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Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER | issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
o A Quawtiative Apprack ; Disclaimer: The book provides advanced concepts from real complex processor
‘ designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735
* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:
https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi askewsholts vlebooks 9780123838735
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Sources

MODERN PROCESSOR Advanced concepts for superscalar.
DESIGN </t frocessors

John Paul Shen
Mikko H. Lipasti

Literature: Shen & Lipasti : Modern Processor Design (2005)

Lecture slides available: https://pharm.ece.wisc.edu/mikko/
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* Processors’ Performance
* Superpipelining

e VLIW

e Superscalar

* HW Multi-threading

Optional, not relevant for exam

* Alook at a real RISC-V processor: BOOM, A15
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C3-1 Increasing Processors’ Performance
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Processors’ Performance

* Recap of Last lecture: Superscalar processor reached CPI=1

Performance of a processor ( /C is instruction count):

1 Instructions 1 _IPC-Freq  Freq
IC Cycle Cycle Time IC ~ IC - CPI

Performance =

» Superpipelining aims at increasing performance via frequency
* Superscalar, VLIW aims at increasing performance via IPC

e Compiler optimization can improve instruction count (/C) and IPC
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Superpipelining and Multi-Issue

 Scalar five-stage pipeline

SLLI a2,al,2
ADD t1,t0,t2
SLLI a5,a4,2
LW a0,0(a3)

e Superpipelining concept: Multi-Issue concept:

st 2,212 [l BEEEEE SRR RSN - BN Ex | vs [wB
aoo t1,00,52 [ T DREEED aop t1,t0,t2 [ IESERIEE
SLLT a5,ad,2 BN BEEEED SLLI a5,a4,2 F BN EX | Ms | wB

LW 0,0 (a3) Bl BEEERE =00 - QR EX | ms | we

* Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

e Multi-lssue processors enable CPI < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel

V1-0 ACA



C3-2 Superpipelining
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Superpipelining

» Superpipelining aims to reduce cycle time (increase clock frequency)

* Deep pipelining or superpipelining: Having more stages than a given baseline
(e.g. five-stage pipeline)

SLLI a2,al,2 l. .ll.ll

ADD t1,t0,t2 BR  BEERRR
SLLI a5,a4,2 ll llllll
Il EENEER

* Pipeline stages do not need to be split evenly

LW a0,0(a3)
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Example: MIPS R4000

* Example MIPS R4000 Pipeline*

* Cache access time most critical in the design .
* Eight stages (registers not shown -> lines for cycle boundaries)

IF — First half of instruction fetch;

IS — Second half of instruction fetch,
complete instruction cache access.

RF — Instruction decode and register
fetch

EX — Execution, which includes
effective address calculation, ALU
operation, and branch-target
computation and condition evaluation.
DF — Data fetch, first half of data cache
access.

DS — Second half of data fetch,
completion of data cache access.

TC — Tag check, to determine whether
the data cache access hit.

WB — Write-back

*-- diagram according to Computer Architecture A Quantitative Approach — Section C6
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Example: MIPS R4000

) Load-use delay = 3 cycles
 Execution Scheme Y Y

Branch penalty = 3 cycles
B EREER [

\4

* Instruction dependences have higher penalties (due to deeper pipeline)

* Branch decision later available -> prediction even more important as more instructions must be flushed
(In MIPS R4000: branch computed in EX stage -> 3 cycles branch penalty)

* Forwarding can‘t remove all stall cycles for RAW dependencies (e.g. Load-use data needs three cycles
to become available).
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Limits of Superpipelining

 Number of pipeline stages:
Desktop CPUs: 12-20 stages.

35
* Embedded CPUs: all from 1-20 stages. o 301
@ 25-
U) N i
» Original Source “Runtime Aware Architectures”, Mateo Valero, O 20 ] Around ~15 stages
HIPEAC CSW 2014, c 15- |
taken from Lecture Myoungsoo Jung (Slide 6): © 10-
http://camelab.org/uploads/Main/lectureQ6-istruction-paralllel- Q 1
processing.pdf 0 91
0 4
» See for example N\ N\
https://en.wikipedia.org/wiki/List of Intel CPU microarchitectures ~\\§(\6\\@%on~{,\.®\0&0’{'\' ®é®60\®®é®b§b§$®
for a list of the number of pipeline stages for recent Intel‘s processors @f:\\',‘\\\) ;\\'\5 N ,@Q’ \\koelt'gorb @) @0‘\‘5 @Q)K\Q)&\ 2
RSN RS L@
< b‘\b‘\é\ ™ &
oD @ ”\5\?\)4@
SRS
R%E R
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C3-3 Multi-issue
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Static and Dynamic Multi-Issue

 Static multiple issue (at compile time)
* Compiler groups instructions to be issued together in a bundle
e Sorts them into “issue slots”
e Compiler detects and avoids hazards

* Dynamic multiple issue (during execution)
* CPU examines instruction stream and chooses instructions to issue each cycle
e Compiler can help by reordering instructions
* CPU resolves hazards using advanced techniques at runtime
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Speculation

e “Guess” what to do with an instruction
 Start operation as soon as possible

* Check whether guess was right
* If so, complete the operation
* If not, roll-back and do the right thing

e Common to static and dynamic multiple issue

* Examples
* Speculate on branch outcome, execute instructions after branch
* Roll back, if path taken is different
* Speculate on store that precedes load does not refer to same address

* We can execute the load instruction before the store instruction
* Roll back, if the store writes the same address the load reads from
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Compiler or Hardware Speculation

 Compiler can reorder instructions
* e.g., move load before branch
e Can include “fix-up” instructions to recover from incorrect guess

 Hardware can look ahead for instructions to execute
» Buffer results until it determines they are actually needed (written to the registers or memory)
* Flush buffers on incorrect speculation
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C3-4 Very Long Instruction Word (VLIW)
Static multi-issue

V1-0 ACA



Static Multiple Issue

 Compiler groups instructions into “issue packets” (sometimes also called bundles)
e Group of instructions that can be issued on a single cycle
* Determined by pipeline resources required

* Think of an issue packet as a very long instruction
» Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)
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Scheduling Static Multiple Issue

e Compiler must remove some/all hazards
* Reorder instructions into issue packets
* No dependencies within a packet

e BUT: If we know the pipeline structure, we can allow WAR dependencies if read operand happens for
all instructions in a packet before write back. WAW and RAW dependencies within a packet must still
be avoided.

* All dependencies between packets must be considered in the pipeline
* Pad with nop if necessary
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Example: Pipeline with Static Dual Issue

 We fetch and decode two instructions: One instructions is executed on slot 1 the other on
slot 2 (Each way can execute certain instruction types)

Forwarding
Slot 1
| IR ALU
> " BTA

LI "1 H Branch Comp.
i :E D 1

T Slot 2
- | >
> | > Load/Store
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Hazards in the Dual-Issue RISC-V

More instructions executing in parallel

RAW data hazard

* Forwarding avoided stalls with single-issue

* Now can’t use ALU result in load/store in same packet

* add x10, x0, x1
1w x2, 0(x10)

* Split into two packets, effectively a stall

Load-use hazard
* Still one cycle use latency, but now two instructions

More aggressive scheduling required
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Dependency Analysis

Loop: 1w x31, 0(x20)
add x31, x31, x21
SW x31, 0(x20)
addi x20, x20, -4
blt x22, x20, Loop

x3l=array element
add scalar in x21
store result
decrement pointer
branch if x22 < x20

H H H H

Loop: 1w x31, 0(x20) Loop: 1w x31, 0(x20) ~\
WAR
add x31, %31, x21 s addi %20, %20, -4 | WAWAW)
sw  x31, 0(x20) add x31, x31, x21 RAW
addi x20, %20, -4 sw %31, 4(x20)
RAW
blt =x22, %20, Loop blt x22, %20, Loop

Compiler can reorder instructions, but needs to adopt the offset of the sw
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Scheduling Example

e Schedule this for dual-issue RISC-V

Loop: 1w %31, 0(x20)

addi x20, x20, -4

| Slot1 : ALU/BRANCH Slot 2: Load/store
Loop: e 1w x31, 0(x20)

add x31, %31, x21

SwW x31, 4(x20)

blt x22, x20, Loop
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Scheduling Example

e Schedule this for dual-issue RISC-V

WAR hazard to lw, can be allowed due to known pipeline
structure

Loop: 1w %31, 0(x20)

Slot1 : ALU/BRANCH Slot 2: Load/store
| Loop: » addi x20, x20, -4 lw x31, 0(x20)

addi x20, x20, -4

add x31, %31, x21

SwW x31, 4(x20)

blt x22, x20, Loop
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Scheduling Example

e Schedule this for dual-issue RISC-V

Loop: 1w %31, 0(x20)
addi x20, x20, -4
add =31, x31, x21
SW x31, 4(x20)
blt x22, x20, Loop

No

dependencies but go into same slot

V1-0

RAW

RAW + (WAW) hazard to lw
One cycle load use delay

Slot1 : ALU/IBRANCH

Slot 2: Load/store

Loop:

addi x20, x20, -4

1w x31, 0(x20)

add x31, x31, x21

ACA




Scheduling Example

e Schedule this for dual-issue RISC-V

Loop: ||1lw x31, 0(x20) RAW to add

Slot1 : ALU/BRANCH Slot 2: Load/store
Loop: | addi x20, x20, -4 1w x31, 0(x20)

addi x20, x20, -4

add x31, %31, x21

add x31, x31, x21

SwW x31, 4(x20)

>| sw x31, 4(x20)

blt x22, x20, Loop
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Scheduling Example

e Schedule this for dual-issue RISC-V

Branches cannot be moved forward, needed to
end basic block

Slot1 : ALU/BRANCH Slot 2: Load/store
Loop: | addi x20, x20, -4 1w x31, 0(x20)

Loop: 1w %31, 0(x20)

addi x20, x20, -4

add x31, %31, x21

add x31, x31, x21
~7 | blt x22, x20, Loop |sw x31, 4(x20)

SwW x31, 4(x20)

blt x22, x20, Loop

No
dependencies
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Scheduling Example

e Schedule this for dual-issue RISC-V

Loop:

1w

x31,

0 (x20)

V1-0

addi

x20,

x20, -4

add

x31,

%31, %21

SwW

x31,

4 (x20)

blt

x22,

%20, Loop

NS

RAWHWAW)
RAW

RAW

Fill up with nop

Slot1 : ALU/IBRANCH

Slot 2: Load/store

Loop: | addi x20, x20, -4 1w x31, 0(x20)
nop nop
add x31, x31, x21 nop

blt =x22, x20, Loop

SwW x31, 4(x20)

ACA




Example Baseline VLIW Processor with Two Slots — Execution Latencies = 1

* Performance: IPC =5 instr / 4 cycles = 1.25 (peak IPC = 2)

Slot1 : ALU/BRANCH Slot 2: Load/store
addi x20, x20, -4

1w x31, 0(x20)

nop

nop

add x31, x31, x21

nop

blt x22, x20, Loop
SwW x31, 4 (x20)
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Compiler Optimization - Loop Unrolling

Replicate loop body to expose more parallelism
* Reduces loop-control overhead

Use different registers per replication

* Compiler applies “register renaming” to eliminate all data dependencies that are not true data
dependencies

* Avoid loop-carried “anti-dependencies”
» Store followed by a load of the same register
* Aka “name dependence” - Reuse of a register name

Unroll factor: Number of loop body replications

Fully unrolled: Number of loop body replications equal to number of iterations
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Unrolled Code Example

e Unroll factor = 4:

Loop:

1w
add
SW
addi
blt

x31,
x31,
x31,
x20,
x22,

0 (x20)
x31, x21
0 (x20)
x20, -4
x20, Loop

V1-0

lw
Lw
lw
lw
add
add
add
add
SwW
SwW
SwW
SwW
addi
blt

x28,0 (x20)

x29,-4 (x20)
x30,-8(x20)
x31,-12 (x20)
x28,x28 ,x21
x29,x29,x21
x30,x30,x21
x31,x31,x21
x28,0(x20)

x29,-4 (x20)
x30,-8(x20)
x31,-12(x20)
x20,x20,-16
x22 ,x20,1p

e e e W A I I AR

x28=array element
x29=array element
x30=array element
x31l=array element
add scalar in x21
add scalar in x21
add scalar in x21
add scalar in x21
store result
store result
store result
store result
decrement pointer
branch if x22 < x20

ACA




Loop Unrolling Example - — Optimized Code for VLIW

o ALU/branch Load/store cycle
Optimization: Loop: | addi x20, %20, -16 lw  x28, 0(x20) 1
lw, sw offsets nop lw %29, 12(x20) 2
are adapted to add x28, x28, x21 lw x30, 8(x20) 3
move addi into add x29, x29, x21 1w  x31, 4(x20) 4
first pack. add x30, x30, x21 sw  x28, 16(x20) 5
No load-use RAW add x31, x31, =x21 SwW x29, 12 (x20) 6
data hazards, so nop sw x30, 8(x20) 7
no influence on blt x22, x20, Loop sw x31, 4(x20) 8

performance

* IPC=14/8=1.75
* Closer to 2, but at cost of registers and code size

* Instruction Count (IC) of loop also reduced, less loop iteration
checks

V1-0 ACA



Limits of VLIW

* Branches and Labels break sequential instruction execution (code basic blocks)
* Hard to find sufficient Instruction Level Parallelism in single basic block

» Compiler Optimization techniques:
» Loop unrolling
» function inlining: function becomes part of the caller code
» SW pipelining: schedules instructions from different iterations together
» trace scheduling & superblocks: schedule beyond basic block boundaries

* Code Size Increase (e.g. due to loop unrolling, function inlining)

* Binary Compatibility: If the micro-architecture is changed, VLIW code may not be
compatible anymore because it depends on the latencies.
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C3-4 Superscalar
Dynamic multi-issue
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Superscalar

Exploits Instruction Level Parallelism

In-order: In order issue but pipeline (not compiler) selects issue bundles

Out-of-order (000): dynamically scheduled

Phases of instruction execution:
Fetch — decode — rename — dispatch — issue — execute — complete — commit (retire)
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Archetype of a OoO Superscalar Pipeline

e According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

Reservation Stations

Reorder Buffer
(ROB) Store Buffer

Dispatch Complete Retire

IF/ID Buffer Dispatch Buffer

[ o[ o

\ 4

\ 4

v

v
v
v

Out-of-order In-order
Issue F|n|5h

In-order
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Superscalar vs. VLIW

e Superscalar requires more complex hardware for instruction scheduling

»issue buffers for 000 execution

»complicated multiplexing between instruction issue structure & functional units
»dependence checking logic between parallel instructions

»functional unit hazard checking

»VLIW requires a complex compiler and higher code size (e.g. slower due to less efficient
use of instruction cache)

»Superscalars can execute pipeline-dependent code more efficiently : don’t have to
recompile if binary is executed on different processors (pre-compiled libraries)
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Simple Superscalar (Scoreboard) — Dual Fetch, Decode and Issue with ROB

Wide instruction fetch can

fetch two instructionsatonce Scoreboard (ScB)
Ideal IPC =2

_________________________________

_ B T
—> | ]

- =P . >
= >

- = /A I -
>

N >

A

Change HW:

* Increase number of IB/scoreboard slots to 8
* Reduce the number of RO ports to 2

 and Commit (CO) ports to 2

e Structural hazard can cause extra cycles

* With register renaming
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Unrolled Code Example

e Unroll factor = 4:

Loop:

1w
add
SW
addi
blt

x31,
x31,
x31,
x20,
x22,

0 (x20)
x31, x21
0 (x20)
x20, -4
x20, Loop

V1-0

lw
Lw
lw
lw
add
add
add
add
SwW
SwW
SwW
SwW
addi
blt

x28,0 (x20)

x29,-4 (x20)
x30,-8(x20)
x31,-12 (x20)
x28,x28 ,x21
x29,x29,x21
x30,x30,x21
x31,x31,x21
x28,0(x20)

x29,-4 (x20)
x30,-8(x20)
x31,-12(x20)
x20,x20,-16
x22 ,x20,1p

e e e W A I I AR

x28=array element
x29=array element
x30=array element
x31l=array element
add scalar in x21
add scalar in x21
add scalar in x21
add scalar in x21
store result
store result
store result
store result
decrement pointer
branch if x22 < x20

ACA




Simple Superscalar (Scoreboard) — Dual Instruction Fetch, Decode and Issue — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

addi x20,x20,-16 m | Renaming to avoid WAR and

1w %28, 0(x20) m WAW .hazards is omitted here,

1w %28 .12 (%20 but it is assumed no stalls on
v 29,12 (x20) L W | w [ws | co | WAR and WAW!

IB IB

. [

add x29,x29,x21 IB IB 14 instructions

AW | w8 | co
o st 4520 R - COEEOE -
add x30,x30,x21 m 7 cycles

sw x28,16(x20) m SB SC
CoroEm e
m SB | SC
B B m SB | SC
IB

add x28,x28,x21

1w x30,8 (x20)

add x31,x31,x21

sw x29,12 (x20)

sw x30,8(x20)

sw x31,4(x20) IB SB SC
blt x22,x20, Loop IB
#instr in IB+RO+EX 0 0 2 4 8 8 5 3 1
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Instruction Scheduling for Superscalar

* The process of mapping a series of instructions into execution resources
* Decides when and where an instruction is executed

1,2,3,4 can execute on FU1
5,6 can execute on FU 2

Instr 3

Instr 4

Instr 5 Dependence
graph

Instr 6

Derived from CA course of Mikko Lipasti-University of Wisconsin
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Instruction Scheduling via Selection and Wakeup

* A set of wakeup and select operations
 Wakeup
»Broadcasts the tags of parent instructions selected

»Dependent instruction gets matching tags, determines if source
operands are ready

»Resolves RAW data dependencies

* Select

» Picks instructions to issue among a pool of ready instructions
» Resolves resource conflicts

»|ssue bandwidth

» Limited number of functional units / memory ports
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Instruction Scheduling via Selection and Wakeup - Example

* Wakeup and Selection Example:

Ready to Issue Select and
Wakeup

Select 1
Wakeup 2,3,4

2,3,4 Select 2
Wakeup 5

3,4,5 Select 4,5
Wakeup -

3 Select 3
Wakeup 6

5 6 Select 6
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C3-5 HW Multi-threading
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* Thread
* has state and a current program counter
* shares the address space of a single process, allowing a thread to easily access data of
other threads within the same process.
* Multithreading:
* multiple threads share a processor without requiring an intervening process switch.

* The ability to switch between threads rapidly is what enables multithreading to be
used to hide pipeline and memory latencies.

* Exploiting Thread-Level Parallelism (TLP) to improve uniprocessor throughput (IPC)
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Thread-level parallelism (TLP)

* Multithreading (MT) targets to exploit thread-level parallelism (TLP)
 MT allows multiple threads to share the FUs of a single processor

 MT does not duplicate the entire processor, duplicating only private state, such as the
registers and PC.

A more general method to exploit TLP is to use a multi-core processor that can execute
multiple independent threads in parallel.

* Many recent compute platforms incorporate multi-core processors, for which each single
core additionally provides multithreading support.
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Example: Use of FUs by Single Thread

Superscalar

Cycle | ALU | MUL | DIV
i+1 Pattern for Superscalar Execution:
i+2 * Cycles that a certain instruction of the
i+3 thread uses a specific FU (EX stage)
i+4 * Time now runs from top to bottom.
i+5 * We need to rotate the pipeline diagram by
i+6 90 deg.
i+7
i+8
i+9
\ i+10
Time i+11
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Fine-Grained vs. Coarse-Grained MT

* Fine-grained multithreading
* switches between threads on each clock cycle,

e execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled
threads)

* Advantage: hide the throughput losses that arise from both short and long stalls because instructions
from other threads can be executed when one thread stalls, even if the stall is only for a few cycles.

* Disadvantage: slows down the execution of an individual thread because a thread that is ready to
execute without stalls will be delayed by instructions from other threads.

e Coarse-grained multithreading
» switches threads only on costly stalls, such as level two or three cache misses.
* Advantage: less likely to slow down the execution of any one thread
* Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls.
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Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT):

* dynamically scheduled (Oo00Q) processors already have many of the hardware mechanisms
needed to support SMT

* Multithreading can be built on top of an out-of-order processor by adding
* separate PCs and register files, and
* the capability for instructions from multiple threads to commit.

* Instructions from different threads can be issued in same cycle.
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Patterns for Types of Multithreading (MT)

Coarse-grained MT Fine-grained MT Simultaneous MT (SMT)

Cycle
i+1
i+2
i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10

Time i+11
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The speedup from using multithreading on one core on an i7 processor

2.00 -
2 O Speedup —il— Energy efficiency
e
& 1.75 1
c
2
9 ]
5
> _
5 1.50 1 —
-
() __
o
c
[4+]
[}
% 1.25 n
o
|5
© EHE L0
E 1.00 v V
]
=
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Q/\fo = < akf-’@ob 7 <? P& 6‘,31\'}
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Source: Computer Architecture — A Quantitative Approach
5th Edition Fig. 3.33
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Example: Simple Dual Multi-threaded Processor

* EX has 1xDIV, 1xMUL, Scoreboard (ScB)
e 1x Branch/ALU, 1xALU, 1xLSU

_ =31| Forwarding
PC1 =

:E*BTA
B B
PC2 o b : :E

\ 4

X%
>

\ 4

@O ™

vV V

2

¥y
=
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Example with Stall due to D-Cache Miss

Loop: 1w x31, 0(x20)
add x31, x31, x21
SW x31, 0(x20)
addi x20, x20, -4
blt x22, x20, Loop

Cycle -i+ 0 1

2 3 a4 5 6 7
IR - i o o e o
add x31,x31,x21 n

g s [ o
sw x31,0 (x20) n 1B m M SC
addi x20,x20,-4 n m

I | BR

blt x22,x20,Loop
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Example with Stall due to D-Cache Miss

Cycle -i+
lw x31,0(x20)

add x31,x31,x21
sw x31,0 (x20)
addi x20,x20,-4
blt x22,x20,Loop
lw x31,0(x20)

FU USE -cyclei +
ALU

LU

SU

V1-0

3 4 5 6
sy sy W | co

I o [ o
o 0 »
el o

n Cache miss
4 5 6 7 8 9 10 11 12 13

Utilization of functional units in EXE stage is low
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Example with Stall due to D-Cache Miss

Loop:

1w
add
SW
addi
blt

x31, 0(x20)
x31, x31, x21
x31, 0(x20)
x20, x20, -4
x22, x20, Loop

V1-0

Cycles run from
top to bottom

Cycle

i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10
i+11
i+12
i+13
i+14

Thread 1

cache

Miss

ACA

Cycle
i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10
i+11
i+12

Thread 2

ALU | LSU SU




Multithreaded - SMT

Example with Stall due to D-Cache Miss

Thread 1 Thread 2 Cycle ALU SU
i+3
Cycle |[ALU | LU SU Cycle |ALU | LU SU i+4
i+3 i+3 i+5
i+4 i+4 i+6
i+5 i+5 i+7
i+6 i+6 i+8
i+7 i+7 i+9
i+8 i+8 i+10
i+9 cache i+9 i+11
i+10 Miss i+10 i+12
+11 +11 sw | +13
i+12 i+12 i+14
+13 15 cycles SMT multi-theaded +15
i+14 instead of 10 plus 12 cycles i+16
i+17

V1-0 ACA



Optional, not relevant for exam

A Look at Real Processors

A15 and BOOM



ARM A15 Superscalar Core

* ARM A15 pipeline diagram:

ARM Cortex A15

Queue Issue Writeback
— Integer
L5 Integer
Multipl
Fetch Deoo%?érﬁgﬁme ; K = Floating-Point / NEON
Lo _—)
'y >
._)
L> — 3 Load
Loop Cache Lo Store

Source: theregister.co.uk

(Copied from from slides of CS course Mikko Lipasti-University of Wisconsin)
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Berkeley Out-of-order Machine (BOOM)

« BOOM: an open-source out-of-order RISC-V core

BOOMv2 BOOMv1

BOOMv3

12-cycle branch-
mispredict penalty

{ J 7-cycle branch-
L S I ispredict It
fetch | fetch p=» queues =—» dec I 1SS exec wb mispredict penalty
. (Il !
)
'S 1 [T
BTB | cshare I T @™ tib D$ D$ wb
[ rrd
+ 10-cycle branch-
r= 7 ] M B mispredict penalty
fetch | fetch | fetch P queves p] dec | dis i 2 r| iss rrd exec | wb
b = ] _3-_ | T 4-cycle load-use
BTB r 'g' 1 ]
2 :- iss | md | b | D$ | D$ | wb
GShare ==
: . mERAp
fetch | fetch | fetch | fetch P queves p| dec | dis -b: 3 P issue rrd exec | wb br
- =2
' - 1.2 _' 1 4-cycle load-use
UBTB SFB P g ! :
Recoder { 2 1.
) 3 [*issue | mrd tib D$ D$ wb
BTB RAS L
19 L =
TAGE | % :-b issue | rrd Custom RoCC Accelerator wb
] !=r o P

Source: https://github.com/riscv-boom/riscv-boom
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https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom




Where we are

 We covered the following features: Branch prediction, Out of order execute, Scoreboard,
Superpipelining, Multi-issue, Superscalar, VLIW, Multi-threading

* Instruction Level Parallelism: VLIW, Superscalar

* Thread Level Parallelism: Multi-threaded Single Core Processor
* Upcoming:

»Thread Level Parallelism: Multi-Core (MIMD)
» Data level parallelism: Vector (SIMD)
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Thank you for your attention!
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