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Sources
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Literature: „Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

• https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
• Available at TU’s library: 

https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
issue, Superscalar, VLIW,  Multi-threading, …

Disclaimer: The book provides advanced concepts from real complex processor 
designs. We only study the concepts at a high level. For simplicity, the used 
pipeline models in this lecture are reduced strongly in complexity. 

But: We will have a look at some current RISC-V processor designs
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Sources
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Advanced concepts for superscalar.

Literature: Shen & Lipasti : Modern Processor Design (2005)

Lecture slides available: https://pharm.ece.wisc.edu/mikko/
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Content 

• Processors‘ Performance

• Superpipelining

• VLIW

• Superscalar

• HW Multi-threading

• A look at a real RISC-V processor: BOOM, A15

V1-0

Optional, not relevant for exam
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C3-1 Increasing Processors’ Performance
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Processors‘ Performance

• Recap of Last lecture: Superscalar processor reached CPI=1

Performance of a processor ( IC is instruction count):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1

𝐼𝐶
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𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑦𝑐𝑙𝑒
∙

1
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𝐼𝑃𝐶 ∙ 𝐹𝑟𝑒𝑞

𝐼𝐶
=

𝐹𝑟𝑒𝑞

𝐼𝐶 ∙ 𝐶𝑃𝐼

• Superpipelining aims at increasing performance via frequency 

• Superscalar, VLIW aims at increasing performance via IPC

• Compiler optimization can improve instruction count (IC) and IPC
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Superpipelining and Multi-Issue

• Scalar five-stage pipeline

• Superpipelining concept:  Multi-Issue concept:

V1-0

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB

SLLI a5,a4,2 IF ID EX MS WB

LW a0,0(a3) s1 IF ID EX MS WB

SLLI a2,a1,2

ADD t1,t0,t2

SLLI a5,a4,2

LW a0,0(a3)

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB s5

SLLI a5,a4,2 IF ID EX MS WB s5

LW a0,0(a3) IF ID EX MS WB s5

• Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

• Multi-Issue processors enable CPI < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel 
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C3-2 Superpipelining
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Superpipelining

• Superpipelining aims to reduce cycle time (increase clock frequency)

• Deep pipelining or superpipelining: Having more stages than a given baseline 
(e.g. five-stage pipeline)

• Pipeline stages do not need to be split evenly

V1-0

SLLI a2,a1,2

ADD t1,t0,t2

SLLI a5,a4,2

LW a0,0(a3)
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Example: MIPS R4000

• Example MIPS R4000 Pipeline* 
• Cache access time most critical in the design

• Eight stages (registers not shown -> lines for cycle boundaries)

*-- diagram according to Computer Architecture  A Quantitative Approach – Section C6

V1-0

WBIF RF EXIS

IMEM DMEM

A
L
URF

DF DS TC

• IF — First half of instruction fetch; 
• IS — Second half of instruction fetch, 

complete instruction cache access. 
• RF — Instruction decode and register 

fetch
• EX — Execution, which includes 

effective address calculation, ALU 
operation, and branch-target 
computation and condition evaluation.

• DF — Data fetch, first half of data cache 
access.

• DS — Second half of data fetch, 
completion of data cache access. 

• TC — Tag check, to determine whether 
the data cache access hit. 

• WB — Write-back
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Example: MIPS R4000

• Execution Scheme

• Instruction dependences have higher penalties (due to deeper pipeline)
• Branch decision later available -> prediction even more important as more instructions must be flushed

(In MIPS R4000: branch computed in EX stage -> 3 cycles branch penalty)

• Forwarding can‘t remove all stall cycles for RAW dependencies (e.g. Load-use data needs three cycles 
to become available).

V1-0

WBIF RF EXIS DF DS TC

Branch penalty = 3 cycles

Load-use delay = 3 cycles

ACA



Limits of Superpipelining

• Number of pipeline stages: 
Desktop CPUs: 12-20 stages.

• Embedded CPUs: all from 1-20 stages. 

➢ Original Source “Runtime Aware Architectures”, Mateo Valero, 
HiPEAC CSW 2014, 
taken from Lecture Myoungsoo Jung (Slide 6): 
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-
processing.pdf

➢ See for example 
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures 
for a list of the number of pipeline stages for recent Intel‘s processors

V1-0 ACA

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures


V1-0

C3-3 Multi-issue
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Static and Dynamic Multi-Issue 

• Static multiple issue (at compile time)
• Compiler groups instructions to be issued together in a bundle

• Sorts them into “issue slots”

• Compiler detects and avoids hazards

• Dynamic multiple issue (during execution)
• CPU examines instruction stream and chooses instructions to issue each cycle

• Compiler can help by reordering instructions

• CPU resolves hazards using advanced techniques at runtime

V1-0 ACA



Speculation

• “Guess” what to do with an instruction
• Start operation as soon as possible

• Check whether guess was right
• If so, complete the operation

• If not, roll-back and do the right thing

• Common to static and dynamic multiple issue

• Examples
• Speculate on branch outcome, execute instructions after branch

• Roll back, if path taken is different

• Speculate on store that precedes load does not refer to same address
• We can execute the load instruction before the store instruction

• Roll back, if the store writes the same address the load reads from

V1-0 ACA



Compiler or Hardware Speculation

• Compiler can reorder instructions
• e.g., move load before branch

• Can include “fix-up” instructions to recover from incorrect guess

• Hardware can look ahead for instructions to execute
• Buffer results until it determines they are actually needed (written to the registers or memory)

• Flush buffers on incorrect speculation

V1-0 ACA
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C3-4 Very Long Instruction Word (VLIW)

Static multi-issue
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Static Multiple Issue

• Compiler groups instructions into “issue packets” (sometimes also called bundles)
• Group of instructions that can be issued on a single cycle

• Determined by pipeline resources required

• Think of an issue packet as a very long instruction
• Specifies multiple concurrent operations

•  Very Long Instruction Word (VLIW)

V1-0 ACA



Scheduling Static Multiple Issue

• Compiler must remove some/all hazards
• Reorder instructions into issue packets

• No dependencies within a packet

• BUT: If we know the pipeline structure, we can allow WAR dependencies if read operand happens for
all instructions in a packet before write back. WAW and RAW dependencies within a packet must still 
be avoided.

• All dependencies between packets must be considered in the pipeline

• Pad with nop if necessary

V1-0 ACA



Example: Pipeline with Static Dual Issue

• We fetch and decode two instructions: One instructions is executed on slot 1 the other on 
slot 2 (Each way can execute certain instruction types)

V1-0

DI

IMEM

DMEM

A
L
U

A
D
D

RF

Forwarding

BTA

WBIF ID EX

A
C

DI
Slot 2

ALU

Branch Comp.

Load/Store

Slot 1 

MS
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Hazards in the Dual-Issue RISC-V

• More instructions executing in parallel

• RAW data hazard
• Forwarding avoided stalls with single-issue

• Now can’t use ALU result in load/store in same packet
• add x10, x0, x1

lw  x2, 0(x10)

• Split into two packets, effectively a stall

• Load-use hazard
• Still one cycle use latency, but now two instructions

• More aggressive scheduling required

V1-0 ACA



Dependency Analysis

Loop: lw   x31, 0(x20)      # x31=array element

      add  x31, x31, x21    # add scalar in x21

      sw   x31, 0(x20)      # store result

      addi x20, x20, –4     # decrement pointer

      blt  x22, x20, Loop   # branch if x22 < x20

V1-0

lw   x31, 0(x20)

add  x31, x31, x21

sw   x31, 0(x20)

addi x20, x20, –4

blt  x22, x20, Loop

RAW

RAW

RAWLoop:

WAR

Compiler can reorder instructions, but needs to adopt the offset of the sw

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

(WAW)WAR
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Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: lw   x31, 0(x20)

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)
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Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw   x31, 0(x20)

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

WAR hazard to lw, can be allowed due to known pipeline
structure

(WAW)
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Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw   x31, 0(x20)

add  x31, x31, x21

No
dependencies but go into same slot

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

RAW + (WAW) hazard to lw
One cycle load use delay
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Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw   x31, 0(x20)

add  x31, x31, x21

sw   x31, 4(x20)

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

RAW to add

ACA



Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw   x31, 0(x20)

add  x31, x31, x21

blt  x22, x20, Loop sw   x31, 4(x20)

No
dependencies

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

Branches cannot be moved forward, needed to
end basic block
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Scheduling Example

• Schedule this for dual-issue RISC-V

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store

Loop: addi x20, x20, –4 lw   x31, 0(x20)

nop nop

add  x31, x31, x21 nop

blt  x22, x20, Loop sw   x31, 4(x20)

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

Fill up with nop

ACA



Example Baseline VLIW Processor with Two Slots – Execution Latencies = 1

• Performance: IPC = 5 instr / 4 cycles = 1.25   (peak IPC = 2)

V1-0

Slot1 : ALU/BRANCH Slot 2: Load/store 1 2 3 4 5 6 7 8

addi x20, x20, –4 IF ID EX MS WB

lw   x31, 0(x20) IF ID EX MS WB

nop IF ID

nop IF ID

add  x31, x31, x21 IF ID EX MS WB

nop IF ID s5

blt  x22, x20, Loop IF ID EX MS WB

sw   x31, 4(x20) F IF ID EX MS WB

4 cycles
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Compiler Optimization - Loop Unrolling

• Replicate loop body to expose more parallelism
• Reduces loop-control overhead

• Use different registers per replication
• Compiler applies “register renaming” to eliminate all data dependencies that are not true data 

dependencies

• Avoid loop-carried “anti-dependencies”
• Store followed by a load of the same register

• Aka “name dependence” - Reuse of a register name

• Unroll factor: Number of loop body replications

• Fully unrolled: Number of loop body replications equal to number of  iterations

V1-0 ACA



Unrolled Code Example

lp: lw x28,0(x20)  # x28=array element

Lw  x29,-4(x20)   # x29=array element

lw  x30,-8(x20)   # x30=array element

  lw x31,-12(x20)  # x31=array element

  add x28,x28,x21   # add scalar in x21

  add x29,x29,x21   # add scalar in x21

  add x30,x30,x21   # add scalar in x21

  add x31,x31,x21   # add scalar in x21

  sw x28,0(x20)    # store result

  sw x29,-4(x20)   # store result

  sw x30,-8(x20)   # store result

  sw x31,-12(x20)  # store result

  addi x20,x20,-16   # decrement pointer

blt x22,x20,lp    # branch if x22 < x20

• Unroll factor = 4: 

Loop: lw   x31, 0(x20) 

      add  x31, x31, x21

      sw   x31, 0(x20)  

      addi x20, x20, –4 

      blt  x22, x20, Loop

V1-0 ACA



Loop Unrolling Example - – Optimized Code for VLIW

• IPC = 14/8 = 1.75

• Closer to 2, but at cost of registers and code size

• Instruction Count (IC) of loop also reduced, less loop iteration 
checks

ALU/branch Load/store cycle

Loop: addi x20, x20, –16 lw   x28, 0(x20) 1

nop lw   x29, 12(x20) 2

add  x28, x28, x21 lw   x30, 8(x20) 3

add  x29, x29, x21 lw   x31, 4(x20) 4

add  x30, x30, x21 sw   x28, 16(x20) 5

add  x31, x31, x21 sw   x29, 12(x20) 6

nop sw   x30, 8(x20) 7

blt  x22, x20, Loop sw   x31, 4(x20) 8

Optimization:

lw, sw offsets
are adapted to 
move addi into 
first pack. 

No load-use RAW 
data hazards, so 
no influence on 
performance
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Limits of VLIW

• Branches and Labels break sequential instruction execution (code basic blocks)

• Hard to find sufficient Instruction Level Parallelism in single basic block

➢Compiler Optimization techniques:
➢Loop unrolling

➢ function inlining: function becomes part of the caller code

➢SW pipelining: schedules instructions from different iterations together

➢ trace scheduling & superblocks: schedule beyond basic block boundaries

• Code Size Increase (e.g. due to loop unrolling, function inlining)

• Binary Compatibility: If the micro-architecture is changed, VLIW code may not be 
compatible anymore because it depends on the latencies.

V1-0 ACA
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C3-4 Superscalar

Dynamic multi-issue
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Superscalar

• Exploits Instruction Level Parallelism

• In-order: In order issue but pipeline (not compiler) selects issue bundles 

• Out-of-order (OoO): dynamically scheduled

• Phases of instruction execution:
Fetch – decode – rename – dispatch – issue – execute – complete – commit (retire)

V1-0 ACA



Archetype of a OoO Superscalar Pipeline 

• According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

V1-0

IF
FU2

FU3

FU1IF/ID Buffer Dispatch Buffer

ID DP

Dispatch

Reservation Stations

Reorder Buffer
(ROB)

CO

Complete

Store Buffer

RT

Retire

Issue Finish
In-order Out-of-order In-order
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Superscalar vs. VLIW

• Superscalar requires more complex hardware for instruction scheduling

➢issue buffers for OoO execution

➢complicated multiplexing between instruction issue structure & functional units

➢dependence checking logic between parallel instructions

➢functional unit hazard checking

➢VLIW requires a complex compiler and higher code size (e.g. slower due to less efficient 
use of instruction cache)

➢Superscalars can execute pipeline-dependent code more efficiently : don’t have to 
recompile if binary is executed on different processors (pre-compiled libraries)
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Wide instruction fetch can 
fetch two instructions at once 
Ideal IPC = 2

Change HW:
• Increase number of IB/scoreboard slots to 8
• Reduce the number of RO ports to 2
• and Commit (CO) ports to 2
• Structural hazard can cause extra cycles
• With register renaming

Simple Superscalar (Scoreboard) – Dual Fetch, Decode and Issue with ROB 

V1-0 ACA

Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L
U

A
D
D

DIV

M UL

BTA

IB

RF

Forwarding

IS

R
O
B



Unrolled Code Example

lp: lw x28,0(x20)  # x28=array element

Lw  x29,-4(x20)   # x29=array element

lw  x30,-8(x20)   # x30=array element

  lw x31,-12(x20)  # x31=array element

  add x28,x28,x21   # add scalar in x21

  add x29,x29,x21   # add scalar in x21

  add x30,x30,x21   # add scalar in x21

  add x31,x31,x21   # add scalar in x21

  sw x28,0(x20)    # store result

  sw x29,-4(x20)   # store result

  sw x30,-8(x20)   # store result

  sw x31,-12(x20)  # store result

  addi x20,x20,-16   # decrement pointer

blt x22,x20,lp    # branch if x22 < x20

• Unroll factor = 4: 

Loop: lw   x31, 0(x20) 

      add  x31, x31, x21

      sw   x31, 0(x20)  

      addi x20, x20, –4 

      blt  x22, x20, Loop

V1-0 ACA



Simple Superscalar (Scoreboard) – Dual Instruction Fetch, Decode and Issue – Example 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

addi x20,x20,-16 IF IS RO ALU WB CO

lw   x28, 0(x20) IF IS IB RO LU LU WB CO

lw x29,12(x20) IF IS IB RO LU LU WB CO

add x28,x28,x21 IF IS IB IB RO ALU WB CO

lw x30,8(x20) IF IF IS IB RO LU LU WB CO

add x29,x29,x21 IF IS IB IB RO ALU WB CO

lw x31,4(x20) IF IF IS IB RO LU LU WB CO

add x30,x30,x21 IF IS IB IB RO ALU WB CO

sw  x28,16(x20) IF IS IB RO SU SB SC

add x31,x31,x21 IF IS IB IB RO ALU WB CO

sw x29,12(x20) IF IS IB RO SU SB SC

sw  x30,8(x20) IF IS IB IB RO SU SB SC

sw  x31,4(x20) IF IS IB IB RO SU SB SC

blt x22,x20, Loop IF IS IB RO ADD

#instr in IB+RO+EX 0 0 2 4 5 7 8 8 8 5 3 1
V1-0

CPI = 0,5
IPC=2

12-5=
7 cycles

! Renaming to avoid WAR and 
WAW hazards is omitted here, 
but it is assumed no stalls on 
WAR and WAW!

14 instructions
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Instruction Scheduling for Superscalar

• The process of mapping a series of instructions into execution resources

• Decides when and where an instruction is executed

V1-0

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

1

2 3 4

5 6

Dependence 
graph

FU 1 FU 2

1

2

3

4 5

6

Derived from CA course of Mikko Lipasti-University of Wisconsin

1,2,3,4 can execute on FU1
5,6 can execute on FU 2
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Instruction Scheduling via Selection and Wakeup

• A set of wakeup and select operations

• Wakeup

➢Broadcasts the tags of parent instructions selected

➢Dependent instruction gets matching tags, determines if source 
operands are ready

➢Resolves RAW data dependencies

• Select

➢Picks instructions to issue among a pool of ready instructions

➢Resolves resource conflicts

➢Issue bandwidth

➢ Limited number of functional units / memory ports
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Instruction Scheduling via Selection and Wakeup - Example

• Wakeup and Selection Example:

V1-0

FU 1 FU 2 Ready to Issue Select and
Wakeup

1 1 Select 1
Wakeup 2,3,4

2 2,3,4 Select 2
Wakeup 5

3 3,4,5 Select 4,5
Wakeup -

4 3 Select 3
Wakeup 6

5 6 Select 6

1

2

3

4 5

6

1

2 3 4

5 6
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C3-5 HW Multi-threading
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Threads

•  Thread 

• has state and a current program counter 

• shares the address space of a single process, allowing a thread to easily access data of 
other threads within the same process. 

• Multithreading: 

• multiple threads share a processor without requiring an intervening process switch. 

• The ability to switch between threads rapidly is what enables multithreading to be 
used to hide pipeline and memory latencies.

• Exploiting Thread-Level Parallelism (TLP) to improve uniprocessor throughput (IPC)
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Thread-level parallelism (TLP)

• Multithreading (MT) targets to exploit thread-level parallelism (TLP) 

• MT allows multiple threads to share the FUs of a single processor 

• MT does not duplicate the entire processor, duplicating only private state, such as the 
registers and PC.

• A more general method to exploit TLP is to use a multi-core processor that can execute 
multiple independent threads in parallel. 

• Many recent compute platforms incorporate multi-core processors, for which each single 
core additionally provides multithreading support.
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Example: Use of FUs by Single Thread

V1-0

Cycle ALU MUL DIV LU/SU

i+1

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

i+11

Superscalar

Time

Pattern for Superscalar Execution:
• Cycles that a certain instruction of the 

thread uses a specific FU (EX stage)
• Time now runs from top to bottom.
• We need to rotate the pipeline diagram by 

90 deg.
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Fine-Grained vs. Coarse-Grained MT

• Fine-grained multithreading
•  switches between threads on each clock cycle,
• execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled 

threads)
• Advantage: hide the throughput losses that arise from both short and long stalls because instructions 

from other threads can be executed when one thread stalls, even if the stall is only for a few cycles. 
• Disadvantage: slows down the execution of an individual thread because a thread that is ready to 

execute without stalls will be delayed by instructions from other threads. 

• Coarse-grained multithreading 
• switches threads only on costly stalls, such as level two or three cache misses. 
• Advantage: less likely to slow down the execution of any one thread 
• Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls. 

V1-0 ACA



Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT):
• dynamically scheduled (OoO) processors already have many of the hardware mechanisms 

needed to support SMT 

• Multithreading can be built on top of an out-of-order processor by adding 
• separate PCs and register files, and 

• the capability for instructions from multiple threads to commit.

• Instructions from different threads can be issued in same cycle.

V1-0 ACA



ALU MUL DIV LU/SUALU MUL DIV LU/SU

Patterns for Types of Multithreading (MT)

V1-0

Cycle ALU MUL DIV LU/SU

i+1

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

i+11

Fine-grained MT 

Time

Coarse-grained MT Simultaneous MT (SMT) 

ACA



The speedup from using multithreading on one core on an i7 processor

V1-0

Source: Computer Architecture – A Quantitative Approach
5th Edition Fig. 3.33
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Example: Simple Dual Multi-threaded Processor

• EX has 1xDIV, 1xMUL, 

• 1x Branch/ALU, 1xALU, 1xLSU

V1-0

DI

IMEM

DI

PC1

PC2

ACA

Scoreboard (ScB)

LSU (LU and 
SU)

A
L
U

A
D
D

DIV

M UL

BTA

IB

RF

Forwarding

R
O
B

IB

RF



Cycle - i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

lw x31,0(x20) IF IS RO LSU LSU WB CO

add x31,x31,x21 IF IS RO IB ALU WB CO

sw x31,0(x20) IF IS RO IB SU SB SC

addi x20,x20,–4 IF IS RO ALU WB CO

blt x22,x20,Loop IF IS RO BR

lw x31,0(x20) IF IS RO LSU LSU CO

Example with Stall due to D-Cache Miss

V1-0

Loop: lw   x31, 0(x20) 

      add  x31, x31, x21

      sw   x31, 0(x20)  

      addi x20, x20, –4 

      blt  x22, x20, Loop

Cache miss

ACA



Example with Stall due to D-Cache Miss

V1-0

Cycle - i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

lw x31,0(x20) IF IS RO LSU LSU WB CO

add x31,x31,x21 IF IS RO IB ALU WB CO

sw x31,0(x20) IF IS RO IB SU SB SC

addi x20,x20,–4 IF IS RO ALU WB CO

blt x22,x20,Loop IF IS RO BR

lw x31,0(x20) IF IS RO LSU LSU CO

FU USE  - cycle i + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

ALU add addi blt

LU lw
(s1)

lw
(s2)

lw
(s1)

lw
(s2)

SU sw

Cache miss

ACA

Utilization of functional units in EXE stage is low



Example with Stall due to D-Cache Miss

V1-0

Loop: lw   x31, 0(x20) 

      add  x31, x31, x21

      sw   x31, 0(x20)  

      addi x20, x20, –4 

      blt  x22, x20, Loop

Cycle ALU LSU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw(s1)

i+9 cache

i+10 Miss

i+11 …

i+12 lw(s2)

i+13 add

i+14 addi sw

Cycle ALU LSU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw (s1)

i+9 lw (s2)

i+10 add

i+11 addi sw

i+12 blt

Cycles run from
top to bottom

Thread 1 Thread 2

ACA



Example with Stall due to D-Cache Miss

V1-0

Cycle ALU LU SU 

i+3 lw (s1)

i+4 lw (s2)

i+5 add lw (s1)

i+6 addi lw (s2) sw

i+7 add

i+8 addi sw

i+9 blt

i+10 blt lw (s1)

i+11 lw (s1)

i+12 lw(s2)

i+13 add

i+14 addi lw (s2) sw

i+15 add

i+16 blt

i+17 addi sw

Thread 2Thread 1

Multithreaded - SMT

ACA

Cycle ALU LU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw(s1)

i+9 cache

i+10 Miss

i+11 …

i+12 lw(s2)

i+13 add

i+14 addi sw

Cycle ALU LU SU

i+3 lw (s1)

i+4 lw (s2)

i+5 add

i+6 addi sw

i+7 blt

i+8 lw (s1)

i+9 lw (s2)

i+10 add

i+11 addi sw

i+12 blt

15 cycles SMT multi-theaded
instead of 10 plus 12 cycles



A Look at Real Processors

A15 and BOOM

Optional, not relevant for exam



ARM A15 Superscalar Core

• ARM A15 pipeline diagram: 

V1-0

(Copied from from slides of CS course Mikko Lipasti-University of Wisconsin)
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Berkeley Out-of-order Machine (BOOM) 

• BOOM: an open-source out-of-order RISC-V core

V1-0

Source: https://github.com/riscv-boom/riscv-boom

ACA
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Summary



Where we are

• We covered the following features: Branch prediction, Out of order execute, Scoreboard, 
Superpipelining, Multi-issue, Superscalar, VLIW,  Multi-threading

• Instruction Level Parallelism: VLIW, Superscalar

• Thread Level Parallelism: Multi-threaded Single Core Processor

• Upcoming: 

➢Thread Level Parallelism: Multi-Core (MIMD)

➢Data level parallelism: Vector (SIMD)

V1-0 ACA



Thank you for your attention!
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