
Exploring Enterprise Knowledge Graphs:
a Use Case in Software Engineering

Marta Sabou1, Fajar J. Ekaputra1, Tudor Ionescu2, Juergen Musil1, Daniel
Schall2, Kevin Haller1, Armin Friedl1, and Stefan Biffl1

1 Technical University of Vienna, Austria, first.last@tuwien.ac.at,
2 Siemens AG Vienna, Austria, first.last@siemens.com

Abstract. When reusing software architectural knowledge, such as de-
sign patterns or design decisions, software architects need support for
exploring architectural knowledge collections, e.g., for finding related
items. While semantic-based architectural knowledge management tools
are limited to supporting lookup-based tasks through faceted search and
fall short of enabling exploration, semantic-based exploratory search sys-
tems primarily focus on web-scale knowledge graphs without having been
adapted to enterprise-scale knowledge graphs (EKG). We investigate how
and to what extent exploratory search can be supported on EKGs of ar-
chitectural knowledge. We propose an approach for building exploratory
search systems on EKGs and demonstrate its use within Siemens, which
resulted in the STAR system used in practice by 200-300 software archi-
tects. We found that the the EKG’s ontology allows making previously
implicit organisational knowledge explicit and this knowledge informs
the design of suitable relatedness metrics to support exploration. Yet,
the performance of these metrics heavily depends on the characteristics
of the EKG’s data. Therefore both statistical and user-based evaluations
can be used to select the right metric before system implementation.

Keywords: software engineering, software architectural knowledge, en-
terprise knowledge graph, exploratory search

1 Introduction

In the area of software engineering, software documentation in general [9] and
software architectural knowledge (AK) in particular [3] are important assets
throughout the software engineering life-cycle. AK encompasses software de-
sign patterns, architecture descriptions, reference architecture models (i.e., the
outcome of the software architecture design process) as well as the design deci-
sions taken by the software architects during the design process itself [13]. AK
has considerable value as it enables reusing already validated design solutions.
Therefore, its management is crucial as it affects the effectiveness of architecture
decision making processes that steer the evolution of a software platform.

Therefore, researchers investigate for more than a decade approaches and
systems to support software engineers and architects with AK management [3].

2 Marta Sabou et al.

Some of these approaches are based on Semantic Web techniques, with ontology-
based semantic data enabling intuitive, graphical navigation of AK [4, 14] or act-
ing as backbones for wiki-based systems offering browsing, faceted-search and
querying capabilities [5–7, 10, 15, 22]. Some ontology enabled faceted search sys-
tems were shown to improve the effectiveness and efficiency of AK retrieval [5,
15]. Yet, recent studies indicate that architects still mostly rely on ad-hoc deci-
sions to address architectural quality attributes (e.g., scalability) and that they
have limited awareness of available alternatives when making architectural de-
cisions to address quality attributes [1, 2]. Therefore, a challenge is providing
search mechanisms that go beyond information lookup, such as achievable with
faceted-search, and support software architects in exploring the space of avail-
able AK elements, especially plausible alternatives. This challenge also exists
at Siemens AG, a large organization with a key focus on software engineering.
Siemens software architects need support to intuitively search for and explore
architectural knowledge but are currently poorly supported in this task by legacy
technologies which rely primarily on databases and wikis.

A promising approach to support software architects who need to sieve
through and make sense of AK repositories is exploratory search which en-
ables open-ended, weakly-defined information seeking tasks such as learning and
sense-making [23]. Previous evidence shows that semantic structures can support
exploration, e.g., by improving search performance and decreasing frustration
levels [8]. And indeed, several semantics-based exploratory search systems were
proposed [16]. Typically, these systems support exploration by presenting new
knowledge derived from the underlying semantic structure algorithmically (e.g.,
through relatedness and similarity metrics) and they primarily focus on enabling
the exploration of large knowledge graphs (e.g., DBpedia) [16].

Although enterprises increasingly create their own Enterprise Knowledge
Graphs (EKG) to represent expert knowledge [19], adapting exploratory search
to such graphs has received limited attention. Expert knowledge has been char-
acterised as domain specific and constrained in its scope [20] as well as highly
structured, detailed and interconnected [11]. Therefore we define EKGs as (1)
highly specific, often encoding a single, narrowly defined domain; (2) compara-
tively small (compared to e.g., general knowledge graphs such as DBpedia) and
(3) deeply structured with detailed interconnections between their concepts.

Our goal is to implement and exploratory search system of architectural
knowledge at Siemens. Therefore, we investigate the following research questions:

RQ1: How to implement exploratory search on EKGs? What is a suit-
able approach? What main steps need to be followed?

RQ2: How to identify suitable relatedness metrics? Our hypothesis is that
relatedness metrics supporting exploration could be derived based on domain
knowledge from the EKG’s ontology. We investigate methods to select the
most suitable metric that minimise the need for expensive user studies.

RQ3: Are explanations derived from the EKG helpful? Based on [17], our
hypothesis is that relatedness explanations which can be derived based on
domain-specific relatedness metrics are helpful to support exploration.

Exploring Enterprise Knowledge Graphs 3

We investigate these research questions in the context of Siemens. Since pre-
vious studies have positively evaluated semantics-based faceted-search AK man-
agement systems [5, 15], we designed, implemented and deployed the Semantic
Search for Architectural Knowledge (STAR) prototype, a system that enables
faceted search of AK. Additionally, we extended this system with exploratory
search that takes advantage of the underlying EKG. STAR is novel in the AK
management system landscape because it goes beyond faceted search based on
the ontology structure, such as in [5–7, 10, 15, 22], and introduces exploratory
search by recommending related AK, derived from the underlying EKG by se-
mantic relatedness metrics. From the perspective of exploratory search research,
we propose an approach for implementing this paradigm on an EKG and report
on its concrete use in practice. STAR has been integrated into the current use
case setting in a way that augments rather than replaces legacy solutions, and,
as a result, is being used for accessing AK by cca. 200-300 Siemens software
architects. Although we report work in the context of Siemens, our approach
and lessons learned are of interest to other companies that need exploratory AK
management, or, more broadly, enterprises with an EKG which could enable
exploratory search.

Next, we describe the Siemens use case (Section 2) and present our approach
to implement exploratory search (Section 3) as well as its main steps: the cre-
ation of the STAR EKG (Section 4), the definition and evaluation of relatedness
metrics (Sections 5,6) and the actual system implementation (Section 7). We
overview related work (Section 8) and conclude with lessons learned, benefits
and challenges (Section 9).

2 Use Case

Siemens AG is the largest manufacturing and electronics company in Europe. Its
central research and development unit, Siemens Corporate Technology, shapes
innovation activities in the company and provides solutions to the company’s
Business Units, e.g., through the creation of software by some 4800 software
engineers across the globe.

A portion of this workforce (i.e., software and system architects, technical
project managers, senior developers, research group leaders) focuses on designing
software architecture. On a daily basis, these employees take several architec-
tural design decisions [13] carefully selecting the most appropriate architectural
elements (e.g., design patterns and tactics) to employ and weighing the effects
of these elements on the desired architectural qualities of the created system
(e.g., scalability, reliability, accessibility). In their decisions, they also consider
specific characteristics and requirements of the domain for which the software is
designed (e.g., cloud computing, smart cities, cyber-physical systems).

A key task in designing software architecture is finding and reusing AK.
For example, an architect wants to design a system that has the qualities of
being configurable and expressive. He knows that the façade pattern enables
designing systems with these characteristics, but would like to know about other

4 Marta Sabou et al.

patterns with similar effects, which he can consider for reuse. This reuse of
already validated architectural solutions not only makes the design process faster
but also ensures a better outcome, i.e., a well-designed software product. To
enable such knowledge reuse, architectural knowledge is documented and during
the years, this activity has led to several collections of semi-structured documents
describing AK elements and their use within Siemens projects. The corpus of
our use case contained about 600 AK entities (e.g., design patterns and tactics).

Siemens employs a wide range of advanced methods and platforms to manage
AK, relying primarily on wiki-based systems and on databases (see Section 7).
The search functionalities of these approaches rely primarily on organizational
metadata such as the project where the AK was applied or the group/person
that developed it. It is difficult to search for AK based on meaningful features
such as e.g., its effect on architectural qualities or the (fine-grained) relations
between architectural elements. There is therefore a need for sophisticated AK
search capabilities to intuitively search and easily find AK. Going beyond sim-
ply organizing and accessing AK, the search system should support discovering
new knowledge in a serendipitous fashion, i.e., learning something relevant but
unexpected. One instance of serendipitous learning is finding related AK ele-
ments: for example, two design patterns might be considered as related when
they have comparable effects on architectural qualities. We implement an ex-
ploratory search system in this context as described next.

3 Implementing Exploratory Search: Approach

Our approach for implementing exploratory search on an EKG, assumes a green-
field context where the EKG itself needs to be created. Recently, knowledge
graphs were defined as “a set of interconnected typed entities and their at-
tributes”, where an ontology defines the vocabulary of the graph [19]. Therefore,
our approach covers both ontology and EKG construction among other steps:

Fig. 1. STAR Approach for creating an exploratory search system.

Create ontology to capture the relevant domain knowledge. While any of the
existing ontology creation methodologies can be followed, in an enterprise
setting at least the following three stages apply: 1. Scoping clarifies the

Exploring Enterprise Knowledge Graphs 5

purpose of the system as well as the use cases and competency questions to
be supported; 2. Definition creates the first version of the ontology taking
into account organization internal and external data sources; 3. Refinement
of the ontology with respect to the use case, data to be represented in the
EKG and actual usage during system implementation.

Build EKG. To create the EKG entities based on the defined ontology, several
methods can be used to transfer relevant data into a semantic representation.

Define relatedness metrics. Taking the view of exploratory search as recom-
mending related entities, at this step suitable relatedness metrics are define,
for example, by relying on domain specific heuristics.

Evaluate and select relatedness metrics. Before implementing relatedness
metrics in a concrete exploratory search system, it is vital to test these. A
combination of statistical comparison techniques and user studies is recom-
mended. Evaluation results can be taken into account to refine the metrics.

Implement system with the selected metric(s).

The next sections describe the application of the approach within our use case.

4 Creating the STAR EKG of Architectural Knowledge

Creating the STAR EKG entailed ontology construction and its population. To
construct the STAR ontology, in an initial scoping workshop system purpose,
use cases, and competency questions were clarified. To create an ontology that
could play the role of a common denominator on architectural knowledge ter-
minology within the company, it was decided to build on widely adopted AK
models and extend these with domain and organizational specific concepts. The
main standard for documenting software architectures is the ISO/IEC/IEEE
42010:2010 [12]. It comprises the meta models used to derive standard-conform
viewpoints, architecture frameworks and architecture description languages.

During ontology definition, the project team, including a knowledge en-
gineer and a software engineering researcher, identified a list of relevant con-
cepts based on: 1) the datamodel of the legacy database for storing AK; (2)
ISO/IEC/IEEE 42010 and (3) other AK ontologies proposed in the literature [7,
22]. Next, the relations that hold between these concepts were identified, thus
making explicit the information encoded implicitly in the database schema. To
refine the ontology, several iterations were performed with Siemens partners to
validate the relevance and usefulness of these concepts for the use case. As part
of these iterations, the AK corpus was transformed into the ontology in order to
check coverage. A stakeholder workshop closed the development process, where
the first draft version of the ontology was approved. Smaller, implementation
specific adaptations happened during the ontology’s use in system development.

The STAR EKG consists of the STAR ontology3 (Fig. 2) with 20 concepts, 30
properties and around 1000 entities that are instances of the ontology classes and
were extracted from legacy databases as discussed in Section 7. Because design
3 The STAR ontology is available at: http://data.ifs.tuwien.ac.at/star/

6 Marta Sabou et al.

Fig. 2. STAR Ontology: Main concepts and their relations.

decisions play a key role in the work of software architects, these are modeled as a
core concept in the STAR ontology, i.e., DesignDecision (90 entities). They have
effects on ArchitecturalQualities (95), which refer to desired characteristics of
the designed system such as accuracy, accessibility, autonomy or usability. De-
sign decisions rely for their realization on (i.e., use) ArchitectureElements(AE).
These three concepts and their relations emerge as a core modeling pattern in
the software architecture domain. Types of architectural elements interesting
for the context of Siemens are DesignPatterns (301), DesignTactics (137) and
SEMethods (43). The design process and its elements are affected by and ad-
dress a set of ContextElements. Relevant for Siemens are context elements
such as Domain (107), UseCase and Requirement. Finally, a set of concepts
have been introduced to capture the provenance of the information (such as the
Author that added it) or relevance for a certain Project (18), ProjectRole (e.g.,
test architect, requirements engineer) or ProjectPhase (e.g., design, testing).

5 Defining Relatedness Metrics for Exploratory Search

We achieve exploratory search by recommending related architectural elements
(e.g., design patterns) based on the STAR EKG. One benefit of the ontological
representation of the core concepts and relations of interest to the company was
that it provided intuitions about heuristics to design metrics for computing the
relatedness of two AEs. We designed two such metrics, as discussed next.

AEs have either negative or positive effects on architectural qualities. For ex-
ample, the façade design pattern has a positive effect on flexibility, but negatively

Exploring Enterprise Knowledge Graphs 7

affects accessibility. Therefore, one domain heuristic is that AEs are related if
they have similar effects on AQs. This heuristic lead to the RelAQ metric which
is directly proportionate with the number of AQs addressed by both elements
(Q(ae1, ae2)) and with the number of those AQs which they affect in the same
way (Qa(ae1, ae2)). RelAQ is indirectly proportionate with the number of qual-
ities affected in different ways by two elements (Qda(ae1, ae2)).

RelAQ(ae1, ae2) = Q(ae1, ae2) ∗ |Qa(ae1,ae2)|+1
|Qda(ae1,ae2)|+1

Our second metric (RelDOM) relies on information theory to capture the
relation between architectural elements and the domains that they address. For
each domain (e.g., “smart cities”), its information content is computed (IC(d)).
A domain addressed by many elements has a lower IC than a domain addressed
only by a few elements. RelDOM is the average information content of the do-
mains that both architectural elements address (D(ae1, ae2)).

IC(d) = −log count(aei.address.d)P
i,j count(aei.address.dj)

; RelDOM (ae1, ae2) =
P

di∈D IC(di)

|D(ae1,ae2)|

Generating explanations. For RelAQ, explanations of AE relatedness list the
AQs on which the two AEs have the same effect and those AQs which are affected
differently. For RelDOM , we list the domains that both elements address.

6 Evaluation of Relatedness Metrics

After designing the relatedness metrics we perform an evaluation to select the
metric to be integrated into the exploratory search system. Our approach is to
first perform a comparative evaluation of the overall behaviour of the metrics
over the entire EKG, and based on the findings to select the most promising
metric (Section 6.1) which is then evaluated in a user study (Section 6.2).

6.1 Comparative Evaluation of Relatedness Metrics

We use statistical methods to compare the overall behaviour of the two metrics
over the entire EKG. The box-plots and the relative frequency histograms dis-
played in Fig. 3 show that RelAQ leads to a variety of values and has a good dis-
criminative power among related architectural elements while RelDOM returns
similar values for most element pairs, thus only weakly supporting relatedness
identification. Indeed, although over 100 domains are defined in the EKG, 68%
of the architectural elements address only the domain “abstract” and therefore
the applicability of the information content inspired metric on this data is not
optimal. Therefore, our user evaluation focuses on RelAQ alone.

6.2 User Based Evaluation

The task of determining architectural element relatedness received limited at-
tention in the literature so far. Therefore, the main goals of the user based

8 Marta Sabou et al.

Fig. 3. Comparison of the overall behaviour of the relatedness metrics.

evaluations were: (Q1) to assess how difficult this task is for human raters; (Q2)
to determine the quality of ratings derived by the relatedness metric RelAQ and
(Q3) to investigate whether explanations derived from the EKG support users
in understanding relatedness among architectural elements.

Experimental data. We focus the evaluation on design patterns as the largest
group of architectural elements in our collection. The relatedness metric supports
an exploratory search interface, in which only patterns related above a certain
threshold are shown. Our interest therefore is to evaluate how well the metric
works for highly related pattern pairs. We computed the weighted RelAQ values
for all patterns in the dataset and chose five patterns for which relatedness
pairs ranked highest (e.g., façade, proxy). For each pattern, we selected the top
5 related patterns recommended by RelAQ. The evaluation dataset therefore
consisted in 25 pattern pairs and the explanations for deriving their relatedness
(e.g., the qualities on which the patterns had/did not have the same effect).

The study population consisted in 8 participants (6 from Siemens, 2 from the
university), all with a software engineering background and with education rang-
ing from undergraduate (2), to graduate (1), doctoral (2) and post-doc (3) levels.
Industrial experience with software architecture ranged from 1 year (2), to 5-7
years (4) and 10 years (2). In terms of experience with software design patterns
the population included 2 experts, 5 advanced and 1 intermediate participant.
Participants were divided in two groups, Gr1 and Gr2.

Study task. Participants were shown pattern pairs, their descriptions and (for
half of the dataset) an explanation of how their relatedness was derived. They
were asked to rank the pairs relatedness on a 5-point scale (1 completely unre-
lated; 5 very related) considering a broad notion of relatedness that one would
expect in the context of an exploratory search system. Gr1 evaluated the first half
of the pair set without explanation and the second half with explanation, while
Gr2 did the opposite. A post-study survey collected background information and
opinions about the study task as qualitative data. Based on the collected data
the following conclusions were drawn.

Q1: Difficulty of pattern relatedness judgement. Based on the data collected
through the survey to the question How challenging was the task of compar-

Exploring Enterprise Knowledge Graphs 9

ing the patterns?, most participants considered the task of average difficulty
(avg:3.25 on a scale from 1-very difficult to 5-very easy). Main issues encoun-
tered were: (1) the understanding of the patterns was hampered when the quality
of pattern descriptions was suboptimal (e.g., too short, too generic); (2) it was
difficult to judge how patterns relate without considering a concrete context such
as a use case; (3) generally, the notion of pattern relatedness was perceived as
challenging to quantify especially when patterns shared some common charac-
teristics but differed in others (e.g., when patterns had: different intentions but
similar realization/different realization but similar intention). Interpreting the
actual rankings made by the participants in terms of Fleiss Kappa, we obtained
an overall agreement of 34%, with a fixed marginal Kappa of 0.16. This shows
only a slight agreement among human raters and suggests that the task is more
challenging than perceived by our participants in the qualitative questionnaire.

Q2: Quality of relatedness ratings. In the post-study survey, participants
rated the plausibility of the reviewed pattern pairs as moderate, avg. 2.15 on
a scale from 1 (not plausible) to 4 (very plausible). This perception correlates
with the interpretation of the experimental data. We considered as successful
recommendation all pairs that had an average rating score of 3 or above derived
from the 8 raters. We obtained an overall precision value of 52%, a reasonable
result considering the inherent difficulty of the task. Looking at pair sets returned
for each of the 5 patterns, precision at three (Prec@3) had an average value of
60% across the five pair sets corresponding to the seed patterns.

Q3. Usefulness of relatedness explanations. Based on the survey results, ex-
planations of pattern relatedness as currently provided were considered moder-
ately helpful, avg. 2 on a scale from 1 (not helpful) to 4 (very helpful). Main
factors that lowered the usefulness of the explanations were: (1) too many ar-
chitectural qualities were shown, thus increasing confusion; (2) AQs were not
sufficiently clear, an explanatory sentence would have helped; (3) some AQs
were perceived as not specific enough to be meaningful (e.g., maintainability
can include both error handling and complexity management). As a result of
these findings, explanations are not included in the current user interface.

Useful suggestions were collected for improving explanations, most of them
(e.g., (2), (4) in the following list) revealing the need for more sophisticated
semantic analysis on more detailed semantic annotations. Suggestions included:
(1) provide more context information; (2) use more selective qualities that de-
scribe relations more appropriately; (3) reduce the number of the displayed AQs;
(4) explanations should be more detailed and based on a multitude of criteria
(e.g., pattern domain, functionality, the problems solved); (5) recommend more
refined relations between patterns (e.g., complements, refines, occurs with).

7 System Implementation

We implemented a faceted and exploratory search solution by augmenting the
legacy search solution (top-half of Fig. 4) already in place at Siemens. In that so-
lution, architectural knowledge was acquired through crawling mechanisms from

10 Marta Sabou et al.

both organization external and internal sources (e.g., project and domain-specific
Wikis and databases of AK). As part of the acquisition phase, AK elements were
enriched with information about experiences with their use in Siemens specific
projects/domains and with their effect on system qualities. These metadata el-
ements were added as key-value pairs and stored in a NoSQL database (i.e.,
MongoDB) as part of the synthesis stage of the system. A keyword-based search
interface retrieves the architectural elements relevant for a given keyword and
displays these in a search-engine style. The search interface proved helpful for
users (i.e., software architects and engineers) to find relevant information about
particular AKs and their application at Siemens. However, the solution lacked
more detailed information about the relation between architectural elements and
therefore provided limited support to explore the AK collection in more depth.

Fig. 4. System overview without (top-half) and with the STAR approach (lower-half).

We extended the legacy search solution with components for acquiring, stor-
ing and exploring semantic information (lower-half of Fig. 4). Semantic Acquisi-
tion focuses on ontology population. Ontology instances were created from the
information stored in MongoDB in a two-step process: 1) GSON and Apache
Jena libraries were used to convert the JSON export from MongoDB into a tem-
porary RDF file reflecting the databases key-value pair structure; 2) SPARQL
construct queries were developed to transform the temporary RDF data into
instances of the STAR ontology, thus creating the STAR EKG. The Semantic
Enrichment component includes modules for data linking and computing ad-
ditional semantic links between architectural elements. As some of the design
patterns are not company specific, 66 were linked to the equivalent pages in
DBpedia by defining linkage rules based on the rdfs : label values through the
SILK framework. Furthermore, during semantic enrichment an “is related to” re-

Exploring Enterprise Knowledge Graphs 11

lation is added between the architectural element pairs related above a threshold
according to RelAQ. The resulting EKG is stored in a Sesame repository.

Fig. 5. STAR search system interface.

The search mechanism extends the search workflow of the legacy system.
For a given search term, the MongoDB keyword search is used to locate all
relevant resources. These results are used by the Result Integration component to
retrieve relevant metadata from the EKG thus enhancing the MongoDB results
with additional semantic information. The Search Interface component contains
tabs for all results as well as tabs dedicated to results of key types (e.g., Design
Patterns, Architectural Qualities) as shown in Fig. 5. The detailed information
about one search result (e.g., the “rollback” design pattern) contains the full-
text description of that result. An extension of this legacy interface consists
in displaying the semantic information relevant for a result and allowing its
inspection through faceted-search. In this interface, the first column lists all
relevant semantic relations for the current entity; the second column shows all
semantic entity types relevant to the current entity (e.g., “architecture quality”)

12 Marta Sabou et al.

and how many instances of each type are semantically related to the result; the
third column contains a collection of all entities (of all types) connected to the
current result through semantic relations (i.e., a semantic entity-cloud).

The interface supports two modes of result inspection. Firstly, users get an
overview of semantically relevant entities through the semantic entity cloud and
can directly access those that they know and are interested in. Secondly, inspec-
tion can also be performed at schema element level. Clicking on a relation in the
first column (e.g., “has an effect on”), will update the second column to contain
only those entity types that are connected through this relation (e.g., “architec-
tural quality”) and reduce the entities in the third column to the entities of the
current type and related to the result with the selected semantic relation (i.e., all
architectural qualities on which rollback has an effect on). Similarly, by select-
ing a concept in column two, only the relations that exist between that concept
and the result are maintained and the semantic entity cloud is updated accord-
ingly. Exploratory search of related entities is enabled by “is related to”, which
connects the AEs that are related to the current entity according to RelAQ.

System Adoption. The STAR system is currently used by about 200-300
Siemens experts world-wide. The main user categories include software and sys-
tem architects, technical project managers, senior developers, and research group
leaders. The tool is also embedded as a search widget in Amelie - the state of
the art Siemens tool for AK management. Amelie integrates various architec-
tural artifacts from the entire development lifecycle of different software-intensive
Siemens products. STAR helps by providing contextualized search capabilities
depending on the current system view (i.e., what the user currently sees on the
screen) by using the inputs and the navigation history of the user.

8 Related Work

We position our work in the landscape of Architecture Knowledge Management
and Exploratory Search research. Semantic Web technologies have been used as
a basis for several AK management tools [3]. Some tools exploit ontologies as a
basis for more intuitive visualisation of AK, thus supporting the overview and
analysis of AK collections [14] or, allowing a better understanding of the depen-
dency between architectural design decisions [4]. Other tools use light-weight
ontologies as backbones for wiki-based systems to enable browsing, faceted-
search and querying: (1) for managing the documentation of service-oriented
architectures [10]; (2) for AK search [22]; (3) for finding AK through structured
navigation and faceted search based on concept properties, and the execution
of pre-defined SPARQL queries in ArchiMind [5–7]; or (4) to manage software
design rationales [15]. As ontology-based faceted search was shown to improve
the effectiveness and efficiency AK retrieval compared to file-based approaches
[5, 15], our work also adopts a faceted-search approach but aims to advance the
state of the art with an approach to implement exploratory search strategies.

Although exploratory search is a rather broad and evolving concept [18], in
the Semantic Web area a common approach to exploration is to suggest entities

Exploring Enterprise Knowledge Graphs 13

related to the current search result [16]. The majority of efforts focus on explo-
ration of large KGs, e.g., DBpedia or Freebase, with the adoption of this concept
to more restrained enterprise KGs receiving limited attention. The evaluation of
exploratory search systems is a critical issue firstly because user-based evalua-
tions are costly to conduct and secondly, because novel evaluation approaches
are sought that go beyond Information Retrieval style assessment [18]. In this
landscape, we propose and illustrate the concrete application of an approach for
adapting the exploratory search paradigm to EKGs. We propose using statistical
evaluation and comparison of metrics to reduce the need for user studies.

9 Conclusions and Lessons Learned

Adequate AK management is a prerequisite to making software architecture
design more efficient and effective. Yet, software architects are only weakly sup-
ported in their exploration of AK, both in general and in the context of Siemens
in particular. In this paper, we investigate implementing exploratory search on
an architectural knowledge EKG, thus going beyond current faceted-search tools
and illustrating exploratory search on an enterprise-wide rather than generic KG.
We propose an approach to build such systems and demonstrate its application
at Siemens, resulting in a faceted and exploratory search system impacting the
work of 200-300 software architects. The main conclusions to our research ques-
tions in the terms of lessons learned, benefits and challenges are as follows.

Concerning RQ1, related to implementing exploratory search on EKGs, we
presented our overall approach and demonstrated its use in the context of Siemens.
This approach considers the EKG’s ontology as key for informing the design of
relatedness metrics and puts special emphasis on the evaluation and selection of
these metrics before system implementation (see conclusions to RQ2).

During EKG creation, the ontology engineering process was beneficial in sev-
eral ways. First, it led to the identification of a core ontology meaningful to a
heterogeneous population of software architects within Siemens. To that end,
alignment with other ontologies and standards in the domain revealed key con-
cepts and relations in the domain. For example, the relation between design de-
cisions, architectural qualities and architectural elements emerged as a recurring
ontology design pattern in this domain. Second, in this phase we made explicit
semantic relations which were only implicitly present in previous non-semantic
solutions (e.g., databases). Third, we identified missing concepts from the orga-
nizational specific model, such as the Rationale concept from ISO/IEC/IEEE
42010:2010 which would be a natural extension of the STAR ontology. A chal-
lenge was that ontology creation and data migration required several iterations
and took longer than expected by the industry partner.

Best practices from system development were (1) the lightweight integration
of semantic technologies with legacy infrastructure, which lead to lower develop-
ment costs and facilitated technology acceptance; and (2) including exploratory
search elements into faceted search systems which were known to be effective.

14 Marta Sabou et al.

In line with our hypothesis for RQ2, the EKG’s ontology captured essen-
tial domain knowledge beneficial for informing the design of relatedness metrics.
Yet, a key challenge was that metric performance depends on the EKG data
characteristics. A lesson learned is that distributional statistics can give insights
into which metrics are viable on the data of a given EKG early into the system
development process. In our use case, we excluded information content metrics
based on such evaluations. User studies, although expensive, are beneficial to
assess the actual performance of the metrics but also to provide further insights
into the details of the exploration task. In our use case, through a user study, we
found that the task of pattern relatedness assessment itself is challenging even
for human raters, and at the same time collected feedback to better define the
pattern relatedness notion. The study showed that the performance of related-
ness identification with RelAQ was reasonable (Prec=52%; Prec@3=60%). As
the evaluation focuses on the relatedness metrics, it is limited in providing feed-
back on how the actual task of AK search has been improved. Such evaluation
is left for future work.

Our hypothesis for RQ3 was that relatedness explanations derived from the
underlying EKG could support exploration. Yet we could not verify this hy-
pothesis in the current setting with explanations being rated as only moderately
helpful. Nevertheless, user feedback suggests possible improvements of expla-
nations if these would be based on more detailed semantic annotations, which
are missing from the current model. In fact, lack of more fine-grained semantic
relations might have had a negative influence on the evaluation results.

Future work will focus on improving the AK collections quality through
(semi-) automatic mechanisms for data acquisition and cleansing similar to [15,
21]. In particular, we aim to extract more refined semantic relations between
architectural elements as a pre-requisite to a better performance of exploratory
search. On the improved data, we will investigate more sophisticated relatedness
metrics to support exploratory search, taking also into account the characteris-
tics of the underlying EKG when defining them. More generically, we are inter-
ested in further investigating the notion of exploratory search in EKGs, including
(1) testing our approach in other settings and (2) comparing the performance of
domain-dependent with domain-independent relatedness metrics.

References

1. D. Ameller, M. Galster, P. Avgeriou, and X. Franch. A survey on quality attributes
in service-based systems. Software Quality J., 24(2):271–299, 2016.

2. H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic. Software archi-
tectural principles in contemporary mobile software: from conception to practice.
J. of Systems and Software, 119:31–44, 2016.

3. R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. Ali. 10 years of software
architecture knowledge management : Practice and future. J. of Systems and
Software, 116:191–205, 2016.

4. R. C. De Boer, P. Lago, A. Telea, and H. Van Vliet. Ontology-driven visualization
of architectural design decisions. In Joint Working IEEE/IFIP Conf. on Softw.
Arch. and Europ. Conf. on Softw. Arch. (WICSA/ECSA), pages 51–60, 2009.

Exploring Enterprise Knowledge Graphs 15

5. K. A. De Graaf, P. Liang, A. Tang, and H. Van Vliet. How organisation of architec-
ture documentation affects architectural knowledge retrieval. Science of Computer
Programming, 121:75–99, 2016.

6. K. A. De Graaf, A. Tang, P. Liang, and A. Khalili. Querying Software Architecture
Knowledge as Linked Open Data. In EEE Int. Conf. on Software Architecture
Workshops (ICSAW), pages 272–277, 2017.

7. K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet. Ontology-based software
architecture documentation. In Proc. of Joint Working Conf. on Softw. Arch. and
Europ. Conf. on Softw. Arch., (WICSA/ECSA), pages 121–130, 2012.

8. V. Dimitrova, L. Lau, D. Thakker, F. Yang-Turner, and D. Despotakis. Explor-
ing exploratory search: a user study with linked semantic data. In Int. Ws. on
Intelligent Exploration of Semantic Data, pages 1–8, 2013.

9. W. Ding, P. Liang, A. Tang, and H. Van Vliet. Knowledge-based approaches in
software documentation: A systematic literature review. Information and Software
Technology, 56(6):545–567, 2014.

10. H.-j. Happel, S. Seedorf, and M. Schader. Ontology-enabled Documentation of
Service-oriented Architectures with Ontobrowse Semantic Wiki. In PRIMIUM -
Process Innovation for Enterprise Software, pages 61–80, 2009.

11. R. R. Hoffman. How can expertise be defined? implications of research from cogni-
tive psychology. In W. F. Robin Williams and J. Fleck, editors, Exploring Expertise:
Issues and Perspectives, pages 81–100. Palgrave Macmillan UK, 1998.

12. ISO/IEC/IEEE. ISO/IEC/IEEE 42010:2010 Systems and Software Engineering
Architecture Description. Technical report, 2010.

13. A. Jansen, T. Netherlands, and J. Bosch. Software Architecture as a Set of Ar-
chitectural Design Decisions. In Joint Working IEEE/IFIP Conf. on Softw. Arch.
(WICSA), pages 109–120, 2005.

14. P. Kruchten, P. Lago, and H. Van Vliet. Building up and reasoning about archi-
tectural knowledge. In Int. Conf. on Quality of Softw. Arch., pages 43–58, 2006.

15. C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros. Bridging the gap
between software architecture rationale formalisms and actual architecture docu-
ments: An ontology-driven approach. Science of Comp. Progr., 77(1):66–80, 2012.

16. N. Marie and F. Gandon. Survey of Linked Data Based Exploration Systems. In
Int. Conf. on Intelligent Exploration of Semantic Data, pages 66–77, 2014.

17. N. Marie, F. Gandon, M. Ribière, and F. Rodio. Discovery Hub: On-the-fly Linked
Data Exploratory Search. In Int. Conf. on Semantic Systems, pages 17–24, 2013.

18. E. Palagi, F. Gandon, A. Giboin, and R. Troncy. A Survey of Definitions and
Models of Exploratory Search. In Ws. on Exploratory Search and Interactive Data
Analytics, pages 3–8, New York, NY, USA, 2017. ACM.

19. J. Z. Pan, G. Vetere, J. M. Gomez-Perez, and H. Wu. Exploiting Linked Data and
Knowledge Graphs in Large Organisations. Springer, 1st edition, 2017.

20. J. Shanteau. The Psychology of Experts: an Alternative View. In G. Wright and
F. Bolger, editors, Expertise and Decision Support, pages 11–23. Springer US, 1992.

21. M. Soliman, M. Galster, and M. Riebisch. Developing an Ontology for Architecture
Knowledge from Developer Communities. In IEEE Int. Conf. on Softw. Arch.
(ICSA), pages 89–92, 2017.

22. A. Tang, P. Liang, and H. Van Vliet. Software architecture documentation: The
road ahead. In Working IEEE/IFIP Conf. on Softw. Arch., pages 252–255, 2011.

23. R. W. White and R. A. Roth. Exploratory Search: Beyond the Query Response
Paradigm. Morgan & Claypool, 2009.

