VU Advanced Software Engineering WS2025 - Test 1, Group B Duration: 90min 14.11.25

Last name: Student ID:
First name:

This is only what I remembered from the test and may contain parts, which where not part of the test or misses parts from
the test. (so not sound nor complete)

1.) Single Choice Questions (12 points)

In the following, you find some single-choice questions. You get 42 points if you check exactly one answer and this answer is
correct.

a) Which abstract domain does not require a widening operator to ensure termination of Abstract
Interpretation?

O the octagon relational domain.

O the standard interval domain.

O every domain whose elements are a subset of the elements of the standard interval domain.

O the parity domain from the lecture.

b) A program analysis can be safely used for verification if it is

O sound.
O precise.
0 imprecise.
O

complete.

c) How many binary variables can there be after the bit-blasting step of Bounded Model Checking,
assuming that the constraints have 2 integer variables with bit-width 327

O 2

O 322

0O 64

0O 232

d) An unsound analysis

O is definitely an over-approximation of a program.
O is definitely an under-approximation of a program.

O could be neither an over-approximation nor an under-approximation of a program.

e) In Bounded Model Checking, using unrolling assertions in the presence of loop unrolling makes the
analysis

[0 unsound and precise.

[0 unsound and imprecise.
[0 sound and precise.
O

sound and imprecise.

[

f) If an analysis did emit a warning for a correct program, the analysis is considered to be
O unsound.
O precise.

O imprecise.
O

sound.



2.) Abstract Interpretation 1 (26 points)

Consider the modified interval domain INT, with the following set of abstract elements: {[z,2+d] |0<d <2 and z > 0}U{L
,[0,00)}. INTy cannot represent negative numbers which is why we restrict ourselves here to programs over unsigned integers.

a) Perform Abstract Interpretation with INT,; on function check verifiedl below. Provide the abstract
control flow graph as in the lecture. What does the analysis reveal about the safety of check verified1?
Reason about the semantics of the relevant abstract state(s). (14 points)

0 void check_verifiedl(unsigned int x) {
1 if(x < 3){

2 X = X + X;

3 } else {

4 x = 1;

5 }

6 assert(x <= 4);

7}

b) Perform Abstract Interpretation with /N7y on function check_verified2 below. Provide the abstract
control flow graph as in the lecture. What does the analysis reveal about the safety of check_verified2?
Reason about the semantics of the relevant abstract state(s). (12 points)

0 void check_verified2(unsigned int y) {
1 unsigned int x = 3;

2 if(y <= 1){

3 y++;

4 X =Y,

5 }

6 assert(x != 0);

7}



3.) Abstract Interpretation 2 (18 points)

Give a function precision_loss (in the C-like syntax used in the lecture) containing an assertion assert(...) that shows
that the widening operator V for Abstract Interpretation with the standard interval domain as used in the lecture comes with
precision loss. Give the abstract state(s) “before” the assertion (i.e. the state(s) for which the assertion is evaluated) when
performing Abstract Interpretation both with and without widening.

Hint: Think about which properties the function has to satisfy.



4.) Bounded Model Checking (26 points)

a) Use Bounded Model Checking to verify the correctness of function f_arith below. Assume for this
analysis that int overflows can occur.

e Show the program after the step of converting it into SSA form. (6 points)
e Show the constraints obtained from the SSA form and UNSAT or SAT assignment. (4 points)

e Are the constraints satisfiable? Show that your answer is correct. Recall that satisfiability is shown by a proof argument
over the constraints! (10 points)

void f_arith(int x, int y) {
if(y <= 0) {
if(x > 0) {
X = -X;
X*x7 2*x; x1

b4
}
y =X % 2;
} else {
y="x-y
}
X = -X;
assert(y < x);

b) Now assume we want to statically analyze the C-function f_array below with Bounded Model
Checking. You can assume the existence of assertions check overflow errors using Bounded Model
Checking. For each of the following settings, tick what would be the expected result of the SAT-solver
and — in case the result is SAT — provide the assignment that the SAT-solver would give for variable
n (the variable that is used to encode n in f_array). (6 points)

int arr[3];
void f_array(unsigned int n){
unsigned int i = 0;
while(i < n){
arr[i] = 0;

i++;

e Unrolling assertions with unrolling bound of 2: 0 SAT [0 UNSAT, assignment for n:
e Unrolling assumptions with unrolling bound of 2: 0 SAT [0 UNSAT, assignment for n:



5.) Symbolic Execution (18 points)

Consider function whl below. Perform Symbolic Execution on the path that corresponds to an execution where the loop body
is executed exactly two times. Assume for your analysis that no over-/underflows can occur.

void whi(int a, int b) {
while (a >= 0) {
b =42 - b;
a = a * b;

a) Complete the table below like in the lecture. Make sure you are using the labels of the CFG nodes
in the column “Path”. (14 points)

Path Symbolic map Path condition

1 a— Ab— B true




b) Use the obtained path constraint and give a possible assignment for variable a and b such that the described path would be
executed. For simplicity, you can assume that mathematical integers are used, so no over-/under-flows occur. (4 points)

entry

1: bl = (a > 0);




