
Advanced Software Engineering - WS22

SUMMARY + LECTURE NOTES

Release Your Stuff 3 Times a Day
● Dependency Management

○ BAD example
■ managing dependencies by keeping the files in SCM or other file

storage
■ Problems

● loose version information (unless included in filename or
package/manifest)

● no standardized naming
● loose trace of source (where downloaded…)
● no info on transitive dependencies
● updated versions need to be added manually
● SCM is not built for versioning binaries (no diff, high resource

usage,...)
○ Proper handling

■ Declare which libraries are used + version of the library
■ Declare context the library is used in (test / production)
■ Declare where these libraries are coming from
■ Used libraries declare which libraries they are using themselves
■ Automatically retrieve all required libraries from a repository

○ Tools:
■ Maven - also for build management, testing, release management,

executing plugins,...

■ Gradle - DSL instead of XML, official build tool for Android
■ Apache Ivy - pure dependency management

○ Benefits of dependency management systems
■ Automated Bill-of-Materials (BoM) - if software is sold customer might

want to know, what other libs,... are used (licensing)
■ CVE (Common Vulnerability & Exposure) Scanning
■ OSS License Compliance

● check dependencies for appropriate licensing

● no viral licenses “infect” your project (copy left,...)
● take action to ensure compliance with individual licenses

○ Semantic Versioning
■ Set of rules for software with public API
■ is a best practice not a fixed rule
■ Pattern: X.Y.Z

● X: Major version, incremented if backwards incompatible
changes are introduced

● Y: Minor version, incremented if new, backwards compatible
features are introduced

● Z: Patch version, incremented if only backwards compatible
bug fixes are introduced

■ E.g. standard maven versioning
● 3.0.0-SNAPSHOT (snapshot is the qualifier for nightly/local

build; SNAPSHOT tells maven to not assume that this version
will not change)

● 2.0.0-RC3 (release candidate - not standardised!)
● 2.0.4 (final versions usually have no qualifier)

■ do not change something and publish with same version number - just
use a new one

● Repository Management
○ Tasks:

■ Manage all used (third party) dependencies & repositories (even the
ones not readily available in public repos)

■ Proxy and cache remote repositories
● results in faster builds
● easy traceability
● fault tolerance
● enhanced security (supply chain attacks - exfiltrating system

via third-party product that has been granted access)
■ Manage all artefacts created by your project (binaries, sources,

documentation, configuration)
● central location for all artefacts -> accessibility & easier

backups
● no need to always build complete project
● archive for past releases
● write once (should never change) - else this might confuse

users
○ Tools:

■ jFrog Artifactory (Java)
● open source and commercial version

■ Sonatype Nexus (Java)
● open source version and commercial version (with support)

■ Apache Archiva (Java)
● open source with fewer features (but full-fledged repo)

■ most ecosystems have native mechanisms
● node.js - npm

● python - PyPI
● ruby and rails - RubyGems
● Perl - CPAN
● C/C++ is fragmented - e.g. Conan

■ Java does not have an official archive - but Maven Central is de facto
standard

● Build Management and Automation
○ Tasks

■ Retrieve dependencies
■ Prepare resources
■ Compile source code to binary format
■ Package binaries & resources
■ Execute automated test cases
■ Execute static code analysis and reporting
■ Generate documentation
■ Run application locally
■ Deploy application
■ Release & publish artefacts

○ Build Management Tools
■ make

● controls the generation of executables from source files
● makefile determines how to build the program
● only perform step (target) when source has changed
● problems with makefiles

○ structuring is not predefined (e.g. you can write a file
with 1000 lines or with 10)

○ everyone writes makefiles differently (has to be read
just as source code)

○ configuration management does not exist ->
pre-processing is necessary

■ Apache Ant / NAnt
■ Apache Maven

● Convention over Configuration
○ every build is done in the same order (phases are

ordered)
○ plugins enable work in phases (there is a standard

config that of course can be changed)
○ you cannot force maven to execute phases in a

different order
■ Gradle
■ MSBuild
■ Rake,...

● Release Management
○ goal: create stable reproducible artefacts
○ maven-release-plugin codifies best practices and provides safety nets

■ Step 1: maven release:prepare

● verify no un-commited changes & no SNAPSHOT
dependencies

● build and execute tests
● set release version number
● commit to SCM with tag
● increase version number, append -SNAPSHOT and update

SCM section (new version to keep working while the release
version is released)

● commit to SCM
■ Step 2: maven release:perform

● checkout previously created tag
● build and deploy artefact to local and remote repo (release

should include (java)doc and sources)
■ there is a roll-back feature (for step 1) - step 2 cannot be rolled-back

as the code is already released publicly
○ changelog / release notes

■ content depends on recipient
● technical - simple issue tracking report
● non-technical - features and functional bugs
● communicate to stakeholders (QA, PM, dependent projects,

end user) - what has changed since last release
■ Tools - Issue Trackers (minimize overhead, align versioning between

issue tracking and code base) -> discipline necessary

● Continuous Integration
○ Principles after Fowler: (10)

■ Maintain code repo
■ Automate Build
■ Make build self-testing
■ Everyone commits to the baseline every day
■ Every commit (to baseline) should be build
■ Keep the build fast
■ Test in a clone of the production environment
■ Make it easy to get latest deliverables
■ Everyone can see the results of the latest build
■ Automate deployment

○ Tasks:
■ Execute a full build of the project after every commit
■ always know & communicate the state of the repo
■ Publish your build artefacts (binaries, doc, config, reports)
■ Deploy and run your application

● binaries and config have to fit together
● usually not done continuously (as in every few minutes) but as

a nightly build or when needed
○ Terminology

■ Continuous Integration (CI)
● constantly merge development work with mainline
● build and test automatically

● Tools
○ Hudson/Jenkins
○ Apache Continuum
○ CruiseControl
○ Gitlab CI

● Pipelines:
○ logically structure CI build into series of steps
○ information of CI config is stored alongside code (e.g

gitlab-ci.yml, Jenkinsfile)
■ Continuous Delivery

● continuously deliver your code to a staging environment
● deployment to production requires manual interaction

■ Continuous Deployment
● automatic deployment of code from SCM to PRODUCTION
● requires CI and CD to be in place

● Put it all together
○ Enterprise

■ private setup - usually on premises
■ resource intensive - hardware (server, storage, network, rack,..) and

human (admin, config, know-how,...)
■ high entry cost
■ full control and flexibility

● integration with existing resources - e.g. LDAP/Active Directory
● choose the tools you need
● use your infrastructure (security!)

■ integration of tools often hard
■ scalability can be an issue for large organizations
■ support only for individual, commercial tools

○ Cloud
■ everything is hosted by external service provider(s)
■ easy setup (fully web-based config)
■ good integration of selected tools (provider is responsible for and

supports complete tool chain)
■ easier scalable
■ source code leaves own servers/network/premises

● often also the country (legal implications)
■ Tools

● Source Code Management
○ GitHub
○ BitBucket

● CI
○ Travis CI
○ CloudBees

● Repository Management
○ BinTray
○ CloudBees

● Development Server/PaaS
○ AWS

○ Google App Engine

Case Study - Vienna International Airport
● Complex software

○ Dependable Software
■ Attributes

● availability - readiness for correct service
● reliability - continuity of correct service
● safety - absence of catastrophic consequences for the user(s)

and the environment
● confidentiality - absence of unauthorized disclosure of

information
● integrity - absence of improper system state alterations
● maintainability - ability to undergo repairs and modifications

■ Means
● Fault prevention

○ Quality control
○ Software design - structured programming, information

hiding, modularization
● Fault tolerance

○ Error detection and subsequent system recovery
○ Error handling - roll-back vs. roll-forward
○ Redundancy: fault masking, voting algorithms
○ Fault isolation

● Fault removal
○ Verification (static, dynamic), diagnosis, correction
○ Fault injection (test error handling)
○ Corrective and preventive maintenance

● Fault forecasting
○ Qualitative - identify, classify, rank
○ Quantitative - probability model (stochastic)

■ Threats
● Faults - abnormal condition that can cause element to fail (e.g.

uncaught null pointer exception)
● Errors - discrepancy between observed and actual correct

value or condition (e.g. null value when not valid)

● Failures - termination of ability of an element (e.g. malfunction
or crash of service - i.e. due to unhandled nullpointer)

■ Safety culture problems
● management

○ diffusion of responsibility and authority
○ limited communication channels and poor information

flow
● technical

○ inadequate system and software engineering
■ specifications
■ unnecessary complexity and functionality
■ software reuse or changes without appropriate

safety analysis (think of Ariane; reusing old
well-tested software is cost-efficient - however
must be tested in new environment thoroughly
as well)

■ inadequate review activities
■ ineffective system safety engineering
■ flaws in tests and simulation (environment)
■ inadequate human factors design for software

○ Software Aging
■ Reasons for software aging

● lack of movement - failure to modify the product to meet
changing needs

● ignorant surgery - result of the changes that are made
■ Problems during lifecycle:

● inability to keep up growth
● reduced performance (poor design)
● decreasing reliability (error injection)

■ Preventive measures
● design and plan for change
● docu and reviews
● restructuring including partial replacement
● plan for retirement and replacement (e.g. no hard-coded

values - make stuff configurable)

● System migration - example
○ Technical strategy

■ migration type - e.g. 1:1 migration (feature-wise, not technical)
■ minimize changes in the legacy system (high risk)
■ incremental transfer of user groups into new system
■ migrate smallest possible size but coherent parts - technical little big

bangs
■ parallel operations of both until ok to turn old system off completely

(depends on how important it is to have no downtime)
○ Usability engineering

■ contextual enquiry of the working environment - How is the operative
environment for each user set up?

■ individual design of user interface for each user group - functional
replacement but with improved user interface

■ analysis of usage statistics of legacy system - how frequently is a
function used by a user and what is the workflow; why is it that way?

■ mockups before implementation

Build for ten years and more
● Planning for extended lifecycle

○ Key factor is change -> design to minimize costs of change
■ Reuse
■ Extendability
■ Feature Changes
■ Scalability (Change in load / throughput)
■ Maintainability (Robustness of change)
■ Testing for regressions

● Fundamental approach
○ decomposition of system into independent parts
○ recomposition of parts into coherent system

■ context-aware
■ multiple system instances
■ static (build-time) vs. dynamic (runt-time)

○ component vs. service (after Fowler)
■ component: glob of software that is intended to be used without

change (using application does not change the source code of the
component; but may alter behaviour by extending it) by an application
that is out of the control of the writers of the component

■ service: similar to component as it is used by a foreign application;
main difference - component is used locally (jar file, assembly, dll,
source import,...) and a service is used remotely through some remote
interface either synchronous or asynchronous (web service,
messaging system, RPC, socket,...)

○ example:
■ separation between user interface and business services (REST,

support for future UI-technologies)
■ auto-refresh UIs (JS-polling)

■ customizable workflows for all business processes
■ customizable rules and layouts for the notification system
■ customizable templates for message sending
■ open-source based

● Interfacing / Integration
○ key design decisions

■ service (pull)
● runtime (webservice) vs. build-time (java library)
● general vs. specific interfaces
● synchronous (request-response) vs. asynchronous (call-back)
● ID vs. natural key object identifiers
● primitive type parameter vs. DTOs
● delta vs. full updates of data/information set
● transformation (legacy interfaces/views)
● versioning of interfaces
● validations, return values, error codes
● reuse of components / resources

■ message (push)
● synchronous or asynchronous
● event data models (payload)
● internal vs. external events
● primitive vs. complex (compound) event types
● typical event payload

○ reference to a primary object
○ actual value(s)
○ previous value(s)
○ associated action
○ time of event creation
○ source of event creation

■ data coupling
● separation of schemata
● read access through views
● write access through procedures
● easiest type of integration to achieve and hardest to get rid of

● Layered software design (API Design)
○ Why cut software into layers / modules

■ Separation of concerns
■ abstraction
■ testability
■ error handling
■ transaction management (what is the exact transaction scope?)
■ reuse

● frameworks
● custom (DAOs in other projects)

○ How to cut software into layers / modules
■ separate UI from logic
■ separate model from logic

■ separate data access from logic (via a common interface)
■ separate connectors from logic (via a common interface)

○ Key questions for choosing the right level of modularization
■ fine-grained vs. business services
■ requirements on transactional capabilities
■ requirements on high availability & distribution
■ release and deployment scenarios
■ lifecycle (legacy connectors)

○ Forms of modularization
■ Build time

● multiple JARs possible
● single Bundle
● update requires complete redeploy
● easy operation
● easy and fast intermodule communication

■ Runtime (single VM)
● multiple JARs required
● multiple bundles
● update requires partial redeploy
● medium complex operation
● more complex but fast inter-module communication

■ Runtime (multi VM)
● multiple JARs required
● multiple bundles
● update requires partial redeploy
● highly complex operation
● complex and possibly slow inter-module communication

○ Java technologies for modularization
■ OSGI (runtime)

● initially created for the embedded systems domain
● additional control over how classpath is constructed
● targeted for single-VM operation

■ Maven (build time)
● support for simultaneous assembly of multiple modules
● management of direct and transitive dependencies

■ Project Jigsaw (language level modularization)

● Single Service, Multiple-Consumers
○ Callstack

■ Clients (GUI, external system, Telex)
■ REST Layer, JMS Consumer
■ Business Service
■ Data Access Layer
■ Tx-Boundry (commit)
■ Postprocessing

● Notifications
● Connected systems (data push)
● Legacy system sync

● Dependency Injection (DI)
○ gluing of objects is separated from the implementation
○ all implementation is against the API
○ central definition and container that creates and binds objects together
○ DI supports code reuse and independently testing classes
○ DI support different bindings for different environments
○ DI supports lazy creation of objects (e.g. useful for limited memory

environments)
○ DI framework provides the runtime services for Di (e.g. Spring framework)

■ Spring framework:
● modular
● allows to pick and choose modules that are applicable to your

application
● POJO’s (called beans) -> managed by Spring IoC container
● container makes use of Java POJO classes and configuration

metadata to produce a fully configured and executable system
or application

● DI helps in gluing loosely coupled classes together and at the
same time keeping them independent

● supports the utilization of existing frameworks (logging,
ORM,...)

● web model-view-controller (MVC)
● coherent transaction management interface (JTA)
● API for translating technology-specific exceptions (thrown by

JDBC, Hibernate, JDO) into consistent, unchecked exceptions
● inversion of control (IoC) containers are lightweight (beneficial

for developing and deploying applications on computers with
limited resources)

● testing is simple because environment-dependent code is
moved into this framework

● Aspect Oriented Programming (AOP)
○ class in OOP
○ cross-cutting concerns are the functions that span multiple points of an

application
○ cross-cutting concerns are conceptually separate from the application’s

business logic
○ AOP helps you decouple cross-cutting concerns from the objects that they

affect
○ aspects are woven in at compile time or runtime

● Event based architecture
○ loose coupling
○ activator - after transaction commit
○ foundation for asynchronous processing

■ connected systems
■ messaging within the system

■ messaging to other systems
○ implementation with spring integration

■ enables persistent queuing (asynchronous processing)
■ existing producer-consumer pattern

○ eventing vs. batch
■ advantages:

● fail-safe through retry
● quicker transaction (user wait)

■ disadvantages
● hard to trace
● time-delay
● testability
● parallel operations of eventing vs batching

Problems you solve for every project
● cross-cutting concerns usually need tailoring
● handling these concerns separately from your business logic is a major factor for

retaining clean, readable code

● Contexts
○ used to store state necessary to enable handling of cross-cutting concerns
○ associated with overarching scope

■ RequestContext
■ ThreadContext
■ ApplicationContext

○ initialized (and destroyed) by handlers/filters
○ stored in ThreadLocal variables
○ Example: authentication - user is already connected with context -> different

context e.g. depending on how long they are needed (authentication for the
whole session, for just one operation,...)

● Transaction Management
○ Models

■ describe the expected transactional behaviour
■ describe how transactions are implemented
■ who is responsible for the transaction?

● Local transaction model
○ underlying database (auto commit)
○ connection based
○ this model just delegates -> send statement -

connection established
○ is simple but limited -> not so often in use

● Programmatic transaction model
○ developer (no auto commit)
○ transaction manager
○ developer is responsible and must handle transactions

● Declarative transaction model (Container managed
transactions - CMT)

○ developer specifies the behaviour
○ container handles transaction
○ code can be generated and configured using e.g.

annotations
○ Strategies

■ describe how transactions are utilized
■ what is considered a unit of work? / at what level to handle

transactions
● client orchestration

○ for fine-grained (in-process) APIs
○ lower level

● API Layer
○ for coarse grained methods
○ higher level
○ every call to API will be a transaction

● Variation:
○ High Concurrency - optimizing each call individually

■ Distributed transactions (global transaction)
● allow atomic behaviour over more than one resource

(database, message queue, ...)
● specified in XA (eXtended Architecture)

○ uses the 2-phase-commit (2PC) protocol to ensure
atomic commits

○ Java Transaction API is based on XA standard
● should only be used when absolutely necessary

○ not possible to cover all cases of (physical) failure - e.g.
some race condition, non-determinism in distributed
systems

○ many problems can be solved by fine-grained, manual
control of commit sequence

■ declarative transactions - Spring example
● @Transactional
● Transactional Interceptor

○ Begin / commit transaction
○ Join existing transaction
○ Rollback in case of (unchecked) exception

● Correct configuration of transactions is crucial
■ Choosing Transaction Management Strategies

● If running inside Container: declarative transactions
● Important: Understand managed persistence context
● Managing Transactions manually results in a lot of code and is

error-prone
● CMT (container managed transaction) makes tests harder

● Logging & Auditing
○ Logging

■ Technical, text based output
■ for detecting and debugging problems

■ level can be configured
■ output not easily understandable
■ output not for automated processing
■ short term retention
■ Technical

● Performance implications
○ avoid expensive operations (id instead of whole

dataset)
○ avoid unnecessary concatenations
○ too much, too long log = bad performance

● don’t write to stdout stderr (no proper separation by log-level &
less control; sensitive data can be leaked to the system
environment)

● needs to be configured correctly
● if you log something as an error it must be a SYSTEM error not

a USER error - users just insert incorrect data that is to be
expected and not an error

■ Reading logs
● provide contextual information, especially for clustered or

distributed systems TTTech!
● use TOOLs (splunk, openSearch)

■ good log output
● limit log levels (4 are usually enough, debug, info, warn &

error)
● clear rules when to use which log level
● automatically adjust log level according to situation

○ use auto-adjustment for log-level (based on metric -
e.g. a lot of TCP-session start requests)

● provide contextual info
● provide reference e.g. user (id=69) created
● adjust log output when you gained more info

○ Auditing
■ Domain specific
■ fine-grained and structured output for tracing user activity
■ requirements are specified by legal and company policies
■ used by end user group (e.g. legal team)
■ long term retention (30+ 10+ years)
■ technical

● no or little framework support available
● requirements to diverse for generic solutions
● needs quality assurance / specification
● frequently depends on already existing (in house) product
● use proper SLAs (service level agreement) for external product
● work async as often as possible (performance)

○ how to correctly configure logging or auditing
■ Select good logging lib
■ Configure correctly (just enough information)
■ Simple rules for developers

■ Review log output on regular basis
■ Make logs accessible
■ make sure performance does not suffer

● Authentication & Authorization
○ Authentication

■ verifies identity
■ Types of Authentication

● Username / Password
○ easy, use + implement
○ still mostly used, but more and more insecure

● Token based / Single Sign On (SSO) / Deferred
○ SAML
○ OAUTH 2.0

● Certificate based
○ Complex to roll out and manage
○ used in high security environments

● Smart card, biometric
○ Bürgerkarte, Fingerprint Sensor
○ Usually needs client side support
○ Fronted to certificated based auth

○ Authorization
■ determines access rights
■ Types for Authorization

● Role based access control (RBAC)
○ Frequently used for resource-based systems
○ easy to govern
○ well-supported by standard technologies
○ minimal performance implication

● Permission based
○ simple action based
○ complex expressions
○ easy to govern
○ well-supported by standard technologies
○ minimal performance implication

● Access control lists (ACL)
○ delivers fine-grained control on an (object) instance

level
○ complex to maintain, but complexity is sometimes

needed
○ significant performance implications

● Rule based
○ suitable for complicated and frequently changing

business requirements
○ complex to maintain, but complexity is sometimes

needed
○ significant performance implications

○ Declarative Security
■ provided by container out of the box
■ @RolesAllowed
■ Spring extends mechanism -> expression based security checks
■ decide on scope for security (API level, client/user interface level)

○ Identity Managements
■ how to handle user related data
■ database, custom application
■ active directory / LDAP
■ managing users and granted authorization can become very complex

with a growing number of users and actions
○ How to choose an appropriate access control mechanism

■ reuse existing infrastructure or frameworks / build your own
■ decouple authentication, authorization and identity management
■ keep business code clean of provider specific dependencies
■ adhere to organizational requirements
■ consider performance implications (complexer authorization methods)

● Error Management
○ user error vs. program error
○ program flow vs. exception
○ how and what to communicate to the end user
○ related to logging and UI as well as client side validation
○ Types of exceptions

■ checked exception
■ unchecked exception
■ error

○ how to error handling
■ does this method have enough info to handle exception?

● yes -> handle it
● no

○ does the caller have enough info
■ if yes -> re-throw
■ no

● does the caller need to specifically
handle failures in operations from this
component

○ yes -> re-throw as nested within
a component exception subclass

○ no -> re-throw unchecked
■ do not expose lower level exceptions to upper layers (API bleeding)
■ higher layers should catch lower-level exceptions and wrap them in

higher-level abstractions (e.g. database SQL error -> error getting
data)

■ use interceptor/aspect + annotation
○ how to not to error handling

■ Log and throw -> do either one or the other
■ catching or throwing “exception”
■ destructive wrapping -> always pass the causing exception
■ catch and ignore
■ throw from within finally -> will swallow any other exception

○ How to consistently manage user and program errors in your system?
■ Do not use exceptions to direct regular program flow
■ A good exception (handling) strategy will make your code usable and

maintainable
■ Consistency is key for maintainability and readability
■ Do not overpower your end user with incomprehensible information

● Internationalization & Localization
○ Internationalization

■ The preparation of a product for use in the global market, usually done
only once. (No source code changes necessary)

○ Localization
■ The Adaptation of a product to launch in a specific locale.

○ Focus Points
■ Language & Text

● Char Encoding (UTF-8)
● Orientation: Left to right
● Sorting
● Pluralization

○ “0 Personen” vs. “1 Person” vs. “5 Personen”
○ Only supported for easy languages in Java (eg not

Polish)
● Collation (Groß klein Schreibung)

○ Some languages don’t have a 1 to 1 mapping for
collation (Turkisch 2 lowercase i)

■ Culture
● Names and titles
● Weights and measurements, paper sizes
● Telephone, Addresses, Postal codes

■ Conventions
● Currency format
● Date, Time, Time-zone and calendar
● Number format

○ Java Technologies
■ ResourceBundle

● One file per supported language
● string.format() or MessageFormat.format() for parameterized

messages
■ Pitfalls

● Property files are Latin-I
● No type safety
● No compiler checks

○ How to prepare your product for a global audience?

■ Consider Internationalization right from the beginning
● Char Encoding
● Locale & TimeZone

■ Know your target market to avoid overhead
■ III8n is not only translatable text
■ Make use of tools & frameworks

From Prototype to Product

● Project styles
○ waterfall style

■ plan, specify, design, build, test & deploy
■ no incentive to think about operation before testing
■ managers tend to micro-manage

○ Agile
■ Potentially shippable code every day
■ Integrate continuously
■ Deploy continuously
■ Not universal cure

● Depends on team and organization
● Requires trust

● What is DevOps
○ Designing Operational Aspects together
○ Considering operation from the beginning
○ Better communication between OPs and Devs
○ It’s about knowing how the other side works
○ Shift left approach

■ Thinking about possible problems early on
■ Left = Dev | Right = OPs

● Configuration as Code
○ YAML
○ XML
○ Norway Problem

■ NO is parsed as False

● Configuration Management
○ Build Configuration

■ State of your source code
■ how to build
■ dependencies
■ state of your requirements
■ state of your defects
■ documentation of executed tests (test plans)

○ Product configuration
■ User config, as in config from a user perspective

○ Application server / database configuration

■ Often done in database or alongside source code
■ Keep config in as few places as possible
■ Application should handle wrong config
■ Clear distinction between data and config in database (namespaces)

○ OS configuration
○ System configuration

■ timezone
■ user language
■ memory assignment (java -Xmx)
■ avoid manually tinkering with the environment -> use libs / tools
■ infrastructure as a code (treat config like code)
■ use virtualization and containers to simulate environments

● Clustering vs. Load Balancing
○ Clustering

■ Application-Level (full/delta session replication)
■ Database-Level (Requests need to be stateless)
■ Reasons:

● Server can’t handle everything alone
● Redundancy
● Better Locality

■ Caching
● In-Process Caching

○ One cache per process
○ maybe inconsistencies
○ higher memory usage
○ fast and easy to implement

● Distributed Caching
○ slower due to overhead
○ more complex
○ scales better
○ no OutOfMem risk
○ does not use the memory needed for the program

■ Session Serialization
● each session is replicated to all other nodes
● Java: everything in session must be serializable
● possibly a lot of network traffic
● know what is in session
● keep session small and stable
● often used together with application layer clustering

○ Load Balancing
■ Sticky session
■ Round robin
■ Active / passive
■ Hardware vs. Software

○ Tradeoff between load distribution and fault-tolerant
○ Always perform fail-over tests on your setup (under load)
○ Master Node Election

■ ensures something is only executed once
■ ensures messages are handled in correct order
■ used when one node has to mediate or delegate
■ automatic master node election is difficult (unless single resource for

synching)
● split brain problem - half of the total amount + 1 is needed to

make a decision (majority)
■ manual master node election

● might result in downtime
● possibility of human error

● Performance
○ Test vs Development Team

■ Frequent internal (white box) know how / specific configuration
required

■ QS-department often do not have the necessary skills
■ Generating load is hard
■ Best done in collaboration

○ Testing is only the “last” step to verify
■ Consider performance during design and development

○ Target potential bottlenecks first
■ limited thread/connection pools
■ frequently used pages (caching?)

○ Database
■ Use clone of production database
■ Think about resulting database queries (abstraction)
■ be careful when operating on lists / result sets (lazy loading, n+1 query

problem)
■ Think about indices that fit your query pattern
■ Optimize based on data / facts

○ System
■ Beware of all calls that are “leaving your system”

● are there SLAs?
● make statements about actual performance
● minimize round trips

■ How does your system react to timeouts?
● Timeouts tend to bubble up
● Some timeouts can’t be easily influenced (browser timeout)

■ Consider automatic retries if you can correctly detect specific errors
● be aware of worst-case scenarios
● long timeout (3 retries with 5min timeout = 15min timeout)

○ Tools
■ JVisualVM
■ YourKit

○ Profiling Modes
■ Tracing

● Done through byte code instrumentation
● Delivers Invocation counts
● can influence performance

● can’t be used in production environment
■ Sampling

● Periodically queries stacks of running threads to estimate
slowest part of the code

● No invocation count
● Almost no performance impact

■ Manual measuring
● Good to see call duration
● Good for runtime behaviour
● Good for adaptive measuring / reporting
● Bad if really done manually => too much boilerplate code
● Bad for measuring “everything” (e.g. find needle in the

haystack)
■ Pitfalls:

● Always use System.currentNanos() for measurement
● Also Interceptors can be used to measure time (@Measured)

● Monitoring
○ Often seen as a pure operations task
○ Difficult to detect application level problems
○ Basic monitoring is easy

■ System state (e.g. server down)
■ system resources (CPU usage)
■ Java behaviour (heap state)
■ Infrastructure state (e.g. queue sizes)

○ All the above only indicate “disaster” cases, no way to look inside the
application

○ Goal: bring domain specific knowledge into operations
■ Vertical Health check (Heartbeat)

● Is UI reachable
● does UI reach Backend
● …

■ Application specific
■ Often highly specific to the monitored application
■ A lot of application specific monitoring tasks can also be handled by

database queries

Systematic program analysis
● What is program analysis

○ how to build more reliable software while increasing developer productivity
○ Phases of program analysis

■ test generation
■ static analysis
■ software verification
■ human-computer interaction

● Integrating program-analysis techniques to combine their strengths
○ Static analysis

■ effective in detecting software errors

■ increasingly applied in industry
■ Compromises

● reduce the annotation overhead
● reduce the number of false positives
● increase performance
● preserve modularity
● not checking program properties
● making unjustified assumptions (e.g. this will never throw an

exception)
● being unsound

■ Consequences
● absence of errors not guaranteed
● test effort not reduced

■ Solutions
● Annotations for assumptions
● Instrumentation (instruments are used to monitor the values of

variables or to detect assertion violation)
● Dynamic test generation (different var assignments to get to

different program sections

●
● Problem about this architecture: all test cases for all branches

still have to be generated as the assertion happens so late in
the process ->

●
● Smart instrumentation

○ propagate conditions about unverified executions to
higher up in the control flow

○ process
■ compute abstraction of program
■ infer conditions about unverified execution
■ instrument concrete program

● Making program analysis more widely applicable
○ Bias in machine learning

■ neural networks for criminal justice, health care, social welfare
■ concerns about fairness
■ neural networks may reproduce or even reinforce bias

○ Perfectly parallel certification of neural networks
■ fairness

● given input features that are sensitive to bias (race, gender) a
neural network is causally fair if the output classification is
unaffected of sensitive features

○ e.g. credit rating algorithm is not influenced by age
● check for fairness (naively) - certifying fairness

○ Analyse the neural network backwards (start at output)
○ forget value of sensitive feature
○ intersect the projected regions (non-empty intersection

-> bias)
○ does not scale well

● check for fairness advanced
○ forward and backward static analysis
○ forward: divide input space in independent partitions

(reduce effort)
■ not all inputs activate nodes in the network (not

a 1-1 mapping or similar)

■ finding partitions by using
● upper bound for number of nodes with

unknown activation status
● lower bound for size of dimension

(features that divide into a lot of small
groups instead of bigger groups are not
as good)

■ partitions are made along NON-SENSITIVE
features

■ characteristics
● uses cheap abstract domain
● balancing scalability and precision (with

upper and lower bound - U and L)
● may only consider a fraction of input

space (e.g. hispanics over 45 years old
discriminated against gender?)

○ backward: does naive approach for every partition (in
parallel)

■ groups good partitions by abstract activation
patterns

■ quantifies any bias
■ characteristics

● expensive abstract domain
● perfectly parallel
● sound and in practice exact -> definite

guarantees
○ certification fails -> biased region found

● Testing program analysers for critical bugs
○ why program analysers

■ wide applicability in software reliability
■ high degree of code complexity
■ severe consequences in case of errors

○ differential testing
■ compares analysis results on an input (multiple programs same input;

not sure who is correct - not always the majority)
○ metamorphic testing

■ transforms an input such that the expected analysis is known (oracle
is known)

■ metamorphic testing of datalog engines
● datalog: declarative, logic-based query language (similar to

ASP)
○ relations, facts and rules (head and subgoal)
○ engines:

■ logicBlox
■ DDlog
■ bddbddb…

■ may contain query bugs resulting in incorrect
results (missing entries, including wrong entries)

● given seed -> transform it such that new result contains old
one OR is equivalent to old one OR is contained in old one

○ detect bug: relation between old and new result does
not hold

● based on conjunctive queries (query containment)
■ metamorphic testing of SMT solvers

● tools
○ z3, STP,...

○
● given seed -> transform to generate SAT instances

○ detect bug: solver returns UNSAT
■ metamorphic testing of Datalog engines and SMT solvers is effective

in detecting fundamental correctness issues

Microservices

● Cloud
○ Pros

■ Scalability
■ Cheap for low traffic
■ Availability
■ Data security (cloud providers know what they are doing)

○ Cons
■ More expensive than dedicated hardware
■ Slower than bare metal
■ Complexity
■ Data security (legal and technical - you need to trust them, where are

their servers located)

● NoSQL
○ Pros

■ Speed
■ Often tailored to specific task

■ Scalability
○ Cons

■ Not standardized
■ CAP Theorem - only two of

● Availability
● Consistency
● Partition Tolerance

● Machine learning
○ Pros

■ Automation
■ Pattern recognition
■ Perpetual improvement

○ Cons
■ Training
■ Debugging
■ Accountability

● Architectures
○ Architecture

■ Abstraction of system
■ Helps communicating
■ improves maintainability

○ Distributed systems
■ Components are located on different machines
■ System appears as one
■ More scalable
■ more complex and harder to implement reliability
■ harder to deploy, debug and monitor

○ Monolith
■ One executable / deployable
■ hard to use different programming languages
■ complex environment setup
■ can be deployed manually

○ Service Oriented Architecture (SOA)
■ Distributed
■ Predecessor of microservices
■ Parts

● Service broker
● Service provider
● Service consumer

■ Loose coupling of services

● Microservices
○ Definition

■ Small
● Focussed on doing one thing well
● Cohesion (everything that belongs together can be a service)

● Small enough / no longer feels too big (when you break it into
pieces, stop right before it is not useful any more after the split)

■ Independent
● Communicate only over defined APIs
● Independent deployment
● Most changes affect only the service itself

■ Services
■ Work together

○ Pros
■ Distributed
■ Technical Heterogeneity
■ Quickly adapt to new technologies
■ Fault tolerance
■ Scalability
■ Deployment
■ Replaceable
■ Testing
■ Clear separation of ownership

○ Cons
■ Distributed
■ Technical Heterogeneity
■ Deployment (if there are a lot of services you are kinda forced to use

DevOps)
■ Monitoring
■ Testing
■ Transactions
■ Reporting (e.g. joins for databases are often not possible as different

databases are used)
○ Boundaries

■ You should have a well-defined border so that changing internals of
the microservice does not affect other services

■ Domain Driven Design (Code Structure and Language matches
Domain)

■ Bounded Contexts (Defines usage for a domain model) - often reflect
departments of the business who talk a lot to each other

■ Conway’s Law (ORGs design systems that mirror their own
communication structure)

■ Loose Coupling
■ High Cohesion
■ Capabilities instead of data alone

○ Integration
■ Sync vs Async Communication
■ RPC, REST, HATEOAS
■ Binary vs XML vs JSON vs …
■ Message Queue
■ Orchestration vs Choreography
■ Shared code / client libraries
■ Breaking changes

○ Deployment
■ Continuous Integration
■ Continuous Delivery
■ Continuous Deployment
■ DevOps
■ Configuration

○ Testing
■ Unit test
■ Service tests
■ End-to-End tests (Integration Tests)
■ Dependencies may be mocked
■ Consumer-driven tests / contract tests (e.g. UI-Tests) - everyone that

consumes a service provides tests that represent what they expect
from the service -> enables to not break the consumers when the tests
do not fail

■ Canary Releasing (rolling out changes gradually to a subset of users)
■ Non-functional Tests

○ Monitoring
■ More services to monitor
■ Log aggregation
■ Metric aggregation
■ Correlation IDs (e.g. session id)

○ Security
■ Authentication
■ Authorization
■ Single Sign-On
■ User to Service vs Service to Service Authentication & Authorization
■ TLS inside perimeter
■ SAML (Security Assertion Markup Language)
■ JWT (Java Web Token)
■ Client certificates
■ API Keys

○ Conclusion
■ Many executables
■ Easy to use different programming languages
■ easy setup of environments, but many different needed
■ DevOps for deployment
■ Chatty microservices are undesirable
■ Need to get boundaries right, no breaking changes
■ Modelled after business domains DDD

● From Monolith to Microservices
○ Moving Code out of Monolith

■ Identify part
■ Define facades
■ Implement facades in monolith
■ use Facades
■ Move out of monolith

○ Rewrite part as a microservice
■ Identify part
■ Define facades
■ Implement facades in monolith and new microservice
■ Switch to new implementation
■ Delete obsolete implementation

Free Open Source Software
● Cargo cult programming: just copying stuff of e.g. stackoverflow without

understanding it
● Benefits

○ If bug found, one can just fix it, no workarounds
○ If a feature is missing one can just implement it (Custom Development)
○ Developing a generic Product costs more

● Cons
○ you NEED to fix stuff yourself or hope someone else does it

● Ways to monetize OSS
○ Adding commercially value on top of a base OSS offering
○ Professional Training
○ Embedding OSS into hardware
○ Service Contracts
○ Sharing the costs (pay a dev to help develop the OSS project as an

organization; most OSS projects are frameworks and tools e.g. a database)
○ project consulting

● What to avoid
○ Don’t sell the same product you give away for free
○ Respect freedom (respect community) - e.g. don't prevent people from forking
○ Don’t rely only on a payroll (don’t get influenced too much from a customer)
○ OSS project planing is different from company projects
○ Spread the influence across different companies

● Legal Definitions
○ Immaterialgüterrecht

■ Markenrecht
■ Musterrecht
■ Patentrecht
■ Urheberrecht

○ Sachenrecht vs Immaterialgüterrecht
■ Sachenrecht

● bound to a physical thing
● can only be traded exclusively

■ Immaterialgüterrecht
● no physical representation
● can be traded exclusively but also non-exclusively

○ e.g. A is allowed to sell books of it, B is allowed to sell
books and films

○ Copyright - summary term for different kinds of rights
■ Consists of many rights
■ difference between

● Urheberrecht (nicht weitergebbar in Österreich)
● verwertungsrecht

○ Werknutzungsrecht: exclusive
○ Werknutzungsberwilligung: non-exclusive

■ EU -> implicit
■ US -> rather explicit

○ Threshold of Originality (Schöpfungshöhe)
■ only created original intellectual property if:

● invented stuff yourself
● it is not a trivial change

○ e.g not bugfix, not reformatting
○ Authorship

■ author owns all the rights
● Urheber eines Werkes ist, wer es geschaffen hat
● Urheber hat mit bestimmten Beschränkungen

aussschließliches Recht, das Werk zu verwerten
■ except when they are employed and do the work in their paid time (or

sometimes it is sufficient that they use the resources of the company
or their know-how - e.g. machines,...)

● IP belongs to employer
● different in US

○ depending on the country - even spare-time stuff might
belong to the employer

○ Code ownership
■ especially important to clarify in a customer relationship

● state explicitly in contract
■ Zweckübertragungstheorie

● Werkvertrag vs. Arbeitsvertrag (oder
Arbeitskräfteüberlassungsvertrag)

● nach der Zweckübertragungstheorie werden einem anderen
nur die Rechte eingeräumt, die für den Verwendungszweck
erforderlich sind (nicht mehr)

○ IP and Open Source
■ make sure you really do own the IP

● or make sure employer/customer is ok with you contributing
source

● trivial changes do NOT constitute IP
○ time compensation might still be needed

○ CLA (Contributor License Agreement)
■ Make contributor aware of the legal impact
■ grant additional rights beyond the license
■ Symmetric vs Asymmetric CLA

● asymmetric, often when owned by companies
○ company has extra rights, does not need to follow the

license as everyone else

○ e.g. company does not need to publish stuff
■ iCLA vs cCLA

○ Code Provenance
■ where does the code come from?
■ important for big companies (in case of lawsuit)

● prove the fact that you made the stuff and when

● Open Source Licenses
○ What is a License

■ Consensual Contract with rights and obligations (both contract
partners know that you agree on the same thing)

■ Conditions under which someone can get rights to the code
■ Is not a contract, but close
■ Konkludente Verträge (durch handeln, e.g. ins Restaurant gehen, in

die U-Bahn einsteigen)
■ Need to follow ALL the terms

○ Commercial Licenses
■ Hard to understand
■ bloated with exits and safety valves

○ MIT License
■ X11 License (other name)
■ Provides “as is” leave me alone if something blows up
■ rights to use copy modify merge publish distribute sublicense and or

sell copies
■ need to include copyright info

○ BSD License
■ Allows copy change distribute (source + binary)
■ Copyright headers must be kept
■ Requires Berkley attribution

○ GPLv2
■ strong copy-left (applies in case of static and dynamic linking, not for

just using)
■ distributing the results requires distributing modified sources
■ if you dont want to open the source

● pay the IP holders (also after violating the license)
● open source (well)
● replace the thing you want to use or your stuff so no one can

get your IP out of it
○ LGPL

■ GPL but allowed to use in dynamic linking
■ do what you want but if you change something you need to follow the

license
○ Apache License v 2.0

■ Liberal open source software license
■ Business friendly
■ required redistributing NOTICE file
■ includes patent grant
■ can be sub-licensed (added code can be any license)

● not re-licensing (allows to change license of existing code)
○ Not OSS

■ do-no-evil-license
■ beer-license
■ wtfpl-license
■ Facebook BSD + FB Patent License

● React
● RockDB
● Not OSI approved
● ASF does not allow it in Apache projects

■ Apache plus Commons Clause
● Not OSI approved
● Contradicts Apache License

● Patents
○ Some licenses contain a “patent grant”

■ License with patent grant:
● ALv2
● GPLv3
● Mozilla Public License

■ Software Patents are allowed in the USA but not in the EU

● Trademarks
○ Name must be unique in your field (trademark classes)
○ Actively defend your mark

■ marks vanish if they are used often without attribution
○ Allow other people to build tools for your code (bla bla bla for Apache Foo)

Lost in Complexity
● Software crisis (term coined in 1968)

○ nothing really changed since then except that it is now a global problem and
systems are more critical

○ Projects running over-budget
○ Projects running over-time
○ Software was very inefficient
○ Software was of low quality
○ Software often did not meet requirements
○ Software was never delivered
○ Projects were unmanageable and code difficult to maintain
○ maybe even more important now than it was back in 1968 as everything

depends on software

● Exogenous vs endogenous complexity
○ Exogenous: defined by problem, domain, context

■ e.g. compare power plant management to customer service
○ Endogenous: defined by implementation, model, organization

■ software framework, testing,..

● Why has complexity risen?
○ distributed system
○ increasing complex external dependencies

● Consequences of increased complexity
○ as ICT is a techno-social system

■ it enables nearly all important societal systems (e.g Health
information)

■ it is itself dependent on most societal systems
○ there exist circular dependencies - power plants go out - communication goes

out - communication needed for repairing the power plants

● What is a System
○ components - interaction parts, actors, input or interaction with other systems,

environment
○ set of things, people, cells, molecules,..... interconnected in a way that they

produce their own pattern of behaviour over time
○ systems have defined borders (what is part of the system and what is not)

● System Principles?
○ Stocks & Flows - Flows (trends) are more enlightening than stocks (counts);

the measurement of the state of something is static at a point in time (a
stock). flows change the value of that stock. you only change the state or
value of the stock by influencing the flows.

■ compare with bank account - you can only change the total amount by
changing the flow (how much you earn or how much you spend)

■ https://medium.com/natural-leadership/software-engineering-metrics-p
art-3-understanding-stocks-and-flows-71b2b859d992

○ Feedback Loops
○ Emergent Behavior - An emergent behavior is something that is a nonobvious

side effect of bringing together a new combination of capabilities—whether
related to goods or services.

○ Path- (History-) Dependence
○ Catalog disagreements (Any interesting system is sufficiently complex that

different people will describe it differently)
○ Archetype:

■ describes personality types of developers???

● Wicked Problems
○ no definition on what a wicked problem is
○ not a simple/easy problem

■ simple - one task, one role - systemically

https://medium.com/natural-leadership/software-engineering-metrics-part-3-understanding-stocks-and-flows-71b2b859d992
https://medium.com/natural-leadership/software-engineering-metrics-part-3-understanding-stocks-and-flows-71b2b859d992

■ easy - for whom, depends on your knowledge

○ no perfect solution
■ solution is stopped when resources run out
■ solution is good enough or better than before

○ unique
■ no trail and error
■ one-shot operation

● Control and prediction
○ Predictability

■ Attractor state = systems always ends up here
● e.g. a pendulum always goes through the middle
● an attractor is a set of states toward which a system tends to

evolve
● Homeostasis - tendency to resist change to stay stable

○ e.g. temperatur control in the body

● attractors show different stability to perturbation
■ In dynamic, complex systems there is no long term predictability

● management schemes that predict will fail
○ compare communism

■ signs for failure (shift in attractor)
● critical slowing
● spatial resonance (pulses occurring in neighbouring parts of

the web become synchronized)
○ Control over a system

■ Attractors stabilize a dynamic system because those points bring
some predictability

■ Correct behaviour (steady state) in systems of systems
● use system metrics
● look from the outside on the entire system, not only on

components
■ Some things cannot reasonably be controlled e.g. external modules,

AI
○ Fragility, robustness, resilience

■ Many human-made systems are fragile as they did not have enough
time to evolve (like natural ecosystems)

● simplicity is a choice, complexity is your fault
■ resilience: what to do when everything goes downhill

● resilience in software through e.g. graceful degradation (keep
most important things running => shut down the rest)

■ fragility: how easy is it to influence correct behaviour
■ robustness: how many errors can a system tolerate

● Complexity in software
○ Increase

■ Scaling (e.g. more components)
■ Interconnection (between systems)

■ Feedback loops
■ Speed
■ Number of stakeholders (forks) / users
■ design by committee
■ Software bloat and dependency madness

○ Decrease
■ small focused code
■ few dependencies
■ clean design made by few people
■ Compartmentalize, decouple
■ documentation and formal specification (of e.g. interfaces, protocols,..)
■ stateless programs (functional programs)
■ coding guidelines

○ Behaviour
■ follow attractors

● self-healing
● love randomness (small variations)
● tipping points

■ multiple causes lead to failure (simple cause and effect analysis does
not help) -> defect components cannot be changed easily

■ sometimes unexpected
○ How to deal with it

■ What does not work
● Trial and Error (won't get you far)
● Ignore it (abstraction)
● Rationality - try to understand and predict
● command and control - top down management

■ What does work
● reduction to few criteria
● Intuition
● evolutionary adaption
● sense and respond
● resilience building - failure as standard procedure, not as

catastrophe
● split into sub-parts

○ Chaos engineering
■ some mechanism in the system randomly attacks the system (in

production) to test its capabilities
● e.g. Netflix Chaos Monkey

○ stress test in production

Agile Software Development in Corporate Environments
● Software development strategies

○ PDCA

○
○ Agile Manifesto

■ Individuals and Interaction over Processes and Tools
■ Working Software / Business Results over Comprehensive

Documentation
■ Customer Collaboration over Contract Negotiation
■ Responding to Change over Following a Plan

● Agile Practices
○ Process-oriented (like a process description)

■ SCRUM
● team size < 10 people (5-10)
● customer tightly integrated
● realistic estimations

○ user stories -> backlogs -> planning poker (team
estimations)

● splitting up the code or tasks (no collective code ownership)
○ helps making development more efficient

■ is in a way the removing of redundancy (in
knowledge)

● not everyone needs to know how a
certain thing can be done

● however this can be a problem in the
long run (someone leaves the company)

● short-term efficiency < long-term stability

●
● product backlog: is taken care of by the product owner that

interacts with the team and the customer
● sprint backlog: what is to do in the next sprint
● management usually wants predictability

■ Software Kanban
● not with iterations but as a whole iteration

○ Continuously taking stuff from the backlog
○ stuff gets added to the backlog continuously

● tries to resolve bottle necks of SCRUM (too much to do at
once or not enough to do - missing resources)

● uses real-time metrics
○ average lead time
○ cumulative flow diagrams: cycle time

○ Methodical building blocks (like a toolbox with practices)
■ XTreme Programming

● Communication / Collaboration / Architecture
○ Planning Game

■ Release Planning
● Customer collects user-stories (story

creation)
■ Iteration Planning

● User-Stories -> Tasks
○ Metaphor

■ Each chunk of code get own name, so that the
customer (who is part of the xp team) can
understand them

○ Simple Design
● Process

○ Small Releases
○ Pair Programming

■ bad decisions and mistakes caught
○ Collective Code Ownership

■ everyone is responsible for the code base

■ no separation of knowledge (think about
someone leaving)

○ 40-hrs Week
○ On-Site Customer

● Technical
○ Coding Standards
○ Testing (Test-Driven-Development)
○ Continuous Integration
○ Refactoring

● Challenges in Corporate Environments
○ Problems

■ multiple teams
■ many devs
■ large projects vs. perfective maintenance
■ prioritization
■ projects are partly internal and partly external
■ management levels
■ budgeting and planning cycles
■ reporting and controlling

○ the agile approaches work well for single teams but if there are like 20 scrum
teams the product owners & teams need to coordinate

■ core of agile software
● flexible self-organisation of teams
● lean and efficient work in small teams with short iteration

cycles
○ Scrum of Scrums

■
■ e.g. product owners build their own scrum teams
■ all teams in an organization must have the same sprint synch (if the

need to coordinate)

●
● else one team is working while the other is planning and vice

versa
● everything is ready at same time
● shifting people from team to team is easier (think of security

experts… that are not part of a fixed team but work for one
sprint with a team)

○ Factory Approach

■
■ if all teams are the same & products are quite small

● Team Organization
○ Functional Silos

■
○ Agile Teams

■
○ Organization Following Component

■
○ Agile Team Organisation (Following Feature / Processes / Services)

■

● SAFE Framework
○ scaled agile framework
○ epic vs user story

■ epic consists of multiple user stories (complete feature) (user
management page)

■ user story is “just” a part of a feature (deleting user)
○ enabler vs. stories

■ enabler - work that cannot be attributed to a story but needs to be
done to enable working (e.g. CI-pipeline setup, refactoring, setup of
development environment)

■ story - need to have business value in the end

● Customer Responsibility
○ product owner
○ roles and process responsibilities have to be clarified

○ lack of clear roles and respos is often the main factor for failure in agile
projects

● Requirement engineering
○ User stories - as WHO I want WHAT so that WHY

■ small - one card
■ parts

● acceptance criteria
● role & description

■ needs to be estimable (not in absolute values but in relative values
that represent complexity)

● Scrum poker
○ Fibonacci numbers (bigger numbers get harder to

categorize - bigger steps)
○ what is the difference between 10 or 11? hard to say

■ difference between 1 and 2 is easy
○ also the uncertainty gets bigger
○ avoid anchoring (looking at what other people say it

takes to finish it) by letting everyone choose in private
■ INVEST

● Independent
● Negotiable
● Valuable
● Estimable
● Small
● Testable

○ Roles and “Stories”

■

● Transparency
○ Burn Down Charts
○ Agile Metrics

■ Burn-Down-Charts, process-flow visualization, cumulative flow
diagrams

■ Velocity (items per iteration), velocity per work type, cycle time
(average completion time of one item), identification of bottlenecks
(queue length), defect rates

■ Metrics and performance indicators are sometimes a bad thing
● e.g. metric that measures productivity of a team in their

completed story points -> could lead to bad effects
○ teams just do the easy things that are quick and bring

them points fast instead of doing all the work that
should be done

○ teams start overestimating to pump up the indicator
values

○ teams could keep estimating as before, but work with
less quality to keep up

○ -> simplistic metrics are a problem
○ Progress / Cost and Budget

■ Reporting of progress is often difficult
■ Progress according to defined scope is comparatively easy
■ Is development in budget?

● Time recorded
● Cost per day per employee
● Internal external members
● other cost (licenses)

■ Actuals vs planning (who does what? opposite of agile)
■ administration task for dev teams become all but lean and

self-organised
○ Challenges and Risks

■ Lack of trust
■ Lack of transparency
■ Cost/backlash of transparency
■ Complexity of architecture and systems
■ Team structure not clear enough (or still focused on silos)

Explaining Machine Learning Models
● What are machine learning models used for

○ Vulnerability Detection
○ Semantic Code Labelling (Label methods based on instructions in the

methods)
○ Performance Regression Detection
○ Testplan Quality Assessment
○ Taint Propagation Detection (privacy leak detection, how data flows within the

program)

● What is an explanation?
○ Definition: Interpretation description of the model behaviour (in a target

neighborhood)
○ Help understanding WHY a machine model has come to some result

■ e.g. why does the model think there is a security issue?

○

○
○ Global explanation vs local explanation

■

■
■ Global

● explaining and understanding the whole model behaviour
● shed light on big picture biases
● help check if model at high level is suitable for deployment
● usually it is easier to get only an area of the input

● used more as a debugging tool
■ Local

● explain individual predictions
● help unearth biases in the local neighbourhood of a given

instance
● help check if individual predictions are being made for the right

reasons

● Counterfactual explanations
○ Counterfactuals: alternate “world” where prior circumstances are changed to

see what the consequences of this change would be
■ e.g. I slipped and fell on the rainy street and broke my leg. -

Counterfactual: If today wasn’t rainy, would I still have slipped and
broken my leg?

■ e.g. If you had called genSimple instead of genHandle, your code
would not be classified as causing a performance regression

■ demonstrate how the model’s prediction would have changed had the
program been modified in a certain way

■ what-if questions
○ Problem statement

■
■ Ground truth: the value the output should have; that is the reality you

want your model to predict
● e.g. we know that the data we gave to the model results in a

performance regression - compared to the output -> is the
model able to detect the regression?

○ Plausibility - Actionability - Consistency

■
■ Plausibility (naturalness)

● e.g. the model says the diff is the problem instead of the root
cause - the expression -> this is a bad counterfactual

● when perturbed inputs are out-of-distribution
○ model predictions can be unreliable
○ counterfactual explanation is uninformative
○ user does not believe explanation

● Robustness vs. Counterfactual Explanations
○ Adversarial examples (from robustness research)

■ robustness - how stable is the prediction model against changes - e.g.
Panda

■ semantics-preserving
■ the input is changed slightly so that the model classifies it as a wrong

output, but humans do not see the difference
● e.g. Panda example

○ Counterfactual explanation
■ humans agree that the ground truth has changed

○

○

● Where did my model go wrong
○ Challenges

■ High-dimensional input space (many vars)
■ Opaque models (want to see inside but usually blackbox)
■ Manual Hypothesis Testing not scalable

○ Misprediction diagnoser (MD)

■ Goal: explaining ML models by systematically identifying subsets of
input space on which the model mispredicts

How to achieve clean code
● Technical Debt

○ A shortcut that helps you in the short term but will cost you more in the long
term

○ Technische Schulden

● Clean code
○ What is clean code

■ Readable - Simple
■ Tested
■ Practiced - it is a mentality
■ Continuously refactored

○ Allows you to
■ change high-level functionality and low-level implementations even in

late stage of project
■ postpone harder decisions to later stages of a project
■ makes the basis for good architecture and design

○ Developer Maturity Levels
■ L0 - Black - Interest
■ L1 - Red - Attitude
■ L2 - Orange - Fundamentals
■ L3 - Yellow - Testing
■ L4 - Green - Automatization
■ L5 - Blue - Deployment & Architecture
■ L5 - White - Awareness of CCD Values

● Naming
○ methods should do the thing you expect them to after reading their name
○ if you need a comment you are doing something wrong
○ descriptive (long) name > short name
○ precise names for small classes > generic names for large classes
○ clarity is king
○ length of a name should correspond to the size of its scope

● Functions
○ should do one thing only

■ one level of abstraction
■ one level of indentation (loops, branches)

○ Build your functions like a newspaper article
■ Lead Paragraph = public interface of class

● get the most important information across in the thing
everyone has a look at first

■ Explanation = high level “routing” (call stack)
■ Extra = low-level implementations

■
○ Use a max of 3 arguments in your method's signature, best none

■ arguments are hard to interpret
■ argument are different levels of abstractions

○ Beware of boolean arguments - they do more than one thing
○ Tell - don’t ask - e.g. search user in a list - tell the object that it should give

you something instead of asking for the find and doing it yourself

○
○ Tell - Dont Ask

○

● Error Handling
○ Make exception names clearer, more concise and part of your domain
○ Putting “Exception” in the name is not very helpful
○ Always

■ write try - catch - finally first

○ Never
■ Pass or return null (use Optionals, Null-Objects, Empty Lists instead)
■ Hide behind errors
■ use errors to influence the control flow
■ destructive wrapping (pass causing exception instead)

○ Either
■ Log XOR throw
■ Handle it XOR pass it on

● Comments
○ People don’t read comments - neither do compilers
○ lie, because only code contains the truth
○ do not make up for bad code
○ Good Devs may not write good comments
○ Consider if it is comment worthy or should be refactored
○ Don’t use comments as documentation

■ too specific
■ too detailed
■ too quickly outdated

○ Use documentation techniques
■ meaningful interface documentation (JavaDoc)
■ Mock Press Releases
■ Versioned documentation (readme)
■ API documentation (SWAGGER)
■ Documentation as part of your tests (Spring)

● Classes
○ Step down rule

■ List of variables
● Public static constants
● private static vars
● private instance vars
● (public var)

■ Public functions
● Constructor
● Private functions called by a public function right after the call

○ keep callee and caller close together
○ Name hints for unfortunate aggregations (bad cohesion - class should focus

on one thing)
■ e.g. managers, processors, super usually do more than one thing and

have multiple responsibilities
○ One responsibility

■ Comply to needs of ONE stakeholder group
■ have many small classes (single responsibility)
■ not few large doing multiple things

○ Dependency Inversion Principle
■ Depend upon abstraction - not implemenation

■ Module höherer Ebenen sollten nicht von Modulen niedrigerer Ebenen
abhängen. Beide sollten von Abstraktionen abhängen. Abstraktionen
sollten nicht von Details abhängen. Details sollten von Abstraktionen
abhängen. - Wikipedia

■ Open Closed Principle - open for extension, closed for modification

● Objects & Data Structures
○ Make it hard to wrongly use your object

■ Define constructors adequately
■ maybe overload them
■ don’t require setter to be called after instantiation
■ user creational patterns for complex instantiation

● factory
● builder
● prototype

○ Law of Demeter - a method f(x) oc Class C should only call
■ C
■ on object created / passed by / to f(x)
■ Instance objects of C

■
■ makes explicit what you are doing - tell don’t ask

● Clean Test Code
○ Not a unit test if:

■ It talks to the database
■ It communicates across the network
■ It touches the file system
■ It can’t run correctly at the same time as any of your other unit tests
■ You have to do special things to your environment to run it

○ Three laws of test-driven development. You shall not
■ write production code until you have written a failing unit test
■ write more of a unit test than is sufficient to fail (dont add unnecessary

stuff to your test)
■ write more production code than needed to pass the currently failing

test
○ Designing a unit test

■ Build up test data
● have enough data

■ operate on data
■ check that operation yielded expected result

● only one assert per test

● only one thing per test
○ Clean Code !== Clean Test Code

■ One functions contains all relevant aspects
■ keep the reader in the test function
■ test methods should be self contained
■ accept redundancy if it supports simplicity
■ dont bury critical information
■ test methods are never called so use descriptive names

● Tools for clean code
○ Formatter / Checkstyle
○ Static Code Analysis
○ Continuous Integration

Software Architecture for Collective Intelligence Systems
● Collective Intelligence

○ Group intelligence that emerges from group collaboration, collective action
and competition of individuals

○ Examples:
■ Swarm formation of drones
■ Intelligent routing of traffic
■ online social network + co creation platforms

○ It is achieved by hybrid systems in which humans and computers interoperate
and complement each other

○ It has a potential for creating highly effective collection of hard to access
knowledge

○ used for social web / media and social computing

● Collective Intelligence Systems
○ Definition: Collective intelligence of connected groups of people by providing

a web-based environment to share, distribute and retrieve topic-specific
information

■ socio-technical multi-agent system
■ mediates human interaction
■ provides support for distributed cognitive processes
■ driven by users who contribute content
■ distribution of consolidated info back to the users (give and take)

○ Examples
■ Social network services (Facebook, Twitter, Snapchat,...)
■ Media / Content Sharing (YouTube, Soundcloud,...)
■ Knowledge Creation (Wikipedia, Stack Overflow, Fandom,...)#

● Nature of Intelligence
○ Steps

■ Collection
■ Processing and Exploitation
■ Analysis and Production

○ Foundations

■ Data needs to be processed to become information
■ Information needs to be compared to other information to draw

conclusions
■ Intelligence arises from information that is related to environment and

past experiences
■ Intelligence allows prediction and planning

○ Collected Intelligence vs Collective Intelligence

■
■ Definitions:

● Actor Basis: Group of agents who are the data source
● Collection: Organized aggregate of structured/unstructured

data and information
● Basis-external Actor: Agents have access to the collection and

are not members of the actor basis
● Intelligence Beneficiary: Group of agents who gain intelligence

from the collection

● Key Stakeholders & Benefits of CIS
○ Users

■ effective bottom-up communication
■ awareness (new developments, changes, trends)
■ building upon content (knowledge) of others
■ be able to work on a common topic (that needs contribution from

dispersed users)
○ Platform providers

■ Network effect (more people use it - so more people use it) - more
valuable over time

■ Building up an active user base is time intensive and hard to replicate
by competitors

■ Data collected is valuable

● Foundational Concepts of CIS
○ Coordination Models for Swarms

■ Swarm Formation - e.g. birds
● direct interaction
● communication is in a direct way
● collective movement
● global: stay in the group
● local: do not hit other birds

● global attraction but local repulsion
■ Stigmergy - e.g. ants

● indirect interaction over the environment
● communication is in an indirect way (environment)
● dynamic construction of trials (collective foraging)

○ Self Adaptation
■ a way to deal with uncertainties
■ uncertainties affect qualities
■ uncertainties are difficult to anticipate
■ idea

● gather info at runtime and use it to reason about itself and
change the plan accordingly

■ Dimensions of Uncertainties
● Location (what is effected from uncertainty)
● Nature (what causes the uncertainty; is it due to imperfection

of knowledge or due to inherent variability)
● Level / Spectrum (how uncertain am I)
● Emerging Time (when is it acknowledged or appeared)
● Sources
● Model uncertainty
● Adaptation functions uncertainty
● Goal uncertainty
● Environment uncertainty
● Resource uncertainty (are resources available, do resources

change)

■
■ Example MAPE(-K) Model

●
● 1 Knowledge - e.g. logs, rules/policies, metrics, topologies,...
● 2 Monitor - collect data
● 3 Analyse - analysis and reasoning on data from 2
● 4 Plan - creates workflows depending on analysed data and

goals
● 5 Execute - execute workflows

○ Socio-technical Systems
■ interaction between humans, machines and the environmental

aspects
■ are composed of 2 sub-systems

● social system - humans with knowledge, skills and
relationships who participate content

● technical system - technology and technological artifacts to
perform tasks to the overall purpose

● Architecting CIS
○ Approaches to the Architecture of self organising systems

■ Multi-Agent Systems (MAS)
● Socio-technical system where agents interact with each other

and environment to satisfy their goals
● Agent-Oriented Software Engineering (AOSE)
● Environment architectures (Environment-mediated

Coordination)
○ Coordination Models
○ Environment

■ coordination infrastructure
○ Artefact

■ Coordination medium (abstraction of
environment)

○ Stigmergy
■ CI-adapted Coordination Models

● feedback loops, self organization and self adaption
■ Software Architecture

● is the set of structures needed to reason about system
(software elements, relations, properties,...)

● is the set of architectural design decisions - consists of:
○ rationale - reason behind design decision
○ design rules - what is allowed in further designs
○ design constraints - what is not allowed in future design
○ additional requirements

● Standard-based software architecture frameworks and
reference architectures

● Concepts
○ Environment

■ Every system is situated in the context of a
defined environment

○ Stakeholder
■ Individuals, groups, orgs, define a system’s

purpose and have interests in a system
○ System / Stakeholder Concern

■ Specific interest of stakeholders in a system
○ ISO-Standards

■ 42020 - Architecture Processes (Governance, Management,
Conceptualization, Evaluation, Elaboration, Enablement), Information
Flows

■ 42010 - 2011: Architecture Description Language (ADL), Architecture
Framework, Correspondences, Architecture description

● Architecture Description
○ documents one possible architecture (design decisions)
○ identifies stakeholders and their concerns
○ describes needs

● Architecture View
○ describes system from a chosen viewpoint

● Architecture Viewpoint
○ promotes reuse of best practices

● Correspondences
○ express architecture relations

● Correspondence Rules
○ governs correspondences and enforces relations within

architecture description
● Architecture Framework

○ Defines conventions, principles and common practices
○ Specifies

■ addressed concerns
■ stakeholders having those concerns
■ architecture viewpoints that frame those

concerns
■ correspondence rules integrating those

viewpoints
● Architecture Description Language (ADL)

○ Form of expression
○ Specifies

■ addressed concerns

■ stakeholders having those concerns
■ model kinds
■ any architecture viewpoints
■ any correspondence rules

○ Viewpoint
■ Context Viewpoint

● Designs CI-specific system capabilities and defines models for
new CIS construction and capture of design decisions

● Stakeholders
○ Architect
○ Owner
○ Actors

● Concerns
○ Usefulness
○ Perpetuality

● Model Kinds
○ MK1 - As-Is Workflow
○ MK2 - Stigmergic Coordination
○ MK3 - To-Be Workflow

■ Technical Realization Viewpoint
● CIS realization and defines models to model collective

knowledge, the aggregation of data and stigmergy-based
dissemination of knowledge

● Stakeholders
○ Architect
○ Owner
○ Builder
○ Actor

● Concerns
○ Data Aggregation
○ Knowledge
○ Dissemination
○ Interactivity

● Model Kinds
○ MK1 - Artifact Definition (artifact structure, linking, and

operations to interact with artifact content)
○ MK2 - Aggregation (describes actor activities, logging,

data aggreation)
○ MK3 - Dissemination

■ Operation Viewpoint
● CIS operation startup and defines models to identify initial

content, actor groups, and measures for CIS aggregation and
dissemination performance.

● Stakeholder
○ Manager
○ Analyst

● Concerns
○ Kickstart

○ Monitoring
● Model Kinds

○ MK1 - Initial Content Acquisition
○ MK2 - CI Analytics

● CIS Concerns
○ Environment-mediated coordination and indirect communication with

feedback loop (2,3)
○ Information Aggregation (1)
○ Knowledge Dissemination (4)
○ Perpetual Feedback Loop

○

● Using CI during a Software Engineering Project
○ Internal perspective

■ Coordination of collective development efforts
■ Awareness about progress (changes, issues)
■ Discoverability of locally distributed knowledge and software artifacts

○ External perspective
■ thriving on the work and knowledge of communities instead of

reinventing the wheel
● open source
● going platform / ecosystem
● accessing quality-assured knowledge of crowds

○ CIS helping your SE Tasks
■ Issue Tracking (internal / external) - Jira,...
■ Knowledge Management (Internal / external) - Confluence,...
■ Programming Q&As (External) - Stack overflow,...
■ Code Review Tools (Internal / external) - gerrit, crucible,...
■ Container registries (internal / external) - docker hub
■ Extension portals (external) - rubygems.org, vs marketplace
■ Collaborative Code repositories (external) - GitHub
■ Digital Distribution and Updates (external) - App Stores, Steam,...

● Key Design Assumptions

○ User-driven Content Generation
○ Big Data Processing and Management

■ Issue: a lot of data is needed to be processed
○ (Real-Time) Data Analysis

■ Analysis Paralysis -> too much data, you cannot find something useful
■ need assistance to see what is there

○ Scalability
■ pricing concerns
■ architecture dependant

○ High Availability (24/7)
■ or only in core hours
■ but then it should be stable

● Common Misconceptions
○ We are in a perpetual beta, so we just start with the development and do the

system design as we go
■ WRONG, though a well-rounded system architecture of the “core”

system and its user-machine workflows is key
○ If we built it, they will come

■ if our system is cool, someone will use it
● WRONG - a strategy for every initial user group is needed

○ Scaling has to be considered from the very beginning of the system design
■ WRONG - depends on the system design
■ if you go server-less you have the scaling given already
■ if you go on premise there needs to be more thought, but it depends

on how much people will use the system
○ CICs utility and its ability to keep users engaged is related to using the right

technology framework and libraries
■ WRONG - effectiveness depends on the ability of CIS to keep users

engaged, also about content moderation, social aspects, privacy,
security -> to a degree independent of the technology

■ e.g.: Whatsapp - belongs to Facebook; Facebook has privacy
problems but still some people do not leave because more people use
Whatsapp and this is the reason they do not want to leave (network
effect)

■ Black Swan moments: Twitter -> Mastodon (because of Musk)

● Success and Risk Factors
○ Success

■ Choosing the right type of CIS
■ Appropriate set of CI design patterns

● e.g. Youtube - got rid of down-vote button (only for video
creators)

■ Provide low friction, easy to use means on contributing content
● e.g. one-click-mechanisms

■ effective feedback mechanisms - which make users aware about
activities of other users

○ Risk

■ CIS will not be used if it is not integrated in user workflow
● if it is too complicated, people will not use it
● design workflows according to natural flows

■ neglecting the user-base side
● too strict too loose content moderation

■ cannibalization of user activity by other CIS
● all people are somewhere already
● platforms are trying to steal each other’s user based
● consider UX and UI

■ handling of security and privacy of user data
● people are more sensitive now to privacy

● Challenges
○ Designing the right functional architecture

■ requirement elicitation of users needs and optimization potential
■ getting the basic workflows right

○ Perpetual beta
■ continuous delivery

○ Fostering an active community of contributors
■ users are scarce resource - competition
■ engagement (incentives, motivation)

○ Scaling
■ Big data and Machine Learning
■ Cloud computing
■ Global software dev

● team around the globe - always someone that is live and
working

■ Hyperscaler

● Centralized CIS vs Decentralized CIS
○ Centralized

■ One Platform
■ One Provider
■ central admin, dev and content curation
■ Data in one single system
■ e.g. Youtube,...

○ Decentralized and federated CIS
■ Most are open source

■ Different nodes where instances of the systems are deployed
■ Challenge:

● A lot of different operators with different setups (server
hardware)

● quality differs widely
● Examples: all FOSS

○ Mastodon (Twitter)
■ microblogging
■ nodes = instances (with own policies for privacy,

content, moderation, ….)
■ ruby on rails - back, react.js - front, PostgreSQL,

redis (caching)
○ PeerTube (Youtube)

■ content via web torrent
■ Postgres, redis, Express/NodeJS

○ Pixelfed (Instagram)
■ image sharing
■ tech: php, nodeJS, MariaDB / PostgreSQL,

Redis
○ GNU Social

■ microblogging
■ tech: php, OStatus, XMPP

○ Diaspora (Facebook)
■ social networking service + personal web server

(Unicorn)
■ diaspora network is build out of a network of

individual diaspora system instances (pods)
■ tech: ruby on rails, unicorn, backbone.js

■

○ ActivityPub Protocol
■ Open Protocol
■ Based on Activity Stream and linked Data
■ Main integrative protocol for platforms in the Fediverse
■ Does

● Communicate, follow, like with users and content on other
instances / platforms that support ActivityPub

■ Does NOT
● Discovery: no mechanisms for this -> need to use WebFinger

URI e.g.
● Simple: layered integration of W3C specs leads to verbose

responses; difficult in handling
● Certification: Platform decides if/how they follow the protocol

(out of spec behaviour)

●
● Trade-Off Centralized / Distributed CIS

○ Going centralized or distributed comes with trade-off
○ Always one central node required

■ for quality control
■ finding other nodes
■ etc

○ Pros (centralized)
■ Constant quality of service
■
■ Single point of access
■ More resources for system maintenance, security, evolution
■ Accountable entity (privacy issue, lawsuit)
■ Effective information exchange due to recommender systems

○ Cons (centralized)
■ single point of failure (privacy, security, governance)
■ prone to censorship and systematic infiltration by governments
■ often closed / proprietary system code
■ influence concentrated in one organization

○ Pros (Decentralized)
■ Multiple points of access

● e.g. different pods
■ More robust

● e.g. if a pod is hacked then the others a maybe still safe
■ often open source
■ Easy to host new instances

● if developers considered it (was not the case with mastodon)
■ Individual nodes cost less

○ Cons (Decentralized)
■ quality of service depends on individual node

● software updates
● hardware specs
● firewall systems
● who moderates the content (stricter looser)

■ each node is responsible for its maintenance and data security
■ less effective info exchange because of fragmentation of user base
■ little to no recommender systems
■ user contributions stored on an individual node

○ for decentralized systems the CIS can also be a publish/subscribe
implementation

● Technology Stack
○ Front End

■ Web client
● Angular JS
● Ruby on Rails (RESTful, MVC pattern, bundler - maintains

consistent environment)
■ Desktop client

● Electron (Chromium browser engine + node.js)
■ App client
■ Wearable client

● e.g. activity tracker, smartwatch
○ Back End

■ Spring Framework / Spring boot
○ Hyperscaler

■ cloud computing system
■ Can handle very small and very large volumes of data / computing

load / traffic
● Example: AWS, Azure

■ Horizontal Scaling - scaling out
● Virtual machines, more storage, memory, networking

■ Vertical Scaling - scaling up
● Upgrade capacity with better hardware

■ hyperscalers are expensive

■
■ Constituents

● Computing
○ Virtual Servers
○ Machine learning
○ Analytics
○ Serverless

● Storage
○ managed databases - NoSQL
○ hyperscalable databases - AWS aurora
○ object storage - aws s3
○ backups

● Networking
○ Content Deliver Network (CDN), Load Balancing
○ Virutal Private Clouds
○ Gateways and Service Orchestrators (REST,

Microservices, API-Gateways)
● Security & Compliance - often overlooked

○ certifications (C5 - europe/germany)
○ firewalls, DDoS/Traffic Protection, Detection Services,

Access / Identity Management
○ Governance, Auditing and Reporting Services
○ compliance is more important -> we certify the

hyperscaler, if your application is completely on the
hyperscaler, than the application is also compliant

■ think finance, health or government
organizations

■ e.g. hetzner in germany, aws,...
■ Architecture Concerns

● New solution design and development
○ design and implementation strategy -> reliability

requirements
○ design for business continuity
○ design for performance objectives

■ inbound / outbound processing
○ deployment strategy

■ how to handle source code, deployment,...
● Resilience

○ multi-tiered architecture
○ high availability and/or fault-tolerance
○ Decoupled granular Service Organization
○ Resilient Storage (Decade+)

■ different variants
■ use pricing calculators - who much and when

● High-Performance
○ hot or cold storage
○ elastic and scalable computing, storage and network

workload handling
● Security and Compliance

○ secured application tiers and networks

○ mechanisms for resource access and data security
○

● Cost-Handling and Cost-Optimization
○ identification, selection, implementation and review of

cost-effective compute, storage and networking
solutions

○ design implement review controls

● From data to intelligence to decisions to action

○

● Big Data Processing: Lambda Architecture
○ different kind of data

■ old data - batch layer
■ new data = real time - speed layer
■ Combination of old and new - service layer

■
○ Pros

■ batch layer manages historical data - at least something can be
served

■ balance between of reliability and speed
■ good scalability

○ Cons
■ Coding overhead due to involvement of comprehensive processing
■ Reprocessing every path cycle not suited for certain scenarios
■ Data may be difficult to migrate/reorganize

● Kappa Architecture

○
○ pros

■ suited for system that depend on hot, online data and no cold storage
(batch layer)

■ suited for horizontal scalable systems
■ pre-processing is only if code changes
■ fixed memory deployment

○ cons
■ lack of batch layer increases risk of errors during data processing or

database updates / reconciliation
■ more expensive

○ for data where there is a little error - because later data is used; newest data
is the most important

● Separation of Data Storage and Processing
○ Collect all data
○ store all raw data

■ storage technology
● relational database management system
● in-memory database system / caching
● graph databases

○ graph structures for semantic queries
○ can be used together with relational database

● BLOB /object storage
○ storing massive amounts of unstructured data like

images, video, docs, audio
○ e.g. AWS Amazon S3
○ e.g. use for client-centric web-applications

○ process and analyse data
■ use analytic engines to perform analysis on collected and stored data

● batch queries, interactive queries, real-time analysis, machine
learning

● Apache Kafka, Azure ML
○ apply and provide results:

● Trade-oFF Analysis Hyperscaler Example IaaS and Serverless
○ IaaS
○ TODO

● CI Design Patterns
○ Tagging

■
■ Problem: Information is dispersed and not grouped
■ Solution: It enables users to categorizes content on their own

○ Rating

■
○ Comments

■
○ Hashtags
○ Recommendations

■
○ Generated Lists

■
○ Follow Subscribe

■
○ Activity Indicator (e.g. Github)

■
○ User-generated Collections

