Programm- & Systemverifikation

Coverage Criteria

Georg Weissenbacher M
184.741

What happened so far

» How bugs come into being:

» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

» We specified intended behaviour using assertions
» We proved (simple) programs correct.
> We learned about black-box testing

» equivalence partitioning
» boundary testing

Black-box Testing

» Mainly applicable to higher levels of testing

» Acceptance Testing
» System Testing

» Focus on what the software does (not how it does it)
» Derive input equivalence classes by speculating on behaviour

Black-box Testing

float sqrt (float x);
pre: x>0
post: |result? —x| < e

Test cases from valid equivalence classes:
» +0, —0, FLT_MAX, FLT_EPSILON, 15.3
Test cases from invalid equivalence classes:
» FLT_MIN, -FLT_EPSILON, —7.9

» —oo, +00
» NaN

How is sqrt implemented in practice?

Quake 3 implementation of inverse square root:

float Q_rsqrt(float number)
long 1i;
float x2, y;
const float threehalfs = 1.5F;

X2 = number * @.5F;

y = number;

i =% (long *) &y; // evil floating peint bit level h

i = @x5f3759df - (i3> 1); // what the fuck?

y = * (float *) &i;

y =y * (threehalfs - (x2 *y *y)); // 1st iteration

y =y * (threehalfs - (x2 *y *y)), // 2nd iteration, this can be removed
return y;

(Original comments)

link to corresponding tweet

https://twitter.com/chobbez/status/1503920846309629953?s=21

How is sqrt implemented in practice?

Quake 3 implementation of inverse square root:

float InvSqrt(float x)

{

float xhalf = 0.5f*x;

int i = *(int*)&x; // get bits for floating value

i = 0x5£3759df - (i>>1); // gives initial guess o

x = *(float*)&i; // convert bits back to float

x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return x;

}

(cleaned-up version)
link to corresponding tweet

https://twitter.com/LeoLambro/status/1503919575364214792?s=20&t=o_ARE6OXHi75Tpu6G5RcJQ

Testing our own (Non-Quake) Square-Root Implementation

float sqrt (float number) {
float lower = 1, upper = 1, guess;

if (number < 1)

lower = number;
else
upper = number;

while ((upper - lower) > EPSILON) {

guess = (lower + upper) / 2;
if (guess*guess > number)
upper = guess;
else
lower = guess;

}

return (lower + upper) / 2;

Testing our Square-Root Implementation

1
l lower=upper=1;

[number< 1]/ \Fnumber> 1]
lower—number\\‘ /upper—number

[(upper - lower) < €]
[(upper - lower) > €l | \

6 11
lguess - (lower;upper)
2 2
[guess® > nu.mber]/ \Ifguess < number] (Lower+upper)
return
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

\I‘:number> 1]

lower=numbe /upper—number

[(upper - lower) < €]
[(upper - lower) > €] | \
6 11

_ (lower-upper)
| guess = ererfupeer)

[number<1]

N

3

v

2 2

> number] [guess® < number]
/ \ return (lower;—upper)

8 9

upper = guess\ /10wer = guess
10 12

[guess

Testing our Square-Root Implementation

1
llower=upper=1 H

2
[number< 1]/ \\Enumberz 1]

3 4

lower=number\\‘ 5 ‘/upper=number

[(upper - lower) < €]
[(upper - lower) > €l | \
6 11

_ (lower-upper)
| guess = ererfupeer)

2 2

> number] [guess® < number] N
/ \ return (ower—;upper)

8 9

upper = guess\ /10wer = guess
10 12

[guess

Testing our Square-Root Implementation

1
llower=upper=1 ;

[number<1]/ \I‘Znumber> 1]
lower—numbelx‘ ‘/upper—number

[(upper - lower) < €]
[(upper - lower) > €l \
6 11

(lower-+upper)
2

dguess =

[guess? > number] 7 [guess?® < number]
g g >
(lower+upper)
/ \ return ~——

8 9
upper = guess\l /lower = guess
10

12

Testing our Square-Root Implementation

1
llower=upper=1 ;

[number<1]/ \I‘Znumber> 1]
lower—numbelx‘ ‘/upper—number

[(upper - lower) < €]
[(upper - lower) > e]l,
6 11
_ (lower+upper)
lguess = Fereriupeer)
7 2
[guess® > number] [guess® < number]
/ \ return (lower-gupper)
8 9
upper = guess\4 ‘/lower = guess

12

Linearly Independent Paths of Square-Root Implementation

» linearly independent e
contains (at least) one edge not covered by other paths

1-2-3-5—=11 =12
1-2—-+4-5-26—-7-8-10—-5—-11 12
1-+2-4-5-6—-7—-9-10—-5—-11 12

» think of linear algebra and linearly independent equations

Linearly Independent Paths

» upper bound of test-cases necessary to test all branches
P in our case, 2 paths are enough:

» 1 -+2-4-5-6—-7—-9—-10—-10—-5—=11 =12
»1-+2-3-+526—-7—-8—-10—-10—-5—=11 =12

Linearly Independent Paths

» upper bound of test-cases necessary to test all branches
P in our case, 2 paths are enough:

» 1 -+2-4-5-6—-7—-9—-10—-10—-5—=11 =12
»1-+2-3-+526—-7—-8—-10—-10—-5—=11 =12

» Do our test-cases cover all branches?

Testing our Square-Root Implementation

1
l lower=upper=1;

\I‘:number> 1]

lower=number /upper—number

[(upper - lower) < €]
[(upper - lower) > €] | \
11

number = 0
[number<1]

3

LN

6
lguess - (lower;upper)
[guess®? > number] 7 [guess® < number]
(lower-+upper)
/ \ return
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 H

[number> 1] number = 0

[number<1]/

lower—number\\‘ upper=number

[(upper - lower) < €]
[(upper - lower) > €] | \
11

4

N

6
lguess - (lower;upper)
[guess®? > number] 7 [guess® < number]
(lower-+upper)
/ \ return
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 H

[number> 1] number = 0
\ lower

lower=numbe /upper—number

[(upper - lower) < €]
[(upper - lower) > €l | \

[number<1]

I
o

N

3

L

6 11
l guess = (lower;upper)
7 2
[guess®? > number] [guess® < number]
/ \ return (lower;upper)
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

[number> 1] number = 0
\ lower

lower=numbe /upper—number

[(upper - lower) < €]
[(upper - lower) > €l | \

[number<1]

I
o

N

3

v

6 11
l guess = (lower;upper)
7 2
[guess®? > number] [guess® < number]
/ \ return (lower;upper)
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

[number> 1] number = 0
\ lower = 0
3 guess = 0.5

lower=numbe /upper—number

[(upper - lower) < €]
[(upper - lower) > €l \

[number<1]

LN

6 11
l guess = (lowerzupper)
7 2
[guess®? > number] [guess® < number]
/ \ return (lower;upper)
8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

[number> 1] number = 0
\ lower = 0
3 guess = 0.5

lower=numbe /upper—number

[(upper - lower) < €]
[(upper - lower) > €l \

6 11

_ (lower-+upper)
lguess = ererupeer)

[number<1]

LN

[guess® > number] g [guess?® < number]
(lower-+upper)
/ \ return “——

8 9

upper = guess\ /10wer = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

number = 0

[number<1] [number> 1]
/ \ lower = 0
3 guess = 0.5
upper = 0.5
lower=number\\‘ /upper—number PP
[(upper - lower) < €]
[(upper - lower) > E]l«
6 11
_ (lower-+upper)
lguess = ererupeer)
[guess® > number] g [guess?® < number] N
/ \ return (ower;upper)
8 9
upper = guess\ /lower = guess

10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

number = 0

[number<1] [number> 1]
/ \ lower = 0
3 guess = 0.5
upper = 0.5
lower=number\\‘ /upper—number PP
[(upper - lower) < €]
[(upper - lower) > E]l«
6 11
_ (lower+upper)
lguess = ererupeer)
[guess® > number] g [guess?® < number] N
/ \ return (ower;upper)
8 9
upper = guess\‘ /lower = guess

10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

2
[number< 1:‘|/ \Fnumberz 1]
3 4

lower=number\‘ 5 /upper=number

[(upper - lower) < €]
[(upper - lower) > €] \
11

number = 0

6
J,guess - (lower;»upper)
[guess® > number] 7 [guess® < number]
(lower-+upper)
/ \ return “—
8 9

upper = guess\l /lower = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

2
[number< 1:‘|/ \Fnumberz 1]
3 4

lower=number\‘ 5 /upper=number

[(upper - lower) < €]
[(upper - lower) > €l \
11

number = 0

6
J,guess - (lower;»upper)
[guess® > number] 7 [guess® < number]
(lower-+upper)
/ \ return “—
8 9

upper = guess\l /lower = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

2
[number< 1:‘|/ \Fnumberz 1]
3 4

lower=number\‘ 5 /upper=number

[(upper - lower) < €]
[(upper - lower) > €] \
6 11

number = 0

J,guess - (lower;»upper)
[guess® > number] 7 [guess® < number] N
‘/ \ return (ower;upper)
8 9

upper = guess\l /lower = guess
10 12

Testing our Square-Root Implementation

1
llower=upper=1 ;

2
[number< 1:‘|/ \Fnumberz 1]
3 4

\ / result
lower=number 5 upper=number

[(upper - lower) < €]
[(upper - lower) > €] \
6 11

number = 0

0.0039

A

J,guess - (lower;»upper)
[guess® > number] 7 [guess® < number]
(lower+upper)
/ \ return “——
8 9

upper = guess\l /lower = guess
10 12

Which “independent” path fragments were executed?

» Test case 0 traversed
» 2 53-5,
» 7—8—10,and
> 51112

» |t did not traverse
» 2 +4—5and
> 75910

» Could we have predicted that one test case is not enough?

Which “independent” path fragments were executed?

» Test case O traversed
» 2 53-5,
» 7—-8-—-10, and
> 531112

» [t did not traverse

» 2 +4—-5and
> 75910

» Could we have predicted that one test case is not enough?
» Not without knowing the implementation!

Have we done “enough” testing?

» Reasonable to assume that “all of the code” should be tested!
» We need at least one additional test cases!

Have we done “enough” testing?

» Reasonable to assume that “all of the code” should be tested!
» We need at least one additional test cases!
» Let’'s have a look at 15.3, ok?

GCOV Usage

This is tedious, can’t we automate this?

» gcc -g -fprofile-arcs -ftest-coverage -o sqrt sqrt.c
(use clang instead of gcc on newer Macs)

gcov sqrt
cat sqrt.c.gcov

./sqrt ; gcov sqrt

vVvyYvyy

cat sqrt.c.gcov

Coverage information for sqrt (0.0)

1: 6:float squrt (float number) {
1: 7: float lower = 1, upper = 1, guess;
- 8:
1: 9: if (number < 1)
1: 10: lower = number; // sqrt < 1, but > number
: 11: else
HiH#H 12: upper = number; // sqrt > 1, but < number
- 13:
9: 14: while ((upper - lower) > EPSILON) {
7: 15: guess = (lower + upper) / 2;
7: 16: if (guess*guess > number)
7: 17: upper = guess;
: 18: else
HiH#H 19: lower = guess;
7: 20: }
1: 21: return (lower + upper) / 2;

- 22:%}

Coverage information for sqrt (15.3)

1: 6:float squrt (float number) {
1: 7: float lower = 1, upper = 1, guess;
-: 8:
1: 9: if (number < 1)
#H#HHH 10: lower = number; // sqrt < 1, but > number
-: 11: else
1: 12: upper = number; // sqrt > 1, but < number
- 13:
13: 14: while ((upper - lower) > EPSILON) {
11: 15: guess = (lower + upper) / 2;
11: 16: if (guess*guess > number)
8: 17: upper = guess;
- 18: else
3: 19: lower = guess;
11: 20: }
1: 21: return (lower + upper) / 2;

- 22:%}

Have we done “enough” testing?

What is “enough”?
» Does executing all statements guarantee correctness?

Have we done “enough” testing?

What is “enough”?
» Does executing all statements guarantee correctness?
> What about the code £ (int x) { return (1/x);}

Have we done “enough” testing?

What is “enough”?
» Does executing all statements guarantee correctness?
> What about the code £ (int x) { return (1/x);}

» Do we have to test all inputs?
» How many different inputs are there to sqrt (float)?

Have we done “enough” testing?

What is “enough”?
» Does executing all statements guarantee correctness?
> What about the code £ (int x) { return (1/x);}
» Do we have to test all inputs?
» How many different inputs are there to sqrt (float)?
> sizeof (float) = 4 bytes, so roughly 2%

Have we done “enough” testing?

What is “enough”?
» Does executing all statements guarantee correctness?
> What about the code £ (int x) { return (1/x);}
» Do we have to test all inputs?
» How many different inputs are there to sqrt (float)?
> sizeof (float) = 4 bytes, so roughly 2%

» How many different inputs are there to our AVL
implementation?

Have we done “enough” testing?

What is “enough”?

» Does executing all statements guarantee correctness?
> What about the code £ (int x) { return (1/x);}

» Do we have to test all inputs?
» How many different inputs are there to sqrt (float)?

> sizeof (float) = 4 bytes, so roughly 2%
» How many different inputs are there to our AVL
implementation?

» Maybe visit all possible states?

Have we done “enough” testing?

What is a state?

heap
Values of void *p = malloc();
» global variables stack

pc int x = 42;
<: static data

code

Have we done “enough” testing?

What is a state?

heap
Values of void *p = malloc();
» global variables stack

» stack variables

pc int x = 42;
<: static data

code

Have we done “enough” testing?

What is a state?

heap
Values of void *p = malloc();
» global variables stack
» stack variables pc int x = 42;
> heap... < static data
code

Reachable Sets of States

> (stmt,o) — (skip, o’) formalizes execution of stmt in state o
» How can we define the set of reachable states?

Reachable Sets of States

> (stmt,o) — (skip, o’) formalizes execution of stmt in state o
» How can we define the set of reachable states?
> Lift — to sets of states:

stmt(S) £ {0/ |0 € S A (stmt, 0) — (skip,o’)}

Reachable Sets of States

> (stmt,o) — (skip, o’) formalizes execution of stmt in state o
» How can we define the set of reachable states?
> Lift — to sets of states:

stmt(S) £ {0/ |0 € S A (stmt, 0) — (skip,o’)}

» Recall rule for assigning expression e to x:

(x :=e,0) — (skip, o[x — a(e)])

Reachable Sets of States

> (stmt,o) — (skip, o’) formalizes execution of stmt in state o
» How can we define the set of reachable states?
> Lift — to sets of states:

stmt(S) £ {0/ |0 € S A (stmt, 0) — (skip,o’)}

» Recall rule for assigning expression e to x:

(x :=e,0) — (skip, o[x — a(e)])

» New rule for conditional edge in our CFG:

o(e) = true
([e], o) — (skip, o)

Reachable Sets of States

> (stmt,o) — (skip, o’) formalizes execution of stmt in state o
» How can we define the set of reachable states?
> Lift — to sets of states:

stmt(S) £ {0/ |0 € S A (stmt, 0) — (skip,o’)}

» Recall rule for assigning expression e to x:

(x :=e,0) — (skip, o[x — a(e)])

» New rule for conditional edge in our CFG:

o(e) = true
([e], o) — (skip, o)

(what about false?)

Collecting Semantics

We can now define a collecting semantics for our CFG
» Let (V, E) be a control-flow graph with entry node -0 € V
> stmt ; is the statement for edge (i, /) € E

Collecting Semantics

We can now define a collecting semantics for our CFG
» Let (V, E) be a control-flow graph with entry node -0 € V
> stmt ; is the statement for edge (i, /) € E
> We start out with all states reachable at >O:

S,0 = {0 | o is a possible variable assignment}

Collecting Semantics

We can now define a collecting semantics for our CFG
» Let (V, E) be a control-flow graph with entry node -0 € V
> stmt ; is the statement for edge (i, /) € E
> We start out with all states reachable at >O:

S,0 = {0 | o is a possible variable assignment}

» Then we recursively define states at successor nodes j:

S] = UIE{HKH,DEE} Stmt<,7j>(S,) |fj S V\ {"O}

Collecting Semantics

We can now define a collecting semantics for our CFG
» Let (V, E) be a control-flow graph with entry node -0 € V
> stmt ; is the statement for edge (i, /) € E
> We start out with all states reachable at >O:

S,0 = {0 | o is a possible variable assignment}

» Then we recursively define states at successor nodes j:

S] = UIE{HKH,DEE} Stmt<,7j>(S,) |fj S V\ {"O}

v

Initialize all other nodes with ()
> Iterate computation until fixpoint is found

Simple Example: Collecting Semantics

-
N
w
I

[i > 0]

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
— 5

N ——
/:

IN

=4

Simple Example: Collecting Semantics

=S w
= S
= S o
= S

[i > 0]

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
— 5

N ——
/:

IN

=4

Simple Example: Collecting Semantics

0 # 0 1 2 3 4 5 6

;- 17.41 0 N 0 0) 0 0

1 N [0.3] 0 0 0 0 0

1 2 N [0.3] [1.3] 0 0 0 {0}

[i > 0]

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
— 5

N ——
/:

IN

=4

Simple Example: Collecting Semantics

0 # 0 1 2 3 4 5 6

;- 17.41 0 N 0 0) 0 0

1 N [0.3] 0 0 0 0 0

1 2 N [0.3] [1.3] 0 0 0 {0}
G o 3 N 0.3 (1.8 {1,3} {2} 0 {0

N ——
/:

IN

=4

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
— 5

Simple Example: Collecting Semantics

L # 0 1 2 3 4 5 6

- 17.41 0 N 0] 0]]]
1 N [0.3] 0 0 0 0 0

Y <o 2 N [0.3] [1.3] 0 0 0 {0}

> o]l \ 3 N [o.3] [1.3] {1,3} {2} 0 {0}
; 6 4 N [0.3] [1.3] {1,3} {2} {1,2,4} {0}

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
5

Simple Example: Collecting Semantics

0 # 0 1 2 3 4 5 6

= i'7.4l 0 N [] 0 0 0 0
1 N [0.3] 0 0 0 0 0

Y <o 2 N [0.3] [1.3] 0 0 0 {0}

i > o]l \ 3 N 0.3 [1.3] {1,3} {2} 0 {0}
6 4 N o3 [1.3] {1,8} {2} {1,2,4} {0}

2 5 N [0.4] [1.3] {1,3} {2} {1,2,4} {0}

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
5

Simple Example: Collecting Semantics

0 # 0 2 3 4 5 6

- 17.41 0 N 0]] 0) 0
1 N [0.3] 0 0 0 0 0

Y <o 2 N [0.3] [1.3] 0 0 0 {0}
- TS s N Do (18 {18 2} 0 {o]
6 4 N o3 [1.3] {1,8} {2} {1,2,4} {0}

2 5 N [0.4] [1.3] {1,3} {2} {1,2,4} {0}

6 N [0.4] [1.4] {1,3} {2} {1,2,4} {0}

[i%Q==1\]/ \Ei%2==0]
3 4
i= 1+N K - i/2
5

Simple Example: Collecting Semantics

g # 0 1 2 3 4 5 6
‘- 17.41 0 N 0 0 0]]]
1 N [0.3] 0 0 0 0 0
K <o 2 N [0.3] [1.3] 0 0 0 {0}
> o]l \ 3 N [o.3] [1.3] {1,3} {2} 0 {0}
; 6 4 N [0.3] [1.3] {1,3} {2} {1,2,4} {0}
. . 5 N [0.4 [1.3] {1,3} {2} {1,2,4} {0}
NPT e N oA (4 (19 (3 (1e (0]
s . 7 N [0.4 [1.4] {1,3} {2,4} {1,2,4} {0}

i= i+kl \A =i/2

5

Simple Example: Collecting Semantics

g # 0 1 2 3 4 5 6
‘- 17.41 0 N 0 0 0]]]
1 N [0.3] 0 0 0 0 0
1 <o 2 N [0.3] [1.3] 0 0 0 {0}
> o]l \ 3 N [o.3] [1.3] {1,3} {2} 0 {0}
; 6 4 N [0.3] [1.3] {1,3} {2} {1,2,4} {0}
. . 5 N [0.4] [1.3] {1,3} {2} {1,2,4} {0}
m““/ \[1’“%:‘” 6 N {o..d 1.4 {1,3} {21 {1,2,4} {o}
3 4 7 N [0.4] [1.4 {1,3% {24} {1,2,4} {0}
\ / 8 N [0.4] [1.4 {1,3} {24} {1,2,4} {0}

i= i+t i=1i/2

5

Collecting Semantics

How many possible states are there in general?

Collecting Semantics

How many possible states are there in general?
» oo, in theory

Collecting Semantics

How many possible states are there in general?
» oo, in theory
» Collecting semantics generally defined as least fixpoint of

\S, { {0 | o is possible assignment} if i = entrynode
j - Uie{n|<n,/>eE} stmt(; y(S) ifje V\ {>0}

Finite State Programs

How about finite state programs?
» Assume that there are only n different elements that we can
insert into our AVL tree.
Element | 1 2 | ...
Inserted | v/ | X | ... v
» Finitely many states

3

Finite State Programs

How about finite state programs?

» Assume that there are only n different elements that we can
insert into our AVL tree.
Element | 1 2 | ... n
Inserted | v | X | ... v
» Finitely many states
» But still 2" possible sets (and even more trees)!

Have we done “enough” testing?

But aren’t many trees “similar’?

Elements | 1 2 3 4 5
State 1 VIV X X | X
State 2 X IV |V | X | X

» Maybe, we don’t need to “cover” all of them?
» What is the problem with this argument?

Have we done “enough” testing?

But aren’t many trees “similar’?

Elements | 1 2 3 4 5
State 1 VIV X X | X
State 2 X IV |V | X | X

» Maybe, we don’t need to “cover” all of them?
» What is the problem with this argument?

» it is not formally proven (maybe even wrong)
» it is specific to one program

Coverage Criteria

Coverage Criteria

» Common agreement on what “sufficiently tested” means
» coverage criteria are about confidence, trust
» required for certification (according to industry standards)
» Important: achieving coverage is not a goal in itself

» “The journey is the reward:” Testing until coverage is reached
» Test-cases should be generated from requirements

Coverage Criteria

Coverage criteria define equivalence classes with respect to
program behaviour

» Control flow-based coverage

Path coverage

Statement/basic block coverage

Branch coverage

Decision coverage

Condition coverage

Condition/Decision coverage

Modified condition/decision coverage (MC/DC)
Multiple decision coverage

» Data flow-based coverage
» Definition/use pairs

VVVVVYVYYVYY

» Mutation testing
> ...

Coverage Criteria: Path coverage

» Goal: Execute every path of the program
» Independently of the variable values along that path
» Every path is an equivalence class
» What's the number of paths through the following program?

while (1) {
if (getchar () == EOF)
break;

Coverage Criteria: Path coverage

» Goal: Execute every path of the program
» Independently of the variable values along that path
» Every path is an equivalence class
» What's the number of paths through the following program?

while (1) {
if (getchar () == EOF)
break;

}

» In general, path coverage can’t be achieved

Coverage Criteria: Statement Coverage

» Goal: Execute every program statement at least once
» All traces visiting that statement build equivalence class

Coverage Criteria: Statement Coverage

» Goal: Execute every program statement at least once

» All traces visiting that statement build equivalence class
» Let £ be program location of said statement

{r|r =00,... cn AFi.0 < i< nAoipc) =1t}

Coverage Criteria: Statement Coverage

» Bad criterion:
» consider test case x = 5 for following code fragment:
if (x > 1) {
X++;

}
int y = x/y;

Coverage Criteria: Statement Coverage

» Bad criterion:
» consider test case x = 5 for following code fragment:

if (x > 1) {
X++;

}

int y = x/y;

> All statements executed, but else branch never taken
» May not exercise all outcomes of a conditional statement

Coverage Criteria: Branch Coverage

» Goal: Execute all branches in a program
» Equivalence class: paths execute a certain branch

» Usually implies statement coverage (but see comments later)

Coverage Criteria: Decision Coverage

» Goal: Exercise every decision outcome at least once
» decision is a “Boolean expression composed of conditions and
zero or more Boolean operators”
» EC: traces in which decision evaluates to same value

Coverage Criteria: Decision Coverage

» Goal: Exercise every decision outcome at least once

» decision is a “Boolean expression composed of conditions and
zero or more Boolean operators”

» EC: traces in which decision evaluates to same value

» For each program location ¢ with decision B

» Need one path from
{r|mr =00,... cn ATi.O<i< nAcipc) =LAN0i =B}
> and one from

{m|m =00,... on Ai.O < i< nAoi(pc) =LAoi =B}

Coverage Criteria: Decision Coverage

» Subtly different from “branch coverage”
» Vacuously true for the following program:

X =y,
X++;

» all decisions covered even without testing
» Therefore, does not imply statement coverage

Coverage Criteria: Decision Coverage vs. Branch Coverage

Danger, Will Robinson:
branch coverage # decision coverage

At least not in general!
» Numerous subtle differences
» Inconsistent definitions (in industry standards)
» In particular, neither metric subsumes the other

Coverage Criteria: Definition of “Branch”

» branch (1) (software). (A) A computer program construct in
which one of two or more alternative sets of programs
statements is selected for execution. (B) A point in a computer
program at which one of two or more alternative sets of
program statements is selected for execution. Syn:
branchpoint. [...]

» branch testing. Testing designed to execute each outcome of
each decision point in a computer program. Contrast with:
path testing; statement testing.

IEEE Std 100-1992 Standard Dictionary of Electrical and Electronic Terms

Coverage Criteria: Definition of “Branch”

imprecise definitions of “branch”

» Some definitions may or may not include

» unconditional branches (goto)
» function calls
» fall-throughs (in switch/case constructs

> Example
X++;
goto L;
L: y++;

» Contains no decisions
» But: contains a non-conditional branch

Coverage Criteria: Definition of “Decision”

expressions with side effects

» Consider the following example:

if ((y > 1) & (C z > 1) || foo())
X=y;

else
X = z;

“Decision” evaluates to true ify > tandz > 1
“Decision” evaluates to false if y <= 1

foo is never executed (short-circuited evaluation!)
covered by branch coverage, if function call a is branch

vVvyyvyy

Coverage Criteria: Definition of “Decision”

» “Decision” is defined as “Boolean expression”
» not necessarily only at branching points!

x = x + 1;
b = (x>0);
y = X3

» Strictly speaking, have to cover every outcome of x>0
» E.g., enforced in DO-178B standard
» This code doesn’t contain any branch!

Coverage Criteria: Branch Coverage vs Decision Coverage

Branch coverage implies decision coverage

> if “decision” means Boolean expressions at branching points
only

Decision coverage is stronger than branch coverage
» if “branch” doesn’t include unconditional jumps
> if “decision” refers to all Boolean expressions
Often branch and decision outcome are used synonymously

Coverage Criteria: Branch Coverage vs Decision Coverage

Branch coverage implies decision coverage

> if “decision” means Boolean expressions at branching points
only

Decision coverage is stronger than branch coverage
» if “branch” doesn’t include unconditional jumps
> if “decision” refers to all Boolean expressions
Often branch and decision outcome are used synonymously

Meaning varies, depending on industry standard that applies
» Also: interpreted differently by different coverage tools

Coverage Criteria: Condition Coverage

» Goal: Exercise every sub-expression/atom/condition outcome
> atom is a Boolean expression not containing Boolean
operators (e.g., &&, | 1)
» Equivalence class: paths in which condition evaluates to same
value
» Does not imply decision coverage!
» Consider the following program fragment:
if ((x > 0) && (y > 0))
X++;
» Inputs: x=5,y=-3andx=-1andy=2
» All condition outcomes considered, but decision always false

Coverage Criteria: Condition Coverage

» Goal: Exercise every sub-expression/atom/condition outcome

> atom is a Boolean expression not containing Boolean
operators (e.g., &&, | 1)

» Equivalence class: paths in which condition evaluates to same
value

» Can be considered as path partitioning if evaluation follows
some order

» think of generated intermediate representation

1
[-A] [A]
if (A && B) 2 / \ 3
* [-B] [B]
4 / \ 5

Coverage Criteria: Condition/Decision Coverage

» Combination of decision and condition coverage

» Cover all condition outcomes
» Cover all decision outcomes

» not all branches in intermediate code might be executed!
» Consider the following cases:

Al B|AwB [ﬁA]/ \

0|0 0
2 -8

11 1 /\EB]
5

» Coverage criterion is satisfied; 1 — 3 — 4 never executed!

Coverage Criteria: Modified Condition/Decision Coverage (MC/DC)

» Each condition outcome must affect the decision outcome
independently
» “fix” the value of all conditions in a decision except for one
» flipping that one condition must change the decision outcome
» each outcome of the condition must influence the outcome of
the decision at least once

Coverage Criteria: Modified Condition/Decision Coverage (MC/DC)

» Each condition outcome must affect the decision outcome
independently
» “fix” the value of all conditions in a decision except for one
» flipping that one condition must change the decision outcome
» each outcome of the condition must influence the outcome of
the decision at least once

A[B[AwB [ﬁA]/ A

0|0 0
2 [-B]

1] 1 1 /\[B]
5

» MC/DC not satisfied: neither A = 0 nor B = 0 influence
outcome 0 of A && B independently!

» needtoadd A=0,B=1andA=1,B=0

Coverage Criteria: MC/DC as defined in DO-178B

1. Every entry and exit point in the program has to be visited

. Every conditional statement (i.e., branchpoint) has to take all
possible outcomes (i.e., branches)

. Every non-constant Boolean expression has to evaluate at
least once to 1 and at least once to 0

. Every non-constant condition in a Boolean expression has to
evaluate at least once to 1 and at least once to 0

. Every non-constant condition in a Boolean expression has to
affect that expression’s outcome independently

Decision coverage requires (1, 2, 3)
Decision/Condition coverage requires (1, 2, 3, 4)

MC/DC requires 1 through 5

» Note: equating branch and decision coverage violates MC/DC
definition in DO-178B

Coverage Criteria in DO-178B

DO-178B (Software Considerations in Airborne Systems and
Equipment Certification)

» Safety standard

» Used for certification of safety critical software

> defines levels of criticality depending on potential damage of
fault:

» catastrophic

» hazardrous/sever-major
» major

» minor

» Defines corresponding criticality levels A, B, C, D

Coverage Criteria in DO-178B

» For certification, following coverage criteria apply:
A | MC/DC

B | Decision and Statement coverage
C | Statement coverage

D | None

> (also specifies other criteria, e.g., documentation, traceability
of requirements to test-cases, etc.)

Coverage Criteria: Multiple Condition Coverage

» All combinations of conditions in each decision have to be
tested
» Consider the expression (A || B) && C
» Condition/Decision coverage:

A B|C
1011
0(0]|0
» MC/DC (bold values influence decision outcome):
A B|C
0|01
101
o|1]1
1110

» Multiple condition overage: all 22 combinations!

Coverage Criteria: Can they always be satisfied?

» Some coverage criteria might not be 100% satisfiable
» Simple example: Statement coverage and unreachable code

» Coverage goal could be lower than 100%
» If coverage goal unreachable, justification may be necessary

Statement Coverage: Can it be satisfied?

> Let S,0, Si, ..., Sy be the collecting semantics of the program

Statement Coverage: Can it be satisfied?

> Let S,0, Si, ..., Sy be the collecting semantics of the program
> Let o be a function such that

| [false if S;=10
a(S) = { true otherwise

Statement Coverage: Can it be satisfied?

> Let S,0, Si, ..., Sy be the collecting semantics of the program
> Let o be a function such that

| [false if S;=10
a(S) = { true otherwise

» « induces a finite abstract domain B

» Bottom element false (L)
» Top element true (T)

Statement Coverage: Can it be satisfied?

> Let S,0, Si, ..., Sy be the collecting semantics of the program
> Let o be a function such that

| [false if S;=10
a(S) = { true otherwise

» « induces a finite abstract domain B

» Bottom element false (L)
» Top element true (T)

» Full statement coverage can be reached if

VieV.o(S)=T

Decision Coverage: Can it be satisfied?

» We define o as

(s) {o(Bj)| o € Sj} ifihas decision B;
ai) = T otherwise

(We assume each location has only one decision)

Decision Coverage: Can it be satisfied?

» We define o as

(s) {o(Bj)| o € Sj} ifihas decision B;
ai) = T otherwise

(We assume each location has only one decision)

» Abstract domain is now a lattice:
{false, true}

{false} {true}

Decision Coverage: Can it be satisfied?

» We define o as

(s) {o(Bj)| o € Sj} ifihas decision B;
ai) = T otherwise

(We assume each location has only one decision)

» Abstract domain is now a lattice:
{false, true}
{false} {true}
0

» Full decision coverage can be reached if

VieV.o(S)=T

Coverage Metrics: Can they be satisfied?

Note:
» Abstract domains for metrics we defined are finite
» even if set of reachable states is infinite

How to determine coverage

» Same principle: use abstraction function «
> But use states reached via tests

» Each o € S, is now starting state of a test
(assuming we have non-reactive programs)

Coverage Criteria

» Control flow-based coverage

Path coverage

Statement/basic block coverage

Branch coverage

Decision coverage

Condition coverage

Condition/Decision coverage

Modified condition/decision coverage (MC/DC)
Multiple decision coverage

> Data flow-based coverage
» Definition/use pairs

VYVVVYYVYYVYY

> Mutation testing
> ...

Coverage Criteria: Data-Flow

» Data flow: how do values propagate through program?
» definition: assignment of a value to a variable
» use: statement where the value is read
» def-use chain: cycle-free path, first statement defines value,
last statement uses value; value not re-defined in between

Coverage Criteria: Data-Flow

1
l lower=upper=1;

[number< 1]/ \Fnumber> 1]
lower—number\\‘ /upper—number

[(upper - lower) < €]

[(upper - lower) >

6 11
lguess - (lower;upper)
2 2
[guess® > nu.mber]/ \Ifguess < number] (Lower+upper)
return
8 9

upper = guess\ /10wer = guess
10 12

Coverage Criteria: Data-Flow

» Definitions can “flow into”
» Boolean expressions (“predicates”) in conditional statements
» variables used to define (“compute”) other values
(right-hand-side of assignment)
» Some notation:
» defs(x): locations where x is defined
» p-use(x): locations where x is used in predicate
» c-use(x): locations where x is used to compute other value
» A path is def-clear for x if
» x is not re-defined between first and last node

Coverage Criteria: Data-Flow

1
l lower=upper=1;

def-clear for lower

er> 1]
not def-clear for upper

[number<1]

3

lower=number upper=pumber

LN
AN

[(upper - lower) < €]
[(upper - lower) > €l |

6 11

— (lower-+tupper)
| guess = ererfupeer)

2 2

> number] [guess® < number]
(lower-+upper)
/ \ return “——

8 9

upper = guess\ /10wer = guess
10 12

[guess

Coverage Criteria: Data-Flow

» dpu(/, x) locations ¢’ € p-use(x) such that there is a def-clear
path from ¢ to ¢/

This are the locations which use x in a predicate and can
potentially be influenced by the definition of x at ¢

» dcu(/, x) locations ¢’ € c-use(x) such that there is a def-clear
path from ¢ to ¢’

This are the locations which use x in a computations and can
potentially be influenced by the definition of x at ¢

Coverage Criteria: Data-Flow, Example for dcu

1
lé: lower=upper=1;

[number(lfl/ \|‘:num er>
lower—number\\‘ /upper—

def-clear paths from ¢
to deu(?, 1lower)

er) < €]

[(upper - lower) > E]l

6

_ (lower+upper)

| guess = ererfupeer)

7 2
[guess®? > number] [guess® < number]

/ \ return (lower;upper)
8 9

upper = guess\ /10wer = guess
10 12

Frankl & Weyuker’s Data-Flow Coverage Criteria

For each definition of variable x and for every ¢ € defs(x), the test
suite traverses:

> all-defs: one path to some ¢ € (dpu(¢, x) U dcu(¢, x))

= all definitions get used
» all-c-uses: one path to each ¢’ € dcu(, x)

= all computations affected by each definition are executed
» all-p-uses: one path to each ¢’ € dpu(¥, x)

= all decisions affected by each definition are executed

Frankl & Weyuker’s Data-Flow Coverage Criteria

» all-c-uses/some-p-uses: one path to each ¢’ € dcu(, x), but if
decu(¥,x) = 0, then at least one path to ¢’ € dpu(¥, x)

= all definitions used, and if they affect computations, then all
affected computations are executed

» all-p-uses/some-c-uses: one path to each ¢’ € dpu(4, x), but if
dpu(¢,x) = (), then at least one path to ¢’ € dcu(?, x)

= all definitions used, and if they affect decisions, then all
affected decisions are executed

Frankl & Weyuker’s Data-Flow Coverage Criteria

» all-uses: one path to each node ¢’ € (dpu(¥,x) U dcu(¥, x))

= every computation and decision affected by definition
executed

» all-du-paths: all paths to each node ¢’ € (dpu(¢,x)Udcu(¢,x))

= like above, but all def-use paths

Frankl & Weyuker’s Data-Flow Coverage Criteria

Subsumption Lattice

all-paths

all-du-paths

all-uses

/ \

all-c-uses/some-p-uses all-p-uses/some-c-uses

\ /

all-c-uses all-defs all-p-uses

Coverage Criteria: Data-Flow

» Data-flow criteria track dependencies between variables
» Set of all pairs can be approximated by static analysis
» typically covered in course on compiler design

Coverage Criteria

» Control flow-based coverage

Path coverage

Statement/basic block coverage

Branch coverage

Decision coverage

Condition coverage

Condition/Decision coverage

Modified condition/decision coverage (MC/DC)
Multiple decision coverage

» Data flow-based coverage
» Definition/use pairs

VYVVVYYVYYVYY

> Mutation testing
> ...

Coverage Criteria: Mutation Testing

» Can we test the ability of a test-suite to detect bugs?

Coverage Criteria: Mutation Testing

» Can we test the ability of a test-suite to detect bugs?
» Idea: inject bugs into program

Coverage Criteria: Mutation Testing

» Can we test the ability of a test-suite to detect bugs?
» Idea: inject bugs into program Mutation Testing

» Uses a set of program mutations (“mutants”)
» After designing a test-suite, mutants are applied one-by-one
» Each mutant should be caught (killed) by one of the test cases!

Coverage Criteria: Mutation Testing

» Can we test the ability of a test-suite to detect bugs?
» Idea: inject bugs into program Mutation Testing

» Uses a set of program mutations (“mutants”)
» After designing a test-suite, mutants are applied one-by-one
» Each mutant should be caught (killed) by one of the test cases!

> Typical mutations: simple syntactic modifications

» Delete a statement
» Change &&to ||, -to+, <to<=, ...
» Replace variables with others in scope

Coverage Criteria: Mutation Testing

> Weak mutation testing
Test case must trigger the injected fault and result in an error

» Strong mutation testing Test case must trigger the injected
fault and result in a failure

> Obstacles:
» Equivalent mutants: Some faults can’t be triggered
(e.g., changing ==to <=in for (i=10; i==0; i--))
» Also, most “real world” bugs aren’t that simple
(does mutation testing evaluate the ability of a test-suite to
catch “real” bugs?)

Coverage Criteria: Mutation Testing — Fuzzing

» Fuzzing: a variation of Mutation Testing
» “mutate” (or randomly vary) input data
» monitor program for resulting crashes, failed assertions,
memory leaks
» c.f. fault injection

Summary: Coverage Metrics

» Coverage criteria for when program is “sufficiently” tested
» Widely used, also in certification of safety critical systems

> Are effectively a confidence measure

» do not guarantee that program is bug-free
» also, some of the definitions are ambiguous

> Never forget:
» Test-case generation driven by specification, not by coverage!

