
Programm- & Systemverifikation
Coverage Criteria

Georg Weissenbacher
184.741

What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved (simple) programs correct.
▶ We learned about black-box testing

▶ equivalence partitioning
▶ boundary testing

Black-box Testing

▶ Mainly applicable to higher levels of testing
▶ Acceptance Testing
▶ System Testing

▶ Focus on what the software does (not how it does it)
▶ Derive input equivalence classes by speculating on behaviour

Black-box Testing

float sqrt (float x);

pre: x ≥ 0
post: |result2 − x| < ε

Test cases from valid equivalence classes:
▶ +0, −0, FLT MAX, FLT EPSILON, 15.3

Test cases from invalid equivalence classes:
▶ FLT MIN, -FLT EPSILON, −7.9
▶ −∞, +∞
▶ NaN

How is sqrt implemented in practice?

Quake 3 implementation of inverse square root:

(Original comments)

link to corresponding tweet

https://twitter.com/chobbez/status/1503920846309629953?s=21

How is sqrt implemented in practice?

Quake 3 implementation of inverse square root:

(cleaned-up version)

link to corresponding tweet

https://twitter.com/LeoLambro/status/1503919575364214792?s=20&t=o_ARE6OXHi75Tpu6G5RcJQ

Testing our own (Non-Quake) Square-Root Implementation

float sqrt (float number) {

float lower = 1, upper = 1, guess;

if (number < 1)

lower = number;

else

upper = number;

while ((upper - lower) > EPSILON) {

guess = (lower + upper) / 2;

if (guess*guess > number)

upper = guess;

else

lower = guess;

}

return (lower + upper) / 2;

}

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Linearly Independent Paths of Square-Root Implementation

▶ linearly independent def
=

contains (at least) one edge not covered by other paths

1 → 2→ 3→ 5 → 11 → 12

1 → 2 → 4 → 5 → 6 → 7→ 8→ 10 → 5 → 11 → 12

1 → 2 → 4 → 5 → 6 → 7→ 9→ 10 → 5 → 11 → 12

▶ think of linear algebra and linearly independent equations

Linearly Independent Paths

▶ upper bound of test-cases necessary to test all branches
▶ in our case, 2 paths are enough:

▶ 1 → 2→ 4→ 5 → 6 → 7→ 9→ 10 → 10 → 5 → 11 → 12
▶ 1 → 2→ 3→ 5 → 6 → 7→ 8→ 10 → 10 → 5 → 11 → 12

▶ Do our test-cases cover all branches?

Linearly Independent Paths

▶ upper bound of test-cases necessary to test all branches
▶ in our case, 2 paths are enough:

▶ 1 → 2→ 4→ 5 → 6 → 7→ 9→ 10 → 10 → 5 → 11 → 12
▶ 1 → 2→ 3→ 5 → 6 → 7→ 8→ 10 → 10 → 5 → 11 → 12

▶ Do our test-cases cover all branches?

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

guess = 0.5

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

guess = 0.5

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

guess = 0.5

upper = 0.5

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

lower = 0

guess = 0.5

upper = 0.5

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

. . .

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

. . .

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

. . .

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Testing our Square-Root Implementation

1

2

3 4

5

6

7

8 9

10

11

12

number = 0

. . .

result = 0.0039

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Which “independent” path fragments were executed?

▶ Test case 0 traversed
▶ 2 → 3→ 5,
▶ 7 → 8→ 10, and
▶ 5 → 11→ 12

▶ It did not traverse
▶ 2 → 4→ 5 and
▶ 7 → 9→ 10

▶ Could we have predicted that one test case is not enough?

▶ Not without knowing the implementation!

Which “independent” path fragments were executed?

▶ Test case 0 traversed
▶ 2 → 3→ 5,
▶ 7 → 8→ 10, and
▶ 5 → 11→ 12

▶ It did not traverse
▶ 2 → 4→ 5 and
▶ 7 → 9→ 10

▶ Could we have predicted that one test case is not enough?
▶ Not without knowing the implementation!

Have we done “enough” testing?

▶ Reasonable to assume that “all of the code” should be tested!
▶ We need at least one additional test cases!

▶ Let’s have a look at 15.3, ok?

Have we done “enough” testing?

▶ Reasonable to assume that “all of the code” should be tested!
▶ We need at least one additional test cases!

▶ Let’s have a look at 15.3, ok?

GCOV Usage

This is tedious, can’t we automate this?
▶ gcc -g -fprofile-arcs -ftest-coverage -o sqrt sqrt.c

(use clang instead of gcc on newer Macs)
▶ gcov sqrt

▶ cat sqrt.c.gcov

▶ ./sqrt ; gcov sqrt

▶ cat sqrt.c.gcov

Coverage information for sqrt(0.0)

1: 6:float squrt (float number) {

1: 7: float lower = 1, upper = 1, guess;

-: 8:

1: 9: if (number < 1)

1: 10: lower = number; // sqrt < 1, but > number

-: 11: else

#####: 12: upper = number; // sqrt > 1, but < number

-: 13:

9: 14: while ((upper - lower) > EPSILON) {

7: 15: guess = (lower + upper) / 2;

7: 16: if (guess*guess > number)

7: 17: upper = guess;

-: 18: else

#####: 19: lower = guess;

7: 20: }

1: 21: return (lower + upper) / 2;

-: 22:}

Coverage information for sqrt(15.3)

1: 6:float squrt (float number) {

1: 7: float lower = 1, upper = 1, guess;

-: 8:

1: 9: if (number < 1)

#####: 10: lower = number; // sqrt < 1, but > number

-: 11: else

1: 12: upper = number; // sqrt > 1, but < number

-: 13:

13: 14: while ((upper - lower) > EPSILON) {

11: 15: guess = (lower + upper) / 2;

11: 16: if (guess*guess > number)

8: 17: upper = guess;

-: 18: else

3: 19: lower = guess;

11: 20: }

1: 21: return (lower + upper) / 2;

-: 22:}

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}
▶ Do we have to test all inputs?

▶ How many different inputs are there to sqrt(float)?

▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}

▶ Do we have to test all inputs?
▶ How many different inputs are there to sqrt(float)?

▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}
▶ Do we have to test all inputs?

▶ How many different inputs are there to sqrt(float)?

▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}
▶ Do we have to test all inputs?

▶ How many different inputs are there to sqrt(float)?
▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}
▶ Do we have to test all inputs?

▶ How many different inputs are there to sqrt(float)?
▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is “enough”?
▶ Does executing all statements guarantee correctness?

▶ What about the code f(int x) { return (1/x);}
▶ Do we have to test all inputs?

▶ How many different inputs are there to sqrt(float)?
▶ sizeof(float) = 4 bytes, so roughly 232

▶ How many different inputs are there to our AVL
implementation?

▶ Maybe visit all possible states?

Have we done “enough” testing?

What is a state?

Values of
▶ global variables

▶ stack variables
▶ heap. . .

heap

stack

void *p = malloc();

pc int x = 42;

static data
code

Have we done “enough” testing?

What is a state?

Values of
▶ global variables
▶ stack variables

▶ heap. . .

heap

stack

void *p = malloc();

pc int x = 42;

static data
code

Have we done “enough” testing?

What is a state?

Values of
▶ global variables
▶ stack variables
▶ heap. . .

heap

stack

void *p = malloc();

pc int x = 42;

static data
code

Reachable Sets of States

▶ ⟨stmt, σ⟩ → ⟨skip, σ′⟩ formalizes execution of stmt in state σ

▶ How can we define the set of reachable states?

▶ Lift → to sets of states:

stmt(S) def
= {σ′ |σ ∈ S ∧ ⟨stmt, σ⟩ → ⟨skip, σ′⟩}

▶ Recall rule for assigning expression e to x :

⟨x := e, σ⟩ → ⟨skip, σ[x 7→ σ(e)]⟩

▶ New rule for conditional edge in our CFG:

σ(e) = true
⟨[e], σ⟩ → ⟨skip, σ⟩

(what about false?)

Reachable Sets of States

▶ ⟨stmt, σ⟩ → ⟨skip, σ′⟩ formalizes execution of stmt in state σ

▶ How can we define the set of reachable states?
▶ Lift → to sets of states:

stmt(S) def
= {σ′ |σ ∈ S ∧ ⟨stmt, σ⟩ → ⟨skip, σ′⟩}

▶ Recall rule for assigning expression e to x :

⟨x := e, σ⟩ → ⟨skip, σ[x 7→ σ(e)]⟩

▶ New rule for conditional edge in our CFG:

σ(e) = true
⟨[e], σ⟩ → ⟨skip, σ⟩

(what about false?)

Reachable Sets of States

▶ ⟨stmt, σ⟩ → ⟨skip, σ′⟩ formalizes execution of stmt in state σ

▶ How can we define the set of reachable states?
▶ Lift → to sets of states:

stmt(S) def
= {σ′ |σ ∈ S ∧ ⟨stmt, σ⟩ → ⟨skip, σ′⟩}

▶ Recall rule for assigning expression e to x :

⟨x := e, σ⟩ → ⟨skip, σ[x 7→ σ(e)]⟩

▶ New rule for conditional edge in our CFG:

σ(e) = true
⟨[e], σ⟩ → ⟨skip, σ⟩

(what about false?)

Reachable Sets of States

▶ ⟨stmt, σ⟩ → ⟨skip, σ′⟩ formalizes execution of stmt in state σ

▶ How can we define the set of reachable states?
▶ Lift → to sets of states:

stmt(S) def
= {σ′ |σ ∈ S ∧ ⟨stmt, σ⟩ → ⟨skip, σ′⟩}

▶ Recall rule for assigning expression e to x :

⟨x := e, σ⟩ → ⟨skip, σ[x 7→ σ(e)]⟩

▶ New rule for conditional edge in our CFG:

σ(e) = true
⟨[e], σ⟩ → ⟨skip, σ⟩

(what about false?)

Reachable Sets of States

▶ ⟨stmt, σ⟩ → ⟨skip, σ′⟩ formalizes execution of stmt in state σ

▶ How can we define the set of reachable states?
▶ Lift → to sets of states:

stmt(S) def
= {σ′ |σ ∈ S ∧ ⟨stmt, σ⟩ → ⟨skip, σ′⟩}

▶ Recall rule for assigning expression e to x :

⟨x := e, σ⟩ → ⟨skip, σ[x 7→ σ(e)]⟩

▶ New rule for conditional edge in our CFG:

σ(e) = true
⟨[e], σ⟩ → ⟨skip, σ⟩

(what about false?)

Collecting Semantics

We can now define a collecting semantics for our CFG
▶ Let ⟨V ,E⟩ be a control-flow graph with entry node ∈ V
▶ stmt⟨i,j⟩ is the statement for edge ⟨i, j⟩ ∈ E

▶ We start out with all states reachable at :

S = {σ |σ is a possible variable assignment}

▶ Then we recursively define states at successor nodes j :

Sj =
⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

▶ Initialize all other nodes with ∅
▶ Iterate computation until fixpoint is found

Collecting Semantics

We can now define a collecting semantics for our CFG
▶ Let ⟨V ,E⟩ be a control-flow graph with entry node ∈ V
▶ stmt⟨i,j⟩ is the statement for edge ⟨i, j⟩ ∈ E
▶ We start out with all states reachable at :

S = {σ |σ is a possible variable assignment}

▶ Then we recursively define states at successor nodes j :

Sj =
⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

▶ Initialize all other nodes with ∅
▶ Iterate computation until fixpoint is found

Collecting Semantics

We can now define a collecting semantics for our CFG
▶ Let ⟨V ,E⟩ be a control-flow graph with entry node ∈ V
▶ stmt⟨i,j⟩ is the statement for edge ⟨i, j⟩ ∈ E
▶ We start out with all states reachable at :

S = {σ |σ is a possible variable assignment}

▶ Then we recursively define states at successor nodes j :

Sj =
⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

▶ Initialize all other nodes with ∅
▶ Iterate computation until fixpoint is found

Collecting Semantics

We can now define a collecting semantics for our CFG
▶ Let ⟨V ,E⟩ be a control-flow graph with entry node ∈ V
▶ stmt⟨i,j⟩ is the statement for edge ⟨i, j⟩ ∈ E
▶ We start out with all states reachable at :

S = {σ |σ is a possible variable assignment}

▶ Then we recursively define states at successor nodes j :

Sj =
⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

▶ Initialize all other nodes with ∅
▶ Iterate computation until fixpoint is found

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅

1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅

2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}

3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}

4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}

5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}

6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}

7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Simple Example: Collecting Semantics

0

1

2

3 4

5

6

i := i%4

[i > 0]

[i%2==1] [i%2==0]

i = i+1 i = i/2

[i ≤ 0]

0 1 2 3 4 5 6
0 N ∅ ∅ ∅ ∅ ∅ ∅
1 N [0..3] ∅ ∅ ∅ ∅ ∅
2 N [0..3] [1..3] ∅ ∅ ∅ {0}
3 N [0..3] [1..3] {1, 3} {2} ∅ {0}
4 N [0..3] [1..3] {1, 3} {2} {1, 2, 4} {0}
5 N [0..4] [1..3] {1, 3} {2} {1, 2, 4} {0}
6 N [0..4] [1..4] {1, 3} {2} {1, 2, 4} {0}
7 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}
8 N [0..4] [1..4] {1, 3} {2, 4} {1, 2, 4} {0}

Collecting Semantics

How many possible states are there in general?

▶ ∞, in theory
▶ Collecting semantics generally defined as least fixpoint of

λSj .

{
{σ |σ is possible assignment} if i = entrynode⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

Collecting Semantics

How many possible states are there in general?
▶ ∞, in theory

▶ Collecting semantics generally defined as least fixpoint of

λSj .

{
{σ |σ is possible assignment} if i = entrynode⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

Collecting Semantics

How many possible states are there in general?
▶ ∞, in theory
▶ Collecting semantics generally defined as least fixpoint of

λSj .

{
{σ |σ is possible assignment} if i = entrynode⋃

i∈{n|⟨n,j⟩∈E} stmt⟨i,j⟩(Si) if j ∈ V \ { }

Finite State Programs

How about finite state programs?
▶ Assume that there are only n different elements that we can

insert into our AVL tree.
Element 1 2 . . . n
Inserted ✓ ✗ . . . ✓

▶ Finitely many states

▶ But still 2n possible sets (and even more trees)!

Finite State Programs

How about finite state programs?
▶ Assume that there are only n different elements that we can

insert into our AVL tree.
Element 1 2 . . . n
Inserted ✓ ✗ . . . ✓

▶ Finitely many states
▶ But still 2n possible sets (and even more trees)!

Have we done “enough” testing?

But aren’t many trees “similar”?

Elements 1 2 3 4 5
State 1 ✓ ✓ ✗ ✗ ✗

State 2 ✗ ✓ ✓ ✗ ✗

▶ Maybe, we don’t need to “cover” all of them?
▶ What is the problem with this argument?

▶ it is not formally proven (maybe even wrong)
▶ it is specific to one program

Have we done “enough” testing?

But aren’t many trees “similar”?

Elements 1 2 3 4 5
State 1 ✓ ✓ ✗ ✗ ✗

State 2 ✗ ✓ ✓ ✗ ✗

▶ Maybe, we don’t need to “cover” all of them?
▶ What is the problem with this argument?

▶ it is not formally proven (maybe even wrong)
▶ it is specific to one program

Coverage Criteria

Coverage Criteria

▶ Common agreement on what “sufficiently tested” means
▶ coverage criteria are about confidence, trust
▶ required for certification (according to industry standards)

▶ Important: achieving coverage is not a goal in itself
▶ “The journey is the reward:” Testing until coverage is reached
▶ Test-cases should be generated from requirements

Coverage Criteria

Coverage criteria define equivalence classes with respect to
program behaviour

▶ Control flow-based coverage
▶ Path coverage
▶ Statement/basic block coverage
▶ Branch coverage
▶ Decision coverage
▶ Condition coverage
▶ Condition/Decision coverage
▶ Modified condition/decision coverage (MC/DC)
▶ Multiple decision coverage

▶ Data flow-based coverage
▶ Definition/use pairs

▶ Mutation testing
▶ . . .

Coverage Criteria: Path coverage

▶ Goal: Execute every path of the program
▶ Independently of the variable values along that path
▶ Every path is an equivalence class

▶ What’s the number of paths through the following program?

while (1) {

if (getchar () == EOF)

break;

}

▶ In general, path coverage can’t be achieved

Coverage Criteria: Path coverage

▶ Goal: Execute every path of the program
▶ Independently of the variable values along that path
▶ Every path is an equivalence class

▶ What’s the number of paths through the following program?

while (1) {

if (getchar () == EOF)

break;

}

▶ In general, path coverage can’t be achieved

Coverage Criteria: Statement Coverage

▶ Goal: Execute every program statement at least once
▶ All traces visiting that statement build equivalence class

▶ Let ℓ be program location of said statement

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ}

Coverage Criteria: Statement Coverage

▶ Goal: Execute every program statement at least once
▶ All traces visiting that statement build equivalence class
▶ Let ℓ be program location of said statement

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ}

Coverage Criteria: Statement Coverage

▶ Bad criterion:
▶ consider test case x = 5 for following code fragment:

if (x > 1) {

x++;

}

int y = x/y;

▶ All statements executed, but else branch never taken
▶ May not exercise all outcomes of a conditional statement

Coverage Criteria: Statement Coverage

▶ Bad criterion:
▶ consider test case x = 5 for following code fragment:

if (x > 1) {

x++;

}

int y = x/y;

▶ All statements executed, but else branch never taken
▶ May not exercise all outcomes of a conditional statement

Coverage Criteria: Branch Coverage

▶ Goal: Execute all branches in a program
▶ Equivalence class: paths execute a certain branch

▶ Usually implies statement coverage (but see comments later)

Coverage Criteria: Decision Coverage

▶ Goal: Exercise every decision outcome at least once
▶ decision is a “Boolean expression composed of conditions and

zero or more Boolean operators”
▶ EC: traces in which decision evaluates to same value

▶ For each program location ℓ with decision B
▶ Need one path from

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ ∧ σi |= B}

▶ and one from

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ ∧ σi |= ¬B}

Coverage Criteria: Decision Coverage

▶ Goal: Exercise every decision outcome at least once
▶ decision is a “Boolean expression composed of conditions and

zero or more Boolean operators”
▶ EC: traces in which decision evaluates to same value
▶ For each program location ℓ with decision B

▶ Need one path from

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ ∧ σi |= B}

▶ and one from

{π|π = σ0, . . . σn ∧ ∃i.0 ≤ i ≤ n ∧ σi(pc) = ℓ ∧ σi |= ¬B}

Coverage Criteria: Decision Coverage

▶ Subtly different from “branch coverage”
▶ Vacuously true for the following program:

x = y;

x++;

▶ all decisions covered even without testing
▶ Therefore, does not imply statement coverage

Coverage Criteria: Decision Coverage vs. Branch Coverage

Danger, Will Robinson:

branch coverage ̸= decision coverage

At least not in general!
▶ Numerous subtle differences
▶ Inconsistent definitions (in industry standards)
▶ In particular, neither metric subsumes the other

Coverage Criteria: Definition of “Branch”

▶ branch (1) (software). (A) A computer program construct in
which one of two or more alternative sets of programs
statements is selected for execution. (B) A point in a computer
program at which one of two or more alternative sets of
program statements is selected for execution. Syn:
branchpoint. [. . .]

▶ branch testing. Testing designed to execute each outcome of
each decision point in a computer program. Contrast with:
path testing; statement testing.

IEEE Std 100-1992 Standard Dictionary of Electrical and Electronic Terms

Coverage Criteria: Definition of “Branch”

imprecise definitions of “branch”

▶ Some definitions may or may not include
▶ unconditional branches (goto)
▶ function calls
▶ fall-throughs (in switch/case constructs

▶ Example

x++;

goto L;

...

L: y++;

▶ Contains no decisions
▶ But: contains a non-conditional branch

Coverage Criteria: Definition of “Decision”

expressions with side effects

▶ Consider the following example:

if ((y > 1) && ((z > 1) || foo())

x = y;

else

x = z;

▶ “Decision” evaluates to true if y > 1 and z > 1
▶ “Decision” evaluates to false if y <= 1
▶ foo is never executed (short-circuited evaluation!)
▶ covered by branch coverage, if function call a is branch

Coverage Criteria: Definition of “Decision”

▶ “Decision” is defined as “Boolean expression”
▶ not necessarily only at branching points!

x = x + 1;

b = (x>0);

y = x;

▶ Strictly speaking, have to cover every outcome of x>0
▶ E.g., enforced in DO-178B standard
▶ This code doesn’t contain any branch!

Coverage Criteria: Branch Coverage vs Decision Coverage

Branch coverage implies decision coverage
▶ if “decision” means Boolean expressions at branching points

only

Decision coverage is stronger than branch coverage
▶ if “branch” doesn’t include unconditional jumps
▶ if “decision” refers to all Boolean expressions

Often branch and decision outcome are used synonymously

Meaning varies, depending on industry standard that applies
▶ Also: interpreted differently by different coverage tools

Coverage Criteria: Branch Coverage vs Decision Coverage

Branch coverage implies decision coverage
▶ if “decision” means Boolean expressions at branching points

only

Decision coverage is stronger than branch coverage
▶ if “branch” doesn’t include unconditional jumps
▶ if “decision” refers to all Boolean expressions

Often branch and decision outcome are used synonymously

Meaning varies, depending on industry standard that applies
▶ Also: interpreted differently by different coverage tools

Coverage Criteria: Condition Coverage

▶ Goal: Exercise every sub-expression/atom/condition outcome
▶ atom is a Boolean expression not containing Boolean

operators (e.g., &&, ||)
▶ Equivalence class: paths in which condition evaluates to same

value
▶ Does not imply decision coverage!

▶ Consider the following program fragment:

if ((x > 0) && (y > 0))

x++;

▶ Inputs: x = 5, y = -3 and x = -1 and y = 2
▶ All condition outcomes considered, but decision always false

Coverage Criteria: Condition Coverage

▶ Goal: Exercise every sub-expression/atom/condition outcome
▶ atom is a Boolean expression not containing Boolean

operators (e.g., &&, ||)
▶ Equivalence class: paths in which condition evaluates to same

value
▶ Can be considered as path partitioning if evaluation follows

some order
▶ think of generated intermediate representation

1

32

4 5

[A][¬A]

[B][¬B]
if (A && B)

Coverage Criteria: Condition/Decision Coverage

▶ Combination of decision and condition coverage
▶ Cover all condition outcomes
▶ Cover all decision outcomes

▶ not all branches in intermediate code might be executed!
▶ Consider the following cases:

1

32

4 5

[A][¬A]

[B][¬B]

A B A && B
0 0 0
1 1 1

▶ Coverage criterion is satisfied; 1 → 3 → 4 never executed!

Coverage Criteria: Modified Condition/Decision Coverage (MC/DC)

▶ Each condition outcome must affect the decision outcome
independently
▶ “fix” the value of all conditions in a decision except for one
▶ flipping that one condition must change the decision outcome
▶ each outcome of the condition must influence the outcome of

the decision at least once

1

32

4 5

[A][¬A]

[B][¬B]

A B A && B
0 0 0
1 1 1

▶ MC/DC not satisfied: neither A = 0 nor B = 0 influence
outcome 0 of A && B independently!
▶ need to add A = 0,B = 1 and A = 1,B = 0

Coverage Criteria: Modified Condition/Decision Coverage (MC/DC)

▶ Each condition outcome must affect the decision outcome
independently
▶ “fix” the value of all conditions in a decision except for one
▶ flipping that one condition must change the decision outcome
▶ each outcome of the condition must influence the outcome of

the decision at least once

1

32

4 5

[A][¬A]

[B][¬B]

A B A && B
0 0 0
1 1 1

▶ MC/DC not satisfied: neither A = 0 nor B = 0 influence
outcome 0 of A && B independently!
▶ need to add A = 0,B = 1 and A = 1,B = 0

Coverage Criteria: MC/DC as defined in DO-178B

1. Every entry and exit point in the program has to be visited

2. Every conditional statement (i.e., branchpoint) has to take all
possible outcomes (i.e., branches)

3. Every non-constant Boolean expression has to evaluate at
least once to 1 and at least once to 0

4. Every non-constant condition in a Boolean expression has to
evaluate at least once to 1 and at least once to 0

5. Every non-constant condition in a Boolean expression has to
affect that expression’s outcome independently

▶ Decision coverage requires (1, 2, 3)
▶ Decision/Condition coverage requires (1, 2, 3, 4)
▶ MC/DC requires 1 through 5

▶ Note: equating branch and decision coverage violates MC/DC
definition in DO-178B

Coverage Criteria in DO-178B

DO-178B (Software Considerations in Airborne Systems and
Equipment Certification)

▶ Safety standard
▶ Used for certification of safety critical software
▶ defines levels of criticality depending on potential damage of

fault:
▶ catastrophic
▶ hazardrous/sever-major
▶ major
▶ minor

▶ Defines corresponding criticality levels A, B, C, D

Coverage Criteria in DO-178B

▶ For certification, following coverage criteria apply:

A MC/DC
B Decision and Statement coverage
C Statement coverage
D None

▶ (also specifies other criteria, e.g., documentation, traceability
of requirements to test-cases, etc.)

Coverage Criteria: Multiple Condition Coverage

▶ All combinations of conditions in each decision have to be
tested

▶ Consider the expression (A || B) && C
▶ Condition/Decision coverage:

A B C

1 1 1
0 0 0

▶ MC/DC (bold values influence decision outcome):
A B C

0 0 1
1 0 1
0 1 1
1 1 0

▶ Multiple condition overage: all 23 combinations!

Coverage Criteria: Can they always be satisfied?

▶ Some coverage criteria might not be 100% satisfiable
▶ Simple example: Statement coverage and unreachable code

▶ Coverage goal could be lower than 100%
▶ If coverage goal unreachable, justification may be necessary

Statement Coverage: Can it be satisfied?

▶ Let S ,S1, . . . ,Sn be the collecting semantics of the program

▶ Let α be a function such that

α(Si)
def
=

{
false if Si = ∅
true otherwise

▶ α induces a finite abstract domain B
▶ Bottom element false (⊥)
▶ Top element true (⊤)

▶ Full statement coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Statement Coverage: Can it be satisfied?

▶ Let S ,S1, . . . ,Sn be the collecting semantics of the program
▶ Let α be a function such that

α(Si)
def
=

{
false if Si = ∅
true otherwise

▶ α induces a finite abstract domain B
▶ Bottom element false (⊥)
▶ Top element true (⊤)

▶ Full statement coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Statement Coverage: Can it be satisfied?

▶ Let S ,S1, . . . ,Sn be the collecting semantics of the program
▶ Let α be a function such that

α(Si)
def
=

{
false if Si = ∅
true otherwise

▶ α induces a finite abstract domain B
▶ Bottom element false (⊥)
▶ Top element true (⊤)

▶ Full statement coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Statement Coverage: Can it be satisfied?

▶ Let S ,S1, . . . ,Sn be the collecting semantics of the program
▶ Let α be a function such that

α(Si)
def
=

{
false if Si = ∅
true otherwise

▶ α induces a finite abstract domain B
▶ Bottom element false (⊥)
▶ Top element true (⊤)

▶ Full statement coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Decision Coverage: Can it be satisfied?

▶ We define α as

α(Si)
def
=

{
{σ(Bi) | σ ∈ Si} if i has decision Bi

⊤ otherwise

(We assume each location has only one decision)

▶ Abstract domain is now a lattice:

{false, true}

{false} {true}

∅

▶ Full decision coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Decision Coverage: Can it be satisfied?

▶ We define α as

α(Si)
def
=

{
{σ(Bi) | σ ∈ Si} if i has decision Bi

⊤ otherwise

(We assume each location has only one decision)

▶ Abstract domain is now a lattice:

{false, true}

{false} {true}

∅

▶ Full decision coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Decision Coverage: Can it be satisfied?

▶ We define α as

α(Si)
def
=

{
{σ(Bi) | σ ∈ Si} if i has decision Bi

⊤ otherwise

(We assume each location has only one decision)

▶ Abstract domain is now a lattice:

{false, true}

{false} {true}

∅

▶ Full decision coverage can be reached if

∀i ∈ V . α(Si) = ⊤

Coverage Metrics: Can they be satisfied?

Note:
▶ Abstract domains for metrics we defined are finite
▶ even if set of reachable states is infinite

How to determine coverage

▶ Same principle: use abstraction function α

▶ But use states reached via tests
▶ Each σ ∈ S is now starting state of a test

(assuming we have non-reactive programs)

Coverage Criteria

▶ Control flow-based coverage
▶ Path coverage
▶ Statement/basic block coverage
▶ Branch coverage
▶ Decision coverage
▶ Condition coverage
▶ Condition/Decision coverage
▶ Modified condition/decision coverage (MC/DC)
▶ Multiple decision coverage

▶ Data flow-based coverage
▶ Definition/use pairs

▶ Mutation testing
▶ . . .

Coverage Criteria: Data-Flow

▶ Data flow: how do values propagate through program?
▶ definition: assignment of a value to a variable
▶ use: statement where the value is read
▶ def-use chain: cycle-free path, first statement defines value,

last statement uses value; value not re-defined in between

Coverage Criteria: Data-Flow

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

Coverage Criteria: Data-Flow

▶ Definitions can “flow into”
▶ Boolean expressions (“predicates”) in conditional statements
▶ variables used to define (“compute”) other values

(right-hand-side of assignment)
▶ Some notation:

▶ defs(x): locations where x is defined
▶ p-use(x): locations where x is used in predicate
▶ c-use(x): locations where x is used to compute other value

▶ A path is def-clear for x if
▶ x is not re-defined between first and last node

Coverage Criteria: Data-Flow

1

2

3 4

5

6

7

8 9

10

11

12

lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

def-clear for lower
not def-clear for upper

Coverage Criteria: Data-Flow

▶ dpu(ℓ, x) locations ℓ′ ∈ p-use(x) such that there is a def-clear
path from ℓ to ℓ′

This are the locations which use x in a predicate and can
potentially be influenced by the definition of x at ℓ

▶ dcu(ℓ, x) locations ℓ′ ∈ c-use(x) such that there is a def-clear
path from ℓ to ℓ′

This are the locations which use x in a computations and can
potentially be influenced by the definition of x at ℓ

Coverage Criteria: Data-Flow, Example for dcu

1

2

3 4

5

6

7

8 9

10

11

12

ℓ : lower=upper=1;

[number<1] [number≥ 1]

upper=numberlower=number

[(upper - lower) > ϵ]

guess =
(lower+upper)

2

[guess2 > number] [guess2 ≤ number]

upper = guess lower = guess

[(upper - lower) ≤ ϵ]

return
(lower+upper)

2

def-clear paths from ℓ

to dcu(ℓ, lower)

Frankl & Weyuker’s Data-Flow Coverage Criteria

For each definition of variable x and for every ℓ ∈ defs(x), the test
suite traverses:
▶ all-defs: one path to some ℓ′ ∈ (dpu(ℓ, x) ∪ dcu(ℓ, x))

⇒ all definitions get used
▶ all-c-uses: one path to each ℓ′ ∈ dcu(ℓ, x)

⇒ all computations affected by each definition are executed
▶ all-p-uses: one path to each ℓ′ ∈ dpu(ℓ, x)

⇒ all decisions affected by each definition are executed

Frankl & Weyuker’s Data-Flow Coverage Criteria

▶ all-c-uses/some-p-uses: one path to each ℓ′ ∈ dcu(ℓ, x), but if
dcu(ℓ, x) = ∅, then at least one path to ℓ′ ∈ dpu(ℓ, x)

⇒ all definitions used, and if they affect computations, then all
affected computations are executed

▶ all-p-uses/some-c-uses: one path to each ℓ′ ∈ dpu(ℓ, x), but if
dpu(ℓ, x) = ∅, then at least one path to ℓ′ ∈ dcu(ℓ, x)

⇒ all definitions used, and if they affect decisions, then all
affected decisions are executed

Frankl & Weyuker’s Data-Flow Coverage Criteria

▶ all-uses: one path to each node ℓ′ ∈ (dpu(ℓ, x) ∪ dcu(ℓ, x))

⇒ every computation and decision affected by definition
executed

▶ all-du-paths: all paths to each node ℓ′ ∈ (dpu(ℓ, x)∪ dcu(ℓ, x))

⇒ like above, but all def-use paths

Frankl & Weyuker’s Data-Flow Coverage Criteria

Subsumption Lattice

all-paths

all-du-paths

all-uses

all-c-uses/some-p-uses all-p-uses/some-c-uses

all-defsall-c-uses all-p-uses

Coverage Criteria: Data-Flow

▶ Data-flow criteria track dependencies between variables
▶ Set of all pairs can be approximated by static analysis

▶ typically covered in course on compiler design

Coverage Criteria

▶ Control flow-based coverage
▶ Path coverage
▶ Statement/basic block coverage
▶ Branch coverage
▶ Decision coverage
▶ Condition coverage
▶ Condition/Decision coverage
▶ Modified condition/decision coverage (MC/DC)
▶ Multiple decision coverage

▶ Data flow-based coverage
▶ Definition/use pairs

▶ Mutation testing
▶ . . .

Coverage Criteria: Mutation Testing

▶ Can we test the ability of a test-suite to detect bugs?

▶ Idea: inject bugs into program Mutation Testing
▶ Uses a set of program mutations (“mutants”)
▶ After designing a test-suite, mutants are applied one-by-one
▶ Each mutant should be caught (killed) by one of the test cases!

▶ Typical mutations: simple syntactic modifications
▶ Delete a statement
▶ Change && to ||, - to +, < to <=, . . .
▶ Replace variables with others in scope

Coverage Criteria: Mutation Testing

▶ Can we test the ability of a test-suite to detect bugs?
▶ Idea: inject bugs into program

Mutation Testing
▶ Uses a set of program mutations (“mutants”)
▶ After designing a test-suite, mutants are applied one-by-one
▶ Each mutant should be caught (killed) by one of the test cases!

▶ Typical mutations: simple syntactic modifications
▶ Delete a statement
▶ Change && to ||, - to +, < to <=, . . .
▶ Replace variables with others in scope

Coverage Criteria: Mutation Testing

▶ Can we test the ability of a test-suite to detect bugs?
▶ Idea: inject bugs into program Mutation Testing

▶ Uses a set of program mutations (“mutants”)
▶ After designing a test-suite, mutants are applied one-by-one
▶ Each mutant should be caught (killed) by one of the test cases!

▶ Typical mutations: simple syntactic modifications
▶ Delete a statement
▶ Change && to ||, - to +, < to <=, . . .
▶ Replace variables with others in scope

Coverage Criteria: Mutation Testing

▶ Can we test the ability of a test-suite to detect bugs?
▶ Idea: inject bugs into program Mutation Testing

▶ Uses a set of program mutations (“mutants”)
▶ After designing a test-suite, mutants are applied one-by-one
▶ Each mutant should be caught (killed) by one of the test cases!

▶ Typical mutations: simple syntactic modifications
▶ Delete a statement
▶ Change && to ||, - to +, < to <=, . . .
▶ Replace variables with others in scope

Coverage Criteria: Mutation Testing

▶ Weak mutation testing
Test case must trigger the injected fault and result in an error

▶ Strong mutation testing Test case must trigger the injected
fault and result in a failure

▶ Obstacles:
▶ Equivalent mutants: Some faults can’t be triggered

(e.g., changing == to <= in for (i=10; i==0; i--))
▶ Also, most “real world” bugs aren’t that simple

(does mutation testing evaluate the ability of a test-suite to
catch “real” bugs?)

Coverage Criteria: Mutation Testing – Fuzzing

▶ Fuzzing: a variation of Mutation Testing
▶ “mutate” (or randomly vary) input data
▶ monitor program for resulting crashes, failed assertions,

memory leaks
▶ c.f. fault injection

Summary: Coverage Metrics

▶ Coverage criteria for when program is “sufficiently” tested
▶ Widely used, also in certification of safety critical systems
▶ Are effectively a confidence measure

▶ do not guarantee that program is bug-free
▶ also, some of the definitions are ambiguous

▶ Never forget:
▶ Test-case generation driven by specification, not by coverage!

