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Scheduling
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Task Model
Assumptions about task timing, interaction

Schedulability Test
Prediction of worst-case behavior 

Scheduling Algorithm
Scheduling mode and selection function

Goal: Meet the deadline(s)



Real-Time Scheduling Requirements
• Precedence constraints
• Mutual exclusion
• Rate requirements
• Deadline and response-time requirements
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Classification of Scheduling Algorithms
• Guaranteed versus best-effort
• Static versus dynamic
• Preemptive versus non-preemptive
• Single-processor versus multi-processor
• Central versus distributed
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Terminology
Periodic task
• hard deadline
• executed repeatedly at (semi)regular time intervals
• Parameters: Ti … period (min.), Di … deadline, Ci … WCET

Aperiodic task
• soft or no deadline
• goal: optimize responsiveness

Sporadic task
• hard deadline
• Executed sporadically
• Parameters: minti … minimum inter-arrival time, Di, Ci
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Optimal Schedulers, Clairvoyance
A scheduler is clairvoyant if it knows everything about the future.

A scheduler is optimal if it can find a schedule whenever the best 
clairvoyant scheduler can find a schedule.

In the general case, a dynamic scheduler cannot be optimal – 
proof: adversary argument.

Under restricting assumptions, optimal dynamic schedulers exist.
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Adversary Argument

Although there is a solution, an online scheduler cannot find it.
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Task set: T1, T2, mutually exclusive
Task Period / Deadl. WCET Type

T1 4 / 4 2 periodic

T2 4 / 1 1 sporadic

T2 T1 T1
T2

T2 T1

adversarial case

clairvoyant schedule



A Simple Model for Application Tasks
• Single processor
• Application consists of a fixed set of n tasks
• All tasks are periodic, periods are known
• Task completion deadlines are equal to task periods
• Worst-case execution times of all tasks are known
• Tasks are independent
• Overheads, context-switch times are ignored
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Cyclic Executive
• Planning before runtime
• Concurrent or pseudo-concurrent tasks are mapped to

collections of procedures/procedure calls
• Procedure calls are grouped into calls for each minor cycle
• All minor cycles together form the major cycle of the schedule
• The minor cycle determines the minimum cycle time of a task
• The major cycle determines the maximum cycle time of a task
• Statically planned
• Fully deterministic behavior and timing
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Cyclic Executive – Example 

while (1) {
 wait_for_timer_interrupt();
 task_a(); task_b(); task_c(); task_f();
 wait_for_timer_interrupt();
 task_a(); task_b(); task_d(); task_e();
 wait_for_timer_interrupt();
 task_a(); task_b(); task_c();
 wait_for_timer_interrupt();
 task_a(); task_b(); task_d();
} 10

Task Period Exec. Time
a 10 2
b 10 3
c 20 4
d 20 2
e 40 2
f 40 1

minor cycle: 10 time units
major cycle: 40 time units



Cyclic Executives – Properties
• Procedure calls instead of tasks at runtime
• Procedures share common address space

• Can share common data structures
• Mutual exclusion is guaranteed by construction

• All task periods must be a multiple of the minor cycle
• Long periods are difficult to accommodate – major cycle
• Inflexible – no sporadic or aperiodic tasks
• Large (long) tasks need to be split

• Invalidates designed task structure
• May invalidate mutex assumption between tasks
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Fixed-Priority Scheduling (FPS)
• Each task has a static priority
• Task priorities are computed before runtime
• Priorities of ready tasks determine the execution order of tasks 
• Priorities are derived from temporal requirements
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Rate-Monotonic Scheduling (RMS)
• Fixed priority scheduling, preemptive
• Rate-monotonic priority assignment
• The shorter the period (= the higher the rate) of a task,

the higher its priority Pi

• For all Taski, Taskj: Ti < Tj ⇔  Pi > Pj

• Selection function: Among the ready tasks the task with 
highest priority is selected to execute next.

• The rate-monotonic priority assignment is optimal for FPS
• If a task set is schedulable with a preemptive fixed-

priority scheduler then the task set is also schedulable 
with RMS
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Schedulability Test

If a sufficient schedulability
test is positive, the tasks
are definitely schedulable

14

If a necessary schedulability
test is negative, the tasks
are definitely not schedulable

sufficient necessary

better schedulability test needed

increasing
task-set
complexity

schedulable not schedulable

⊕ ⊖

Analyse task parameters to decide about schedulability



Utilization-Based Schedulability Test

Utilization U := S Ci / Ti

Necessary schedulability test for RMS

  U ≤ 1

Sufficient schedulability test for RMS

  U ≤ n(21/n – 1) 
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Utilization-Based Schedulability Test
Theorem of Liu and Layland: A system of n independent, 
preemptable periodic tasks with Di = Ti can be feasibly 
scheduled on a processor according to the RM algorithm if its 
total utilization U (URM) is at most

URM(n) = n(21/n – 1) 

Examples:  URM(2) = 0.83,  URM(3) = 0.78,  URM(5) = 0.74,  URM(10) = 0.72

For big n: URM(n) ≈ ln 2 (≈ 0.69)
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RMS Scheduling – Example 

Ci Ti
T1
Task

4 8
T2 3 16
T3 1 4

0 5 10 15 20

T1
T2
T3

… 

Critical Instant ... all tasks arrive at the same instant
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Earliest Deadline First Scheduling (EDF)
• Absolute deadlines determine the execution order of tasks
• Selection function: the task with the earliest absolute 

deadline is selected to execute next
• Utilization-based schedulability test for EDF – necessary 

and sufficient condition:

S Ci / Ti ≤  1

• In general EDF can provide higher utilization than RMS
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FPS versus EDF
• Implementation of static priorities (FPS) is easier
• EDF: ready queue sorted by deadlines; tasks that become 

ready need to be inserted at the right place
• FPS: tasks without deadlines can be added more easily, 

e.g., by assigning a low priority to these tasks;
in EDF: assignment of “artificial” deadlines

• Overload
FPS: Low-priority tasks miss their deadlines
EDF: unpredictable; potential of domino effect
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Response-Time Analysis for FPS
• Utilization-based tests are

• Simple
• Not exact
• Not applicable to more general task models

➭ Response-time analysis
• Compute worst-case response time, Ri, for each task

thereby considering interference Ii from tasks of higher priority

   Ri = Ci + Ii
• Check whether the task meets its deadline, i.e., Ri ≤ Di
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Response-Time Analysis for FPS (2)
• To bound interference Ii, we need to know how often each 

task Taskj of higher priority preempts Taski

• Assuming that all tasks start at the same time, e.g., time 0, 
the maximum number of task preemptions of Taski by Taskj
is:

• For each preemption, the maximum interference is Cj. 
Therefore the interference of Taskj is:
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Ri

Tj

Ri

Tj
Cj



Response-Time Analysis for FPS (3)
• Let hpi be the set of tasks with priority higher than Taski

• Ri can be calculated by considering the interference of hpi

• The formula can be solved by solving the following set of 
recurrence relations:

starting with: 22

Ri

Tj
CjRi = Ci + S

j ∈ hpi

wi

Tj
Cjwi    = Ci + S

j ∈ hpi

n+1 
n

wi    =  Ci 
0 



Response-Time Analysis for FPS (4)
The response-time analysis is a necessary and sufficient 
schedulability test

• If a set of tasks passes the test then all tasks will meet their 
deadlines

• If the task set fails the test, then a deadline miss will occur 
at runtime (unless WCET estimates are pessimistic)
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Least-Laxity First Scheduling (LLF)
• Laxity: Difference between deadline and remaining 

computation time
• Selection function: The task with the smallest laxity gets the 

highest (dynamic) priority and is therefore selected for 
executing next

• In uniprocessor systems LLF scheduling is optimal

• Modified LLF (MLLF) reduces number of task switches
24

Task Deadline WCET

T1 8 5

T2 7 2
T2T1 T1 T2 T1

0 7 8

3 3 3 3 2 2 1
5 4 3 2 2 1 1

… Lax(T1)
… Lax(T2)



Multiprocessor Scheduling

Deadlines 25

Task set

T1 T3

Task Deadline WCET

T1 10 5

T2 10 5

T3 12 8

T2

T1

T3

T2

Proz1

Proz2

Proz1

Proz2

EDF

LLF

T1, T2

T3



Non-Optimality of LLF in Multiprozessor Sys.

Deadline T3 26

Task set

T1 T3’Proz1

Proz2

Proz1

Proz2

LLF

opt.

Task Arrival Deadline WCET

T1 0 4 4

T2 0 8 4

T3 0 12 4

T4 6 12 6

T5 6 12 6

T4

T5

T3’’

T1 T3’’ T4

T5T3’

T2

T2



Sporadic Task Scheduling
• Transformation of the sporadic task to a quasi-periodic task
• Sporadic task parameters: mints, Ds, Cs

• Quasi-periodic task parameters
Cp = Cs

Dp ≤ Ds, e.g., Dp = Cp

Tp = min(mints, Ds – Dp + 1)
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t+1
state change

t

Ds

Dp Dp

Tp



Sporadic Server Task
• Sporadic-task transformation may yield poor processor 

utilization, especially if Ds is small compared to mints.
• We can define a server task for the sporadic request that 

has a short latency
• The server is scheduled in every period, but is only 

executed if the sporadic request actually appears. 
Otherwise the other tasks are scheduled

• This will require a task set in which all the other tasks have 
a laxity of at least the execution time of the server task.
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Priority Inversion
• Consider tasks with mutual exclusion constraints.
• Priority inversion is a phenomenon that occurs when a 

higher-priority task is blocked by a lower-priority task.
• Direct blocking: a high-priority task must not preempt the 

exclusive resource use by a low-priority task
• Indirect blocking of a high-priority task by a medium-priority 

task – the medium priority task preempts a low-priority task 
that holds a shared resource – has to be avoided.
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Priority Inversion (2)
• In the shown example the high-priority task is indirectly 

blocked by the medium-priority task (dashed box).
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Task 1, lowest priority

Task 2, medium priority

Task 3, highest priority

… mutex resource use
… task executes

… task is blocked, priority inversion

… task is preempted
… task indirectly blocked

Task 1 and Task 3 use the same resource



Priority Inheritance
• When a low-priority task blocks one or more tasks of higher 

priority, it temporarily assumes the highest priority of a task 
it blocks
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Task 1, lowest priority

Task 2, medium priority

Task 3, highest priority

… mutex resource use
… task executes

… task is blocked

… task is preempted
… task using mutex resource
     runs at inherited priority



Priority Inheritance (2)
• The priority-inheritance protocol does not prevent deadlocks
• Example

1. Task 1 locks R2
2. Task 2 preempts Task 1 and locks R1
3. Task 2 tries to lock R2 but fails
4. Task 1 inherits priority from Task 2 but blocks when trying to lock R1
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Task 1, low priority
Task 2, high priority

… mutex resource use
… task executes

… task is blocked

… task is preempted
… task using mutex resource
     runs at inherited priority

R1
R2

R2
R1R2



Priority Ceiling Protocol
• Each process has a default priority.
• Assign a priority ceiling to each resource:

The priority ceiling equals the priority of the highest-priority 
task that uses the resource.

• At each time instant a task executes at a dynamic priority that 
is the maximum of its own static priority and the ceiling values 
of all resources that it has locked.

➭ A task can only assume a new resource if the task’s priority is 
higher than the priority ceilings of all the resources locked by 
other tasks.
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Priority Ceiling Protocol – Example
Task 3:  … P(S1) … V(S1) …    highest priority
Task 2:  … P(S2) … P(S3) … V(S3) … V(S2) … medium priority
Task 1:  … P(S3) … P(S2) … V(S2) … V(S3) … lowest priority
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Task 1

Task 2

Task 3

… S2 (medium)… S1 (high)
Critical section guarded by Sx (priority ceiling):

… S3 (medium)



Calculating the Maximal Blocking Time
• Let us assume a process has K critical sections, i.e., it can 

be blocked at most K times
• Define: usage(k, i) is 1 if the resource used in critical 

section k is used by at least one task with lower and one 
task with higher or equal priority than Taski, otherwise it is 0.

• C(k) is the WCET of critical section k.
• The maximum blocking time Bi of Taski is:
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usage(k, i) C(k)Bi = S
k = 1

K



Response Time with Blocking
• Using the calculated worst-case blocking times, the 

maximum response time of Taski can be described by the 
following recurrence equation:
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Ri

Tj
CjRi = Ci + Bi + S

j Î hpi



Static Scheduling – Precedence Graph
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T0

T1 T2

T3

T4

T5 T6

T7

Response

Component A

Component B

M1

M2

Stimulus



Static Scheduling – Search-Tree Example

• Schedulability Test: by construction of the schedule.
If the task set is not schedulable then the scheduler will not 
find a schedule. 38

Time Slot
1                                             T0
2                     T1                                             T2
3                     T2                                        M1 & T1
4                 M1&T3                                    T3  & T4
5                 M2&T4                                    M2 & T6
6         T5                    T6                                 T5           
7         T6                    T5                                 T7
8         T7                    T7



Static Scheduling – A Search Problem
• The goal of the static (pre runtime) scheduler is to find a path 

through a search tree that
• Meets all deadlines
• Observes all constraints (mutual exclusion, precendence, etc.)

• The scheduler generates a table (task description list … TaDL) 
that the dispatcher of a time-triggered operating system 
interprets at runtime.

• Schedule construction by heuristic search
• heuristic function estimates expected response time of partial solutions.
• If the expected response time is larger than the allowed response time, 

the respective branch of the search tree is pruned.
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Points to Remember
• To provide deadline guarantees the task model must be 

defined, the set of tasks, the task timing parameters and 
interferences (mutex) must be known at analysis time

• Schedulability tests are a tool to judge task sets
• Schedulers: RMS (FPS), EDF, LLF
• Mutex: Priority inversion à priority ceiling protocol
• Run-time versus static scheduling

• Run-time scheduler: flexibility (?), might cope with temporary overload – 
hope; scheduling decisions are taken at runtime;
schedulability test has to cover all possible scenarios

• Static scheduler: rigid interpretation of dispatch table, little run-time 
overhead (lookup); has to find one feasible schedule = successful 
completion of schedulability test 40


