shared   memory   bank   conflict)   
Sequential   Addressing   →    thread   based   indexing;   Problem:   Half   of   threads   are   inactive   →   
halve   the   number   of   blocks   and   each   thread   loads   2   data   instances   →   unroll   last   warp   →   
completely   unrolled   (outdated   apparently,   but   takeaway:   try   out   what   improves   performance)   
Atomic   Operations    read-modify-write   atomic   operation   on   one   32-bit   or   64-bit   word   residing   
in   global   /   shared   memory;   guaranteed   to   be   performed   sequential   
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Real-Time   Volume   Rendering   and   Illumination   
Simulation   of   light   propagation   in   volumes;   problem?   interaction   light   and   media   (volume)   
3D   scalar   fields    obtained   from   -   measurements   (CT),   Polygons   (rasterized   to   voxels),   
Procedural   models   (set   of   rules   to   create   volume),   simulations   
Volume   Rendering   Techniques    2D   visualisation   (one   slice   of   the   volume),   Indirect   3D   
visualisation   (isosurfaces   -   show   surfaces   that   represent   a   region   with   densities   within   an   
interval   -   marching   cubes   to   create),   direct   3d   visualization   (DVR   --   volume   emits   light   →   use   
physical   properties   to   display   data)   
Isosurfaces    good   for   numerous   &   complex   objects   and   labeled   objects   
Volume   Rendering    good   if   segmentation   does   not   work,   low   data   contrast,   thin   objects   
Real-Time   Volume   rendering    different   from   surfaces   (meshes),   larger   number   of   data,   
interior   of   objects;   segmentation   masks   (tagged   volumes),   no   empty   spaces   -   light   
interaction   with   all   voxels;   use   Ray   Casting   (image   order)   vs.   Voxel   projection   (object   order),   
slicing   splatting;   effects   like   Global   illum,   DoF   make   effects   slow   
Lighting    propagates   in   a   line   until   it   hits   something;   Absorption,   Emission   and   Scattering   
Sample   to   solve   integral   equations   (hit-point   to   exit-point   →   summed   up   =   pixel   on   the   
screen)   →   sampling   rate   defines   quality   (higher   =   better);     
Compositing   
Sample   points   not   always   in   the   center   of   voxels   →   interpolate   voxels   
Contribution   for   each   point   (all   colors   summed   *   all   transparencies   multiplied)   
From   back   to   front   vs.   back   to   front;   Max   vs.   Min   vs.   Additive   (density)   etc.   
Transfer   functions    map   data   values   to   color   and   opacity;   Classification   (make   histogram   →   
determine   from   the   data   the   different   materials   →   estimate   for   each   voxel   percentage   of   
material   →   each   interval   represents   a   material   having   a   color   etc.   
Volume   Rendering   Pipeline     
Data   Traversal   →   choose   sampling   points   (discretization);   Interpolation   →3D   grid;   Gradient   
Computation;   Classification   (map   data   properties   to   color   opacity);   Shading   /   Ilume   (local   
global);   Compositing   (iterative   computation)   
Ray   Casting   
Natural   image-order   method;   evaluate   equation   along   the   ray   (no   secondary   effects   i.e.   
shadows);   Cast   a   ray   through   the   volume   →   Each   point   interpolated   (of   neighbouring   voxels)   
→   Compositing   (sum   together   values   of   points);   optimise   with   empty   space   skipping   (quad   
trees),   early   termination   if   sufficient   opacity;   subdivision;   adaptive   sampling;   ray   packets   
traced   together   
Slicing   
2D   texture   based   (axis   aligned),   3D   texture-based   (view   aligned);   object   order   approach;   
uses   a   proxy   geometry   for   slices   
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Slices   need   to   be   according   the   view   direction   (not   parallel);   Aliasing   artifacts   (if   sampling   
rate   is   too   low);   three   stacks   needed     

  
View   Aligned   Slicing   

  
less   artifacts,   better   image   quality;   easy   increase   of   sampling   rate   to   create   more   slices;     
Slicing   Advantages    Utilize   conventional   GPU   pipeline,   Global   illumination   with   forward   
scattering   can   be   integrated;   depth-of-field   effect   can   easily   be   integrated   
Disadvantages    no   empty   space   skipping,   no   early   termination,   fixed   compositing   direction   
Splatting    object-order   approach;   similar   to   slicing;   show   voxels   as   spheres   (certain   radius)   
→   represent   physical   properties   of   the   volumetric   data   
Axis-aligned   (artifacts)   vs.   view   aligned   spalatting   (better)   
Illumination     
emission-absorption   model   (no   reflection,   scattering,   etc.)   vs.   scattering   (BRDF,   more   
realistic,   but   slower)   -   for   volumes   phase   functions   are   used   
Single   scattering   vs.   Multiple   scattering   (global   illumination)   
Optical   properties   of   matter    opacity   is   important   (rep.   light   absorption)   can   be   represented   
as   color   →   transport   color   (defines   how   material   changes   the   color)   i.e.   wax   block   light   from   
top   darker   to   the   bottom   
Phase   Functions    descriptive   optical   property;   describes   scattering   for   whole   sphere   (not   
half   as   brdf);   direction   of   the   phase   function   →   color   changes   depending   on   the   angle   its   
scattered   
Bounces   of   Illumination    =   light   incidence   reflection;   only   one   bounce   is   unrealistic   (no   
ambient   light,   no   color   bleeding,   no   scattering,   etc.)   →   multiple   bounces   hard   to   compute;   
second   bounce   already   contributes   to   the   shading   of   each   sample   along   the   ray;     
optimisation   (enclose   sample   with   sphere   and   compute   contribution   only   within   sphere   =   
early   termination),   summarize   inside   spatial   regions   instead   of   multiple   samples   
Half-Angle   Slicing    compute   illumination   same   time   as   rendering   happens;   two   buffers   -   
rendering   +   illumination;   slices   are   necessary;   only   one   light   source   possible   
Idea:   Define   two   vectors   (viewer   dir,   light   dir   define   the   slicing   direction   (half   angle)   =   slices   
are   orthogonal   to   this   vector);   slice   closer   to   the   eye   inherits   illumination   from   previous   slice;   
similar   to   view   direction   (both   need   to   be   corrected)   
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Compute   current   slice   illum   by   sampling   previous   illum   buffer;   shade   samples   with   
illumination;   composite   the   shader   result   to   the   rendered   image   (back   to   front)   
Changing   view   direction   →   recomputation   of   everything   (flip   v   if   necessary   to   get   a   sharp   
angle   between   v   and   l);   
Algorithm   creates   sharp   shadows,   only   one   traversal,   four   additional   buffers   (2   copies   of   2   
buffers);   buffers   are   swapped   each   slice   (sync   on   CPU   level)   
Soft   shadows   can   be   realized   with   gaussian   blur   kernel   (multiple   samples   of   previous   slice)  

High-Performance   Visualization   
many   equations,   large   dataset;   Client   interacts   with   a   cluster   (parallel   computing);   
Inter   component   communication   necessary   (send   data,   geometry,   images   (rasterization)   to   
achieve   functional-   and   data-   parallelism   
Data   characteristics    depending   on   the   data   (data   size   and   type)   choose   correct   
representation   and   methods   
Pipeline   partition    Data   -   Visualization   -   Render   -   Display;   complicated   data,   complex  
computation   →   only   display   on   client;   small   datasize,   high   interactivity?   →   only   data   on   
server;   all   other   cases?   data   and   visualization   on   server;   
Send   Image    upper   bound   on   data   (image   always   the   same   size);   con:   interactivity   needs   
resending;   minimum   amount   of   network   traffic   
Send   Data   and   Send   Geometry    Rendering   can   be   done   using   WebGL   on   client;   size   of   
data   or   geometry   is   relatively   small;   interactivity   is   important;     
Load   Balancing    distribute   tasks   evenly   to   nodes;   Static?   size   of   work   predetermined,   low  
communication   overhead   →   load   imbalancing;   Dynamic?   Size   of   work   determined   during   
execution   →   better   balancing   but   high   communication   overhead   
Parallel   Rendering   Taxonomy    Parallel   rendering   as   a   sorting   problem   (by   distance   from   
camera);   Sort   First   (sort   primitives   i.e.   spheres,   then   send   to   processor),   Sort   Middle   (sort   
screen   primitive   after   geometry   processing;   sort   tessalized   triangle);   Sort   Last   (redistribute   
pixels)   
Sort   First    Pre-Transform   (which   object   will   be   in   which   bucket)   →   Bucketization   (one   bucket   
for   each   processor)   →   Redistribution(right   order   for   objects   over   multiple   buckets)   →   
Geometry   →   Pixel   Rendering   
Pro:   Low   communication   if   tessellation   ratio   is   high,   oversampling   ratio   is   high   and   
frame-2-frame   coherence   can   be   exploited;   processor   implements   entire   rendering   pipeline   
for   portion   of   the   screen;   
Con:   Initial   distribution   on   processors,   primitives   may   require   different   amounts   of   work   (size   
dependent);   Certain   areas   will   have   more   primitives   (to   counteract   make   more   regions,   
multi-region   responsibility);   to   take   adv   of   frame-2-frame   coherence   data   handling   code   may   
be   very   complex   
Communication   cost   =   const   factor   *   nr.   of   primitives   *   overlap   factor   *   average   size   of   prim.   
Good   when   high   coherence   
Sort   Middle    similar   to   sort   first;   Geometry   →   Bucketization   →   Redistribution   →   Pixel   
Rendering;  
Fix   clumping   by   make   more   regions   →   leads   to   more   overlap   
High   communication   cost   if   tessellation   ratio   is   high;   Geometry   is   sent   every   iteration   
General   and   straightforward;   better   than   sort   first   if   tessellation   is   low   and   low   frame   
coherence;   
Communication   cost   =   nr   of   screen   primitives   *   overlap   factor   *   average   size   of   screen   prim.   
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Good   when   Low   coherence,   low   tessellation   
Sort   Last   Sparse    only   sends   pixels   that   were   created;   depends   on   nr.   pixels   generated   
Communication   cost   =   nr   primitives   *   average   prim   size   *   samples   pixel   
better   than   FFM   unless   depth   complexity   of   entire   image   greater   than   nr   of   processors   or   
num   processors   *   resolution   <   num   primitives   *   average   primitive   size   
Full   Frame   merging    full   image   is   sent;   dependent   on   nr.   of   processors   and   resolution   
→   Uneven   distribution   of   rendering   work,   suffers   less   from   primitive   clumping,   sparse   merge   
network   traffic   can   be   unbalanced;   
Pro:   renderers   implement   full   rendering   pipeline   and   are   independent   until   pixel   merge   
Con:   Pixel   traffic   might   be   high,   especially   when   oversampling,   transparency   
Communication   cost   =   num   processor   *   resolution   *   samples   pixel   
Good   when   complex   primitives   covering   small   area   
Direct   Send    each   processor   responsible   for   one   part   of   image;   after   calculating   the   pixel   it   
sends   to   the   correct   processor,   cost   =   p   *   (p   -   1);   hard   on   network   (nodes   might   not   be   
connected   directly)   
Tree   Send    basically   divide   and   conquer,   load   imbalance   (i.e.   PE1   on   top   of   pyramid   very   
busy,   others   idle)   
Binary   Swap    instead   of   tree   send,   P1   sends   primitive   to   P2,   P2   sends   primitive   to   P1   (left   
and   right   half),   step   2   =   p1   and   p3   exchange   top   part,   p2   and   p4   bottom   part;   final   →   each   P   
has   info   about   its   own   region;   
Log(p)   stages   necessary;   pro:   good   load   balance,   con:   2 n    processors   needed   
2-3   Swap    each   number   of   processor   can   be   written   as   a   sum   of   2s   and   3s;     
Build   Tree    to   get   log(d)   depth   for   the   tree,   that's   why   you   check   vs   2 d ,   start   with   2 d    <   n   <   2 d+1    recursive   
calculation,   tree   needs   to   stay   balanced   
Radix-k    only   do   compositing   within   the   group   (first   horizontal   groups,   then   vertical   groups)   
better   than   binary   swap   
In   Situ   Processing    simulations   can   generate   large   quantities   →   in   situ   should   show   intermediate   
results   
Co-processing    tightly   coupled,   synchronous,   vis   routines   have   direct   access   to   simulation   code   
memory,   memory   constraints,   large   impact   on   simulation   (crash   /   corruption   of   memory   affects   
simulation)   
Concurrent   Processing    loosely   coupled,   vis   runs   on   dedicated   concurrent   resources   (crash   does   not   
impact   simulation),   access   data   via   network   (expensive   IO),   data   movement   costs,   requires   separate   
resources;   
Hybrid    data   is   reduced   via   coprocessing   and   sent   to   concurrent   resource;   complex   and   shares   
negatives   of   other   approaches   
Z-cure   data   organisation   
Find   linear   structure   that   connects   all    neighbouring   cells   in   the   storage   (preserve   locality)   
(similar   to   quad   tree,   lets   you   efficiently   find   neighbours)   
use   bit   counting   (position   is   a   binary   number)   
Pro:   not   based   on   row   or   column,   better   I/O   performance   when   subset   is   read   
Con:   connection   of   last   cell   (of   first   field)   to   first   cell   of   next   field   
Hilbert   Curve    (it's   a   lot   better   than   Z-Curve,   trust   me)   
Exascale    →   algorithms   need   to   be   changed,   power   issues   (can’t   just   increase   compute   power)   
blue   waters   i.e.   would   need   1.5   gigawatts   to   cope   with   exascale   data   
Physical   Fusion,   Climate   Science,   Traffic   Simulation   
also   useable   in   InfoVis   
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Real-Visual   Analytics   and   Web-Based   Visualization   
automated   analysis   techniques   with   interactive   visualizations   for   very   large   /   complex   data   
Volume   of   data,   Variety,   Velocity   (streaming   data)   and   Veracity   (Uncertainty)   
Big   Data    tall   data   (billions   of   records)   and   wide   data   (thousands   of   variables)   
Perceptual   Scalability    display   res   <   nr   of   data   points,   perceptual   limitation   (can’t   see     
everything   at   once)   
Interactive   Scalability    inefficient   queries,   data   processing,   rendering   performance   
Scalability   affected   by    human   perception,   resolution,   visual   metaphors   (can’t   see   each   
different   color   etc.),   interactivity,   data   structures,   computational   infrastructure   (network   etc.)   
Overplotting    occlusion,   clutter,   readability   limited   and   resources   wasted   (because   they   
cannot   be   seen)  
Alpha   blending:   reduce   opacity   of   data   points   -   dense   regions   visible,   outliers   vanish   
Filtering:   Selection   of   data   set   (i.e.   tuesday),   con:   user   needs   filter   criteria   that   is   suitable   
Sampling:   Random   selection   of   data   subset,   outliers   may   be   omitted   
Summary   Statistics    (model   based   abstraction)     instead   of   individual   data   items   compute   
and   show   statistics   (i.e.   confidence   intervals)   
Be   careful   what   abstraction   is   used   (i.e.   box   plots   don’t   work   if   no   normal   distribution   is   
present)   
Density   /   Aggregate   /   Binned   Vis    data   binning,   transfer   function   (value   →   color)   etc;   
i.e.   Histogram,   Bar,   Line,   Choropleth   map   for   1D,   binned   scatter   plot,   heatmap,   temporal   for   
2D;   can   cause   aliasing   effects   (i.e.   nr   of   bins   affect   quality)   
Kernel   Density   estimation    for   each   point   x   calculate   sum   of   deviations   of   samples   
width   of   kernel   changes   probability   density   function;   different   kernels   possible   (gauss,   rect)   
Violin   plots   (box   plot   +   density   estimation)   
Information   Seeking   Mantra    Overview   first,   zoom   and   filter,   details   on   demand   
Hierarchical   Aggregation    aggregation   of   data   based   on   hierarchy   (i.e.   choropleth   maps   for   
elections),   adjust   bandwidth   for   density   scatterplots     
Sampling    local   overplotting,   missing   outliers   vs.    Heatmap    global   patterns,   local   outliers   
Takeaway   points    Aggregate   vis   very   scalable,   interactivity   challenge   (100ms   interactive   
response   limit   for   brushing   and   linking   (filter)   panning   /   zooming   (resolution   change)   
Latency   sources    query,   data   processing,   rendering   
Interactive   Scalability    random   sampling?   ok   but   not   so   good     
Porgressive   analytics    partial   results   of   computations   under   user   bounds   that   converge   to   
final   result,   user   can   interactively   change   parameters)   
Confidence   Intervals    sample   standard   deviation   depends   on   mean   →   full   recomputation   
necessary;    but   there   are   some   online   methods   
Multi-threading   on   Client    no   UI   blocking   etc.   
Parallel   Data   Aggregation    thread   takes   a   section   of   input,   etc.   CUDA   
Precomputation    whatever   is   possible!   
Aggregate   Queries    data   cubes:   ndarray,   quick   summaries   of   data,   information   split   into   
independent   variables   and   dependent   variables,   aggregations   are   projections   i.e.   x-axis   =   
product,   y-axis   =   country,   z   =   amount   
Size   is   problematic   for   data   cubes   (very   large)   
Reduce   dimensions   of   data   cube,   i.e.   instead   of   5-d   data   cube   use   4   or   5   3-d   data   cubes   
Data   Tiles    i.e.   google   maps,   decompose   canvas   into   static   tiles;   loaded   dynamical;   can   be   
used   for   any   vis   that   is   zoomable   
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Graph   Tiles    Compute   hierarchical   aggregation   using   communities;   community   =   strong   
bonds   within   (density)   and   less   density   between   communities   (meta   nodes)   
layout   the   highest   level   then   lower   levels   layouted   within   the   communities,   etc.   
can   be   parallelized   
Positions   and   links   (+   annotations)   can   be   stored   (precomputed)   and   only   rendered   on   the   
computer   (allows   filtering   etc.)   
Prefetching    while   user   is   interpreting,   use   the   time   to   preload   next   data   tiles   
Efficient   Rendering    d3   easy   event   handling,   visual   scalability   but   poor   performance   
2D   canvas   is   complicated   and   also   not   very   well   performing,   webgl   is   so-so   complicated   but   
very   nice   performance   →   GPU   goes   brrrrrrrr   
raycasting   for   selection   (use   quadtree   to   find   closest   point   faster)   
Image   Space   Visualization   Operations    transform   data   tuples   to   RGBA   pixels   and   add   
color   mapping,   glyph   rendering   etc.   
Data   packed   as   RGBA   images;   query   fragment   shader   to   sum   bins   and   write   into   FBO,   
render   fragment   shader   determines   bin   and   color   for   each   pixel   
Summary   Scalability   
Perceptual   problems:   Overplotting,   visual   clutter;   Solution:   Render   models   orr   aggregations   
Interactive   problems:   too   much   data   queried;   Solution:   progressive   queries,   aggregate   
queries/vis;   
Too   many   graphical   markers,   Solution:   Parallel   aggregation,   data   tiles   with   prefetching   

Real-Time   Fluid   Simulation   and   Visualization   
Challenges    Modeling   continuous   fluids   need   many   approximations,   topological   variations,   
various   interacting   objects,   numerical   stability/accuracy;   
Performance:   grid   and   temporal   resolution   
Artistic   control:   parameter   tuning?   model   many   types   of   fluids?   
Simplification:   no   change   in   volume   of   fluids   (incompressible)   
Navier-Stokes   Equations    analytically   only   simple   cases   can   be   solved,   in   CG   just   
approximations;   
Change   in   velocity   =   advection   -   pressure   +   diffusion   +   external   forces   
(non-linear   partial   differential   equations)   
Incompressibility   constraint   =   triangle   pointing   downwards   *   u   =   0   
Advection    velocity   causes   transport   of   objects,   densities,   etc.   
Pressure    incompressible   fluids,   pressure   causes   distribution   of   acceleration   
Diffusion    objects,   densities   get   distributed   to   neighbour   cells   (models   the   viscosity,   honey   =   
high   viscosity;   does   not   dissolve   easily   in   water)   
External   forces    gravity,   pistons,   etc.   
Lagrangian   Approach   
Liquid   is   represented   as   particle   (one   particle   has   1000s   water   molecules);   compute   forces   
between   them;   Models   the   forces   according   to   certain   predefined   smoothing   kernels   
Pros:   Mass/Momentum   conservation,   intuitive,   Fast,   no   linear   system   solving   
Cons:   Suffers   difficulty   with   pressure   and   incompressibility,   connectivity   information/surface   
reconstruction,   time   step   needs   to   be   small   to   ensure   stability   
Eulerian   Approach   
Liquid   is   divided   into   a   grid;   keep   a   status   for   each   of   these   cells;   
Define   scalar   &   vector   fields   on   the   grid;   operator   splitting   technique   to   solve   each   term   
separately   
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Pros:   Derivative   approximation,   adaptive   time   step,   ensuring   incompressibility   is   easier   
Cons:   Memory   (whole   liquid   is   stored   as   grid)   usage   &   speed,   grid   artifact   /   resolution   
limitation   
  

Smoothed   Particle   Hydrodynamics   (Lagrangian)     
Pressure   computation   →   Kernel   Functions   -   models   the   smoothing   (define   weight   of   
contribution   from   neighbours)   →   boundary   condition   -   what   happens   on   the   boundary   of   the   
box   of   liquids   →   nearest   neighbour   search   (spatial   data   structures)   -   surface   reconstruction   
(3D   scalar   fields,   marching   cubes)   
Advantage:   Model   solids   also   as   particles   
Eulerian   Approach   -   Domain   Discretization   
Space   needs   to   be   divided   into   cells   (derivatives   must   also   be   derivatives)   
Center   of   difference   scheme   is   used   to   approximate   derivatives   (look   one   to   left,   one   to   right   
and   then   divide   it)   
Cell   attributes   are   stored   in   3D   textures;   in   each   step   update   values   by   running   
computational   kernels   over   the   grid   domain;     
Helmholtz-Hodge   Decomposition    a   vector   field   can   be   decomposed   into   u   +   derivative   p;   
u   can   be   used   for   incompressibility   constraint   (because   it   has   0   divergence)   
3   computations   (advection,   diffusion   &   force   application)   results   in   no   zero   divergence   
??????   
Poisson   equation   gives   non   divergent   velocity   field   (maybe)   
??????   
Pressure   Projection    use   again   the   H-H   decomposition;   projects   non-divergent   field   on   the   
??   
lecturer   is   also   lost   in   the   equations   
??   
probably   this   won’t   be   on   the   exam   
??   
Simulation   Loop    don’t   solve   equation   at   once,   but   compute   one   after   another   →   addition   is   
substituted   with   “operators”;   each   step   is   applied   on   a   vector   field;   
Advection    solved   by   forward   euler;   considers   cell   as   a   particle   (direction   where   the   particle   
would   move)   and   move   the   particle   along   the   velocity   →   is   actually   bad   because   it   can   “blow   
up”   --   accumulating   errors;     
Better:   Semi-Lagrangian:   look   where   the   particle   got   here;   look   in   the   negated   velocity   
direction;   
Even   better:   MacCormack   Advection   fixes   smoothing   and   loss   of   detail   from   semi-lagrangian   
Diffusion    models   the   thickness;   measure   how   resistive   a   fluid   is   to   flow;   very   “””simple”””   
External   Forces    local   or   body   forces,   gravity,   fan   blowing   air,   …   
Pressure   Projection    (again)   solve   poisson   equation   for   pressure   scalar   field,   subtract   the   
scalar   field   from   the   divergent   field   to   get   a   non   divergent   field   →   fluid   incompressible   
i.e.   Jacobi   iteration,   conjugate   gradient,   multigrid   methods   
Boundary   Condition    divide   into   interior   and   boundary   cells;   no-slip   velocity   boundary   
condition   (velocity   on   boundary   is   zero)   or   derivative   on   boundary   has   a   certain   value;   one   
pixel   border   for   storing   boundary   values;   
Dynamic   obstacles   are   related   to   this;     
Voxelize   the   objects   using   a   “D   array   of   stencil   buffers   
Staggered   Grid    pressure   and   temperature   are   in   the   cell   centers,   velocities   on   the   edges   →   
prevents   artifacts   
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Visualization    quantities   are   visualized   (temperature,   density,   etc.)   use   volume   rendering   
techniques   (i.e.   raymarching);   
Smoke    store   temperature   (a   gaussian   splat   injected   to   a   color   dye   texture   
Fire    similar   to   smoke;   reaction   coordinate   (keeps   track   of   time   since   ignition,   value   less   than   
zero   =   fuel   exhausted),   map   reaction   coordinate   values   to   color   
Liquids    Level   Set   Method,   each   grid   cell   gets   a   shortest   signed   distance??   
Conclusion     
Fluids   modeled   by   Navier   stokes   equations   -   advection,   diffusion,   pressure   and   external   
force;   Two   major   viewpoints   =   eulerian   and   lagrangian   
Advection   methods   =   forward   euler,   semi-lagrangian   or   MacCormack;   Pressure   projection   
Boundary   condition   and   dynamic   obstacles;   Visualization   and   rendering   of   fluids   

Graph   Visualization   
Graph   =   Nodes   (items),   Edges   (Relationships)   i.e.   weighted   or   unweighted   
Clique   (edge   between   all   nodes),   Connected   components,   …   
Geodesic   distance   (shortest   path   between   2   vertices   (how   many   edges   are   needed)   
Types   of   Graphs    directed,   undirected,   mixed,   tree,   directed   acyclic   graph,   networks   
Hypergraphs    an   edge   can   have   multiple   nodes   (not   only   2)   
Graph   Preprocessing    filter   graphs   (remove   irrelevant   parts),   aggregation   (i.e.   clique   as   one   
node)   
Graph   Representations    Node-Link-Diagram,   Adjacency   Matrix,   Combination,   Treemap   
(windirstat),   Information   cube   (nested   3D   representation)   
Node   Link   Diagramme   
Layouting    -   position   them   in   space   (Fore-directed,   Circular,   Arc   Diagram,   Layered)   
Edge   Bundling    -   similar   edges   will   be   combined   to   bigger   edges   (can   be   
simulated/calculated   with   electrostatic   forces   →   virtual   vertices   created   along   the   edge,   
repulse   to   other   nodes   on   the   same   edge   and   attraction   towards   vertices)   
Focus+Context    -   interactive,   simplify   nodes/edges   not   in   context   (i.e.   magnifying   glass,   or   
abstraction   (gray   out)   
Deterministic   Layouts   
Circular   Layouts    -   nodes   in   circles,   edges   through   the   middle,   filter,   etc.   
Arc   Diagram    nodes   in   a   line,   circular   edges   
Non-deterministic   Layouts    Force-directed   layout,   basically   a   simulation,   repulsion   (for   
unconnected   nodes   i.e   Coulomb’s   Law   force   decreases   with   distance))   and   attraction   
(between   connected   nodes   i.e.   Hooke’s   Law   spring   force))   and   Focal   point   (i.e.   attraction   to   
center,   grows   with   distance;   or   several   focal   points   for   clustering)   
Euler   Integration    to   compute   layout   (per   frame),   Acceleration   (force   /   mass),   new   velocity   =   
velocity   +   acceleration   *   timestep),   new   pos   =   pos   *   new   velocity   *   timestep   
Error   is   proportional   to   the   timestep;     
Verlet   Integration   -   express   velocity   as   current   -   previous   position   →    slower   than   euler   but   
much   more   stable);     
Complexity    attractive   forces   =   O(n)   for   each   edge   a   force,   repulsive   =   O(n²)   every   pair   of   
vertices   repulses   each   other   
N-Body   Simulation   optimizations   
with   Quadtree   -   space   divided   into   tree   structure;   if   two   vertices   in   the   same   cell   →   split   cell   
into   4   cells   (represented   in   the   tree   as   well)   
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Quadtree   can   be   used   for   nearest   neighbour   simulation;   as   largest   force   is   applied   to   close   
neighbours,   and   little   force   to   far   away   nodes;   
Task:   Find   all   vertices   within   the   circle;   Check   if   root   intersect   with   radius,   then   check   all   
children;   if   leaf   check   distance   with   node   it   self;   
→   takes   O(log   n)   time   
Barnes-Hut    what   if   far   away   (many   forces)   vs.   one   close   (strong   force);   forces   would   not   be   
found   with   nearest   neighbour;     
Steps:   Center   of   Gravity   for   total   mass   (for   root   node)   if   distance   between   center   of   gravity   
and   node   size   (length   of   the   quad)   >   threshold   don’t   go   through   the   node,   calculate   force   
between   the   two;   otherwise   check   leaf   nodes   
  


