
C3 – VLIW, Superscalar and Multi-threading

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Sources

V1-0

Literature: „Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

• https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
• Available at TU’s library:

https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
issue, Superscalar, VLIW, Multi-threading, …

Disclaimer: The book provides advanced concepts from real complex processor
designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

ACA

https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

Sources

V1-0

Advanced concepts for superscalar.

Literature: Shen & Lipasti : Modern Processor Design (2005)

Lecture slides available: https://pharm.ece.wisc.edu/mikko/

ACA

Content

• Processors‘ Performance

• Superpipelining

• VLIW

• Superscalar

• HW Multi-threading

• A look at a real RISC-V processor: BOOM, A15

V1-0

Optional, not relevant for exam

ACA

V1-0

C3-1 Increasing Processors’ Performance

ACA

Processors‘ Performance

• Recap of Last lecture: Superscalar processor reached CPI=1

Performance of a processor (IC is instruction count):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1

𝐼𝐶
∙

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑦𝑐𝑙𝑒
∙

1

𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
=

𝐼𝑃𝐶 ∙ 𝐹𝑟𝑒𝑞

𝐼𝐶
=

𝐹𝑟𝑒𝑞

𝐼𝐶 ∙ 𝐶𝑃𝐼

• Superpipelining aims at increasing performance via frequency

• Superscalar, VLIW aims at increasing performance via IPC

• Compiler optimization can improve instruction count (IC) and IPC

V1-0 ACA

Superpipelining and Multi-Issue

• Scalar five-stage pipeline

• Superpipelining concept: Multi-Issue concept:

V1-0

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB

SLLI a5,a4,2 IF ID EX MS WB

LW a0,0(a3) s1 IF ID EX MS WB

SLLI a2,a1,2

ADD t1,t0,t2

SLLI a5,a4,2

LW a0,0(a3)

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB s5

SLLI a5,a4,2 IF ID EX MS WB s5

LW a0,0(a3) IF ID EX MS WB s5

• Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

• Multi-Issue processors enable CPI < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel

ACA

V1-0

C3-2 Superpipelining

ACA

Superpipelining

• Superpipelining aims to reduce cycle time (increase clock frequency)

• Deep pipelining or superpipelining: Having more stages than a given baseline
(e.g. five-stage pipeline)

• Pipeline stages do not need to be split evenly

V1-0

SLLI a2,a1,2

ADD t1,t0,t2

SLLI a5,a4,2

LW a0,0(a3)

ACA

Example: MIPS R4000

• Example MIPS R4000 Pipeline*
• Cache access time most critical in the design

• Eight stages (registers not shown -> lines for cycle boundaries)

*-- diagram according to Computer Architecture A Quantitative Approach – Section C6

V1-0

WBIF RF EXIS

IMEM DMEM

A
L
URF

DF DS TC

• IF — First half of instruction fetch;
• IS — Second half of instruction fetch,

complete instruction cache access.
• RF — Instruction decode and register

fetch
• EX — Execution, which includes

effective address calculation, ALU
operation, and branch-target
computation and condition evaluation.

• DF — Data fetch, first half of data cache
access.

• DS — Second half of data fetch,
completion of data cache access.

• TC — Tag check, to determine whether
the data cache access hit.

• WB — Write-back

ACA

Example: MIPS R4000

• Execution Scheme

• Instruction dependences have higher penalties (due to deeper pipeline)
• Branch decision later available -> prediction even more important as more instructions must be flushed

(In MIPS R4000: branch computed in EX stage -> 3 cycles branch penalty)

• Forwarding can‘t remove all stall cycles for RAW dependencies (e.g. Load-use data needs three cycles
to become available).

V1-0

WBIF RF EXIS DF DS TC

Branch penalty = 3 cycles

Load-use delay = 3 cycles

ACA

Limits of Superpipelining

• Number of pipeline stages:
Desktop CPUs: 12-20 stages.

• Embedded CPUs: all from 1-20 stages.

➢ Original Source “Runtime Aware Architectures”, Mateo Valero,
HiPEAC CSW 2014,
taken from Lecture Myoungsoo Jung (Slide 6):
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-
processing.pdf

➢ See for example
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
for a list of the number of pipeline stages for recent Intel‘s processors

V1-0 ACA

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

V1-0

C3-3 Multi-issue

ACA

Static and Dynamic Multi-Issue

• Static multiple issue (at compile time)
• Compiler groups instructions to be issued together in a bundle

• Sorts them into “issue slots”

• Compiler detects and avoids hazards

• Dynamic multiple issue (during execution)
• CPU examines instruction stream and chooses instructions to issue each cycle

• Compiler can help by reordering instructions

• CPU resolves hazards using advanced techniques at runtime

V1-0 ACA

Speculation

• “Guess” what to do with an instruction
• Start operation as soon as possible

• Check whether guess was right
• If so, complete the operation

• If not, roll-back and do the right thing

• Common to static and dynamic multiple issue

• Examples
• Speculate on branch outcome, execute instructions after branch

• Roll back, if path taken is different

• Speculate on store that precedes load does not refer to same address
• We can execute the load instruction before the store instruction

• Roll back, if the store writes the same address the load reads from

V1-0 ACA

Compiler or Hardware Speculation

• Compiler can reorder instructions
• e.g., move load before branch

• Can include “fix-up” instructions to recover from incorrect guess

• Hardware can look ahead for instructions to execute
• Buffer results until it determines they are actually needed (written to the registers or memory)

• Flush buffers on incorrect speculation

V1-0 ACA

V1-0

C3-4 Very Long Instruction Word (VLIW)

Static multi-issue

ACA

Static Multiple Issue

• Compiler groups instructions into “issue packets” (sometimes also called bundles)
• Group of instructions that can be issued on a single cycle

• Determined by pipeline resources required

• Think of an issue packet as a very long instruction
• Specifies multiple concurrent operations

•  Very Long Instruction Word (VLIW)

V1-0 ACA

Scheduling Static Multiple Issue

• Compiler must remove some/all hazards
• Reorder instructions into issue packets

• No dependencies within a packet

• BUT: If we know the pipeline structure, we can allow WAR dependencies if read operand happens for
all instructions in a packet before write back. WAW and RAW dependencies within a packet must still
be avoided.

• All dependencies between packets must be considered in the pipeline

• Pad with nop if necessary

V1-0 ACA

Example: Pipeline with Static Dual Issue

• We fetch and decode two instructions: One instructions is executed on slot 1 the other on
slot 2 (Each way can execute certain instruction types)

V1-0

DI

IMEM

DMEM

A
L
U

A
D
D

RF

Forwarding

BTA

WBIF ID EX

A
C

DI
Slot 2

ALU

Branch Comp.

Load/Store

Slot 1

MS

ACA

Hazards in the Dual-Issue RISC-V

• More instructions executing in parallel

• RAW data hazard
• Forwarding avoided stalls with single-issue

• Now can’t use ALU result in load/store in same packet
• add x10, x0, x1

lw x2, 0(x10)

• Split into two packets, effectively a stall

• Load-use hazard
• Still one cycle use latency, but now two instructions

• More aggressive scheduling required

V1-0 ACA

Dependency Analysis

Loop: lw x31, 0(x20) # x31=array element

 add x31, x31, x21 # add scalar in x21

 sw x31, 0(x20) # store result

 addi x20, x20, –4 # decrement pointer

 blt x22, x20, Loop # branch if x22 < x20

V1-0

lw x31, 0(x20)

add x31, x31, x21

sw x31, 0(x20)

addi x20, x20, –4

blt x22, x20, Loop

RAW

RAW

RAWLoop:

WAR

Compiler can reorder instructions, but needs to adopt the offset of the sw

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

(WAW)WAR

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: lw x31, 0(x20)

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw x31, 0(x20)

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

WAR hazard to lw, can be allowed due to known pipeline
structure

(WAW)

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw x31, 0(x20)

add x31, x31, x21

No
dependencies but go into same slot

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

RAW + (WAW) hazard to lw
One cycle load use delay

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw x31, 0(x20)

add x31, x31, x21

sw x31, 4(x20)

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

RAW to add

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw x31, 0(x20)

add x31, x31, x21

blt x22, x20, Loop sw x31, 4(x20)

No
dependencies

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

Branches cannot be moved forward, needed to
end basic block

ACA

Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw x31, 0(x20)

nop nop

add x31, x31, x21 nop

blt x22, x20, Loop sw x31, 4(x20)

lw x31, 0(x20)

addi x20, x20, –4

add x31, x31, x21

sw x31, 4(x20)

blt x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

Fill up with nop

ACA

Example Baseline VLIW Processor with Two Slots – Execution Latencies = 1

• Performance: IPC = 5 instr / 4 cycles = 1.25 (peak IPC = 2)

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store 1 2 3 4 5 6 7 8

addi x20, x20, –4 IF ID EX MS WB

lw x31, 0(x20) IF ID EX MS WB

nop IF ID

nop IF ID

add x31, x31, x21 IF ID EX MS WB

nop IF ID s5

blt x22, x20, Loop IF ID EX MS WB

sw x31, 4(x20) F IF ID EX MS WB

4 cycles

ACA

Compiler Optimization - Loop Unrolling

• Replicate loop body to expose more parallelism
• Reduces loop-control overhead

• Use different registers per replication
• Compiler applies “register renaming” to eliminate all data dependencies that are not true data

dependencies

• Avoid loop-carried “anti-dependencies”
• Store followed by a load of the same register

• Aka “name dependence” - Reuse of a register name

• Unroll factor: Number of loop body replications

• Fully unrolled: Number of loop body replications equal to number of iterations

V1-0 ACA

Unrolled Code Example

lp: lw x28,0(x20) # x28=array element

Lw x29,-4(x20) # x29=array element

lw x30,-8(x20) # x30=array element

 lw x31,-12(x20) # x31=array element

 add x28,x28,x21 # add scalar in x21

 add x29,x29,x21 # add scalar in x21

 add x30,x30,x21 # add scalar in x21

 add x31,x31,x21 # add scalar in x21

 sw x28,0(x20) # store result

 sw x29,-4(x20) # store result

 sw x30,-8(x20) # store result

 sw x31,-12(x20) # store result

 addi x20,x20,-16 # decrement pointer

blt x22,x20,lp # branch if x22 < x20

• Unroll factor = 4:

Loop: lw x31, 0(x20)

 add x31, x31, x21

 sw x31, 0(x20)

 addi x20, x20, –4

 blt x22, x20, Loop

V1-0 ACA

Loop Unrolling Example - – Optimized Code for VLIW

• IPC = 14/8 = 1.75

• Closer to 2, but at cost of registers and code size

• Instruction Count (IC) of loop also reduced, less loop iteration
checks

ALU/branch Load/store cycle

Loop: addi x20, x20, –16 lw x28, 0(x20) 1

nop lw x29, 12(x20) 2

add x28, x28, x21 lw x30, 8(x20) 3

add x29, x29, x21 lw x31, 4(x20) 4

add x30, x30, x21 sw x28, 16(x20) 5

add x31, x31, x21 sw x29, 12(x20) 6

nop sw x30, 8(x20) 7

blt x22, x20, Loop sw x31, 4(x20) 8

Optimization:

lw, sw offsets
are adapted to
move addi into
first pack.

No load-use RAW
data hazards, so
no influence on
performance

V1-0 ACA

Limits of VLIW

• Branches and Labels break sequential instruction execution (code basic blocks)

• Hard to find sufficient Instruction Level Parallelism in single basic block

➢Compiler Optimization techniques:
➢Loop unrolling

➢ function inlining: function becomes part of the caller code

➢SW pipelining: schedules instructions from different iterations together

➢ trace scheduling & superblocks: schedule beyond basic block boundaries

• Code Size Increase (e.g. due to loop unrolling, function inlining)

• Binary Compatibility: If the micro-architecture is changed, VLIW code may not be
compatible anymore because it depends on the latencies.

V1-0 ACA

V1-0

C3-4 Superscalar

Dynamic multi-issue

ACA

Superscalar

• Exploits Instruction Level Parallelism

• In-order: In order issue but pipeline (not compiler) selects issue bundles

• Out-of-order (OoO): dynamically scheduled

• Phases of instruction execution:
Fetch – decode – rename – dispatch – issue – execute – complete – commit (retire)

V1-0 ACA

Archetype of a OoO Superscalar Pipeline

• According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

V1-0

IF
FU2

FU3

FU1IF/ID Buffer Dispatch Buffer

ID DP

Dispatch

Reservation Stations

Reorder Buffer
(ROB)

CO

Complete

Store Buffer

RT

Retire

Issue Finish
In-order Out-of-order In-order

ACA

Superscalar vs. VLIW

• Superscalar requires more complex hardware for instruction scheduling

➢issue buffers for OoO execution

➢complicated multiplexing between instruction issue structure & functional units

➢dependence checking logic between parallel instructions

➢functional unit hazard checking

➢VLIW requires a complex compiler and higher code size (e.g. slower due to less efficient
use of instruction cache)

➢Superscalars can execute pipeline-dependent code more efficiently : don’t have to
recompile if binary is executed on different processors (pre-compiled libraries)

V1-0 ACA

Wide instruction fetch can
fetch two instructions at once
Ideal IPC = 2

Change HW:
• Increase number of IB/scoreboard slots to 8
• Reduce the number of RO ports to 2
• and Commit (CO) ports to 2
• Structural hazard can cause extra cycles
• With register renaming

Simple Superscalar (Scoreboard) – Dual Fetch, Decode and Issue with ROB

V1-0 ACA

Scoreboard (ScB)

ISIMEM

LSU (LU and
SU)

A
L
U

A
D
D

DIV

M UL

BTA

IB

RF

Forwarding

IS

R
O
B

Unrolled Code Example

lp: lw x28,0(x20) # x28=array element

Lw x29,-4(x20) # x29=array element

lw x30,-8(x20) # x30=array element

 lw x31,-12(x20) # x31=array element

 add x28,x28,x21 # add scalar in x21

 add x29,x29,x21 # add scalar in x21

 add x30,x30,x21 # add scalar in x21

 add x31,x31,x21 # add scalar in x21

 sw x28,0(x20) # store result

 sw x29,-4(x20) # store result

 sw x30,-8(x20) # store result

 sw x31,-12(x20) # store result

 addi x20,x20,-16 # decrement pointer

blt x22,x20,lp # branch if x22 < x20

• Unroll factor = 4:

Loop: lw x31, 0(x20)

 add x31, x31, x21

 sw x31, 0(x20)

 addi x20, x20, –4

 blt x22, x20, Loop

V1-0 ACA

Simple Superscalar (Scoreboard) – Dual Instruction Fetch, Decode and Issue – Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

addi x20,x20,-16 IF IS RO ALU WB CO

lw x28, 0(x20) IF IS IB RO LU LU WB CO

lw x29,12(x20) IF IS IB RO LU LU WB CO

add x28,x28,x21 IF IS IB IB RO ALU WB CO

lw x30,8(x20) IF IF IS IB RO LU LU WB CO

add x29,x29,x21 IF IS IB IB RO ALU WB CO

lw x31,4(x20) IF IF IS IB RO LU LU WB CO

add x30,x30,x21 IF IS IB IB RO ALU WB CO

sw x28,16(x20) IF IS IB RO SU SB SC

add x31,x31,x21 IF IS IB IB RO ALU WB CO

sw x29,12(x20) IF IS IB RO SU SB SC

sw x30,8(x20) IF IS IB IB RO SU SB SC

sw x31,4(x20) IF IS IB IB RO SU SB SC

blt x22,x20, Loop IF IS IB RO ADD

#instr in IB+RO+EX 0 0 2 4 5 7 8 8 8 5 3 1
V1-0

CPI = 0,5
IPC=2

12-5=
7 cycles

! Renaming to avoid WAR and
WAW hazards is omitted here,
but it is assumed no stalls on
WAR and WAW!

14 instructions

ACA

Instruction Scheduling for Superscalar

• The process of mapping a series of instructions into execution resources

• Decides when and where an instruction is executed

V1-0

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

1

2 3 4

5 6

Dependence
graph

FU 1 FU 2

1

2

3

4 5

6

Derived from CA course of Mikko Lipasti-University of Wisconsin

1,2,3,4 can execute on FU1
5,6 can execute on FU 2

ACA

Instruction Scheduling via Selection and Wakeup

• A set of wakeup and select operations

• Wakeup

➢Broadcasts the tags of parent instructions selected

➢Dependent instruction gets matching tags, determines if source
operands are ready

➢Resolves RAW data dependencies

• Select

➢Picks instructions to issue among a pool of ready instructions

➢Resolves resource conflicts

➢Issue bandwidth

➢ Limited number of functional units / memory ports

V1-0 ACA

Instruction Scheduling via Selection and Wakeup - Example

• Wakeup and Selection Example:

V1-0

FU 1 FU 2 Ready to Issue Select and
Wakeup

1 1 Select 1
Wakeup 2,3,4

2 2,3,4 Select 2
Wakeup 5

3 3,4,5 Select 4,5
Wakeup -

4 3 Select 3
Wakeup 6

5 6 Select 6

1

2

3

4 5

6

1

2 3 4

5 6

ACA

V1-0

C3-5 HW Multi-threading

ACA

Threads

• Thread

• has state and a current program counter

• shares the address space of a single process, allowing a thread to easily access data of
other threads within the same process.

• Multithreading:

• multiple threads share a processor without requiring an intervening process switch.

• The ability to switch between threads rapidly is what enables multithreading to be
used to hide pipeline and memory latencies.

• Exploiting Thread-Level Parallelism (TLP) to improve uniprocessor throughput (IPC)

V1-0 ACA

Thread-level parallelism (TLP)

• Multithreading (MT) targets to exploit thread-level parallelism (TLP)

• MT allows multiple threads to share the FUs of a single processor

• MT does not duplicate the entire processor, duplicating only private state, such as the
registers and PC.

• A more general method to exploit TLP is to use a multi-core processor that can execute
multiple independent threads in parallel.

• Many recent compute platforms incorporate multi-core processors, for which each single
core additionally provides multithreading support.

V1-0 ACA

Example: Use of FUs by Single Thread

V1-0

Cycle ALU MUL DIV LU/SU

i+1

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

i+11

Superscalar

Time

Pattern for Superscalar Execution:
• Cycles that a certain instruction of the

thread uses a specific FU (EX stage)
• Time now runs from top to bottom.
• We need to rotate the pipeline diagram by

90 deg.

ACA

Fine-Grained vs. Coarse-Grained MT

• Fine-grained multithreading
• switches between threads on each clock cycle,
• execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled

threads)
• Advantage: hide the throughput losses that arise from both short and long stalls because instructions

from other threads can be executed when one thread stalls, even if the stall is only for a few cycles.
• Disadvantage: slows down the execution of an individual thread because a thread that is ready to

execute without stalls will be delayed by instructions from other threads.

• Coarse-grained multithreading
• switches threads only on costly stalls, such as level two or three cache misses.
• Advantage: less likely to slow down the execution of any one thread
• Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls.

V1-0 ACA

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT):
• dynamically scheduled (OoO) processors already have many of the hardware mechanisms

needed to support SMT

• Multithreading can be built on top of an out-of-order processor by adding
• separate PCs and register files, and

• the capability for instructions from multiple threads to commit.

• Instructions from different threads can be issued in same cycle.

V1-0 ACA

ALU MUL DIV LU/SUALU MUL DIV LU/SU

Patterns for Types of Multithreading (MT)

V1-0

Cycle ALU MUL DIV LU/SU

i+1

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

i+11

Fine-grained MT

Time

Coarse-grained MT Simultaneous MT (SMT)

ACA

The speedup from using multithreading on one core on an i7 processor

V1-0

Source: Computer Architecture – A Quantitative Approach
5th Edition Fig. 3.33

ACA

Example: Simple Dual Multi-threaded Processor

• EX has 1xDIV, 1xMUL,

• 1x Branch/ALU, 1xALU, 1xLSU

V1-0

DI

IMEM

DI

PC1

PC2

ACA

Scoreboard (ScB)

LSU (LU and
SU)

A
L
U

A
D
D

DIV

M UL

BTA

IB

RF

Forwarding

R
O
B

IB

RF

Cycle - i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

lw x31,0(x20) IF IS RO LSU LSU WB CO

add x31,x31,x21 IF IS RO IB ALU WB CO

sw x31,0(x20) IF IS RO IB SU SB SC

addi x20,x20,–4 IF IS RO ALU WB CO

blt x22,x20,Loop IF IS RO BR

lw x31,0(x20) IF IS RO LSU LSU CO

Example with Stall due to D-Cache Miss

V1-0

Loop: lw x31, 0(x20)

 add x31, x31, x21

 sw x31, 0(x20)

 addi x20, x20, –4

 blt x22, x20, Loop

Cache miss

ACA

Example with Stall due to D-Cache Miss

V1-0

Cycle - i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

lw x31,0(x20) IF IS RO LSU LSU WB CO

add x31,x31,x21 IF IS RO IB ALU WB CO

sw x31,0(x20) IF IS RO IB SU SB SC

addi x20,x20,–4 IF IS RO ALU WB CO

blt x22,x20,Loop IF IS RO BR

lw x31,0(x20) IF IS RO LSU LSU CO

FU USE - cycle i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

ALU add addi blt

LU lw
(s1)

lw
(s2)

lw
(s1)

lw
(s2)

SU sw

Cache miss

ACA

Utilization of functional units in EXE stage is low

Example with Stall due to D-Cache Miss

V1-0

Loop: lw x31, 0(x20)

 add x31, x31, x21

 sw x31, 0(x20)

 addi x20, x20, –4

 blt x22, x20, Loop

Cycle ALU LSU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw(s1)

i+9 cache

i+10 Miss

i+11 …

i+12 lw(s2)

i+13 add

i+14 addi sw

Cycle ALU LSU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw (s1)

i+9 lw (s2)

i+10 add

i+11 addi sw

i+12 blt

Cycles run from
top to bottom

Thread 1 Thread 2

ACA

Example with Stall due to D-Cache Miss

V1-0

Cycle ALU LU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add lw (s1)

i+6 addi lw (s2) sw

i+7 add

i+8 addi sw

i+9 blt

i+10 blt lw (s1)

i+11 lw (s1)

i+12 lw(s2)

i+13 add

i+14 addi lw (s2) sw

i+15 add

i+16 blt

i+17 addi sw

Thread 2Thread 1

Multithreaded - SMT

ACA

Cycle ALU LU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw(s1)

i+9 cache

i+10 Miss

i+11 …

i+12 lw(s2)

i+13 add

i+14 addi sw

Cycle ALU LU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw (s1)

i+9 lw (s2)

i+10 add

i+11 addi sw

i+12 blt

15 cycles SMT multi-theaded
instead of 10 plus 12 cycles

A Look at Real Processors

A15 and BOOM

Optional, not relevant for exam

ARM A15 Superscalar Core

• ARM A15 pipeline diagram:

V1-0

(Copied from from slides of CS course Mikko Lipasti-University of Wisconsin)

ACA

Berkeley Out-of-order Machine (BOOM)

• BOOM: an open-source out-of-order RISC-V core

V1-0

Source: https://github.com/riscv-boom/riscv-boom

ACA

https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom

Summary

Where we are

• We covered the following features: Branch prediction, Out of order execute, Scoreboard,
Superpipelining, Multi-issue, Superscalar, VLIW, Multi-threading

• Instruction Level Parallelism: VLIW, Superscalar

• Thread Level Parallelism: Multi-threaded Single Core Processor

• Upcoming:

➢Thread Level Parallelism: Multi-Core (MIMD)

➢Data level parallelism: Vector (SIMD)

V1-0 ACA

Thank you for your attention!

	Folie 1
	Folie 2: Sources
	Folie 3: Sources
	Folie 4: Content
	Folie 5
	Folie 6: Processors‘ Performance
	Folie 7: Superpipelining and Multi-Issue
	Folie 8
	Folie 9: Superpipelining
	Folie 10: Example: MIPS R4000
	Folie 11: Example: MIPS R4000
	Folie 12: Limits of Superpipelining
	Folie 13
	Folie 14: Static and Dynamic Multi-Issue
	Folie 15: Speculation
	Folie 16: Compiler or Hardware Speculation
	Folie 17
	Folie 18: Static Multiple Issue
	Folie 19: Scheduling Static Multiple Issue
	Folie 20: Example: Pipeline with Static Dual Issue
	Folie 21: Hazards in the Dual-Issue RISC-V
	Folie 22: Dependency Analysis
	Folie 23: Scheduling Example
	Folie 24: Scheduling Example
	Folie 25: Scheduling Example
	Folie 26: Scheduling Example
	Folie 27: Scheduling Example
	Folie 28: Scheduling Example
	Folie 29: Example Baseline VLIW Processor with Two Slots – Execution Latencies = 1
	Folie 30: Compiler Optimization - Loop Unrolling
	Folie 31: Unrolled Code Example
	Folie 32: Loop Unrolling Example - – Optimized Code for VLIW
	Folie 33: Limits of VLIW
	Folie 34
	Folie 35: Superscalar
	Folie 36: Archetype of a OoO Superscalar Pipeline
	Folie 37: Superscalar vs. VLIW
	Folie 38: Simple Superscalar (Scoreboard) – Dual Fetch, Decode and Issue with ROB
	Folie 39: Unrolled Code Example
	Folie 40: Simple Superscalar (Scoreboard) – Dual Instruction Fetch, Decode and Issue – Example
	Folie 41: Instruction Scheduling for Superscalar
	Folie 42: Instruction Scheduling via Selection and Wakeup
	Folie 43: Instruction Scheduling via Selection and Wakeup - Example
	Folie 44
	Folie 45: Threads
	Folie 46: Thread-level parallelism (TLP)
	Folie 47: Example: Use of FUs by Single Thread
	Folie 48: Fine-Grained vs. Coarse-Grained MT
	Folie 49: Simultaneous Multithreading (SMT)
	Folie 50: Patterns for Types of Multithreading (MT)
	Folie 51: The speedup from using multithreading on one core on an i7 processor
	Folie 52: Example: Simple Dual Multi-threaded Processor
	Folie 53: Example with Stall due to D-Cache Miss
	Folie 54: Example with Stall due to D-Cache Miss
	Folie 55: Example with Stall due to D-Cache Miss
	Folie 56: Example with Stall due to D-Cache Miss
	Folie 57: A Look at Real Processors
	Folie 58: ARM A15 Superscalar Core
	Folie 59: Berkeley Out-of-order Machine (BOOM)
	Folie 60: Summary
	Folie 61: Where we are
	Folie 62: Thank you for your attention!

