Y Informatics

E2. Advanced Computer Architecture

Cache Coherency

Daniel Mueller-Gritschneder

Sources

Multi-Cores.
Fundamentals of
Parallel

ULTICO

Architecture

Literature: Yan Solihin : Fundamentals of Parallel Multicore
Architecture, 2015

Online from TU Wien library:
https://catalogplus.tuwien.at/permalink/f/8i3js/UTW alma5111
2913160003336

Y.

"
.
4

///4/_{ 4

V1.0 ACA 2

https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma51112913160003336
https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma51112913160003336

Write propagation & Transaction serialization

e Cache coherence : Support for coherent view of data values in multiple caches

* Requires:
* Write propagation: Propagate changes in one cache to other caches

* Transaction serialization: Multiple operations (reads or writes) to a single memory
location are seen in the same order by all processors

V1.0 ACA 3

E2.1 Cache Controllers

V1.0 ACA

Coherence Controller

Processor (P) E PrOCGSSOF Ch|p E

) PO P1 P2 P3|

Cache Tag entries Cache blocks t t t t
Cache || Cache || Cache || Cache |

i ¥ v ¥ v

e i |

Coherence
Controller (CC) E
Outstanding Y Memory
Transaction Table <> Snooper | FSM Controller (MC) L2 Cache

Main Memory

Memory Chip
V1.0 ACA | 5

Outstanding transaction table & Snooper

e Outstanding transaction table

* In the split transaction bus, multiple requests to different addresses can be placed on the bus even
when the oldest request has not obtained its data.

» keeps track of bus transactions that have not completed.

* Bus snooper.
* Snoops each bus transaction
» checks the cache tag array to see if it has the block that is involved in the transaction
* checks the current state of the block (if the block is found)
* changes the state of the block
* New state of block -> a finite state machine (FSM) implementing the cache coherence protocol
e Data that is sent out is placed in a queue called the write back buffer

V1.0 ACA 6

E2.3 Coherence Protocol for Write Through Caches

V1.0 ACA

Coherence Protocol for Write Through Caches - Requests

* The simplest cache coherence: write through caches.
* Requests from the processor side, as well as from the bus side are snooped by the snooper.

Processor requests to the cache include:
1.PrRd: processor-side request to read to a cache block.
2.PrWr: processor-side request to write to a cache block.

Snooped requests to the cache include:

1.BusRd: snooped request that indicates there is a read request to a block made by another
processor.

2.BusWr: snooped request that indicates there is a write request to a block made by another
processor. In the case of a write through cache, the BusWr is a write through to the main memory
performed by another processor.

V1.0 ACA 8

Coherence Protocol for Write Through Caches — Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Valid (V): the cache block is valid and clean, meaning that the cached value is the same
with that in the lower-level memory component (in this case the main memory).

2. Invalid (I): the cache block is invalid. Accesses to this cache block will generate cache
misses.

V1.0 ACA

FSM for Coherence Protocol for Write Through Caches — Snooper FSM

* Processor Side Request * Bus Side Request
Processor (P)
PrRd/- t
PrWr/BusWr BusRd/- Cache

A

PrRd PrWr
BusWr/- FSM
PrRd/BusRd BusRd BusWr BusRd BusWr
PrWr/BusWr BusRd/-
BusWr/-
FSM

M
The processor in the book uses a write around (write no-allocate) policy so the value is
V1.0 directly updated in the memory and nat:fetched to the cache (remains invalid) 10

Cache Coherency Write through - Example 2

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

Request P1 P2 P3 Bus Request Data Transfer

0 Initially — — — — —

1 R1 V - - BusRd Mem -> P1‘s cache

2 w1 Vv — — BusWr P1‘s cache -> Mem (Write through)
3 R3 V - \ BusRd Mem -> P3‘s cache

4 W3 I — Vv BusWr P3‘s cache -> Mem (Write through)
5 R1 V - \ BusRd Mem -> P1‘s cache

6 R3 Y - vV - -

7 R2 Y \ \ BusRd Mem -> P2‘s cache

V1.0 ACA 11

V1.0

E2.3 MSI Protocol with Write Back Caches

ACA

12

MSI Protocol with Write Back Caches - Requests

In the MSI protocol, processor requests to the cache include:
1. PrRd: processor-side request to read from a cache block.
2. PrWr: processor-side request to write to a cache block.
Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by
another processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a
cache block made by another processor.

3. Flush: snooped request that indicates that an entire cache block is written back to the
main memory by another processor.

V1.0 ACA 13

MSI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

1.

3.

V1.0

Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state extends the meaning of the dirty
state in a write back cache for a single processor system, except that now it also implies
exclusive ownership. Whereas dirty means the cached value is potentially different than
the value in the main memory, modified means both the cached value is potentially
different than the value in the main memory, and it is cached only in one location.

Shared (S): the cache block is valid, potentially shared by multiple processors, and is
clean (the value is the same as the one in the main memory). The shared state is similar
to the valid state in the coherence protocol for write through caches.

Invalid (1): the cache block is invalid (either not cached, or cached but outdated).

ACA 14

MSI Protocol with Write Back Caches — State Transistions

Modified state (M): read/write permission
Downgrade Upgrade

Shared state (S): read/no-write permission

Invalid state (l): no-read/no-write permission

Intervention: Downgrade to S state

Invalidation: Downgrade to | state

V1.0 ACA 15

MSI Protocol with Write Back Caches - Snooper FSM

* Processor Side Request * Bus Side Request Processor (P)
PrRd/- t
PrWr/- -

PrRd/ BusRd/- Cache

PrWr/BusRdX BusRd/Flush

\4

PrRd PrWr Flush

FSM
BusRdX/- BusRd BusRdX BusRd BusRdXFlush

PrRd/BusRd

PrWr/BusRdX BusRdX/Flush

BusRd/-
BusRdX/-

V1.0 ACA 16

Cache Coherency MSI - Example

Processor Chip

PO P1

¢ {

Cache Cache

* Multi-threaded execution (MSI):

Thread 0 (PO): Thread 1 (P1):

//Line 1 Thread 0 (P0O): x[0]=0
SW zero, 0 (t0)

//Line 5: Thread 0 (PO): E
// x[0] = x[0] + a[0]; |

LW a0,0(t0)
LW al,0(tl)
ADD a0,a0,al
SW a0,0(t0)

// Line 5: Thread 1 (P1):
// x[0] = x[0] + a[l];

LW a0,0(t0)

LW al,4(tl)

ADD a0,a0,al

SW a0,0(t0) f """"""""""""""""" '

Memory
Controller (MC)

// Line 8 Thread (PO): 0x1000: ?
// result=x[0]
LW a2,0(t0)

Main Memory

0x2000: a[0]=3
0x2004: a[1]=7 Memory Chip

V1.0 ACA 17

Cache Coherency MSI - Example

* Multi-threaded execution (MSI):
Thread 0 (PO): Thread 1 (P1):

//Line 1 Thread 0 (P0O): x[0]=0 I

0x1000 (I->M): x[0]=0 0x1000:
SW zero, 0 (t0) Write x[0]=0, miss, X (il .] | Cache Cache Not cached
//Line 5: Thread 0 (PO):

fetch from Mem & write t ,
// x[0] = x[0] + al0]; :

LW a0, 0 (t0) PrWr/BusRdX CC CC BusRdX/-
LW al,0(tl) ' ' -
ADD a0,a0,al
SW a0, 0 (t0)

<>

// x[0] = x[0] + a[l];
LW a0,0(t0)

LW al,4(tl) ' '
ADD a0,a0,2a1 . TTTTmmmmmmmmm T hﬂenﬁory

sW a0, 0 (t0) ISl R Controller

0x1000: ? sees BusRdX
Main Memory ill supply

// Line 5: Thread 1 (P1): E

// Line 8 Thread (PO):
// result=x[0] ceen
LW a2,0 (t0) 0x2000: a[0]=3 data from

0x2004: a[1]=7 mory Chip ~Main memory

V1.0 ACA 18

Cache Coherency MSI - Example

* Multi-threaded execution (MSI):

Processor Chip

a0=0 |
Thread 0 (P0): Thread 1 (P1): 5 PO P1
//Line 1 Thread 0 (P0O): x[0]=0 I t t
0x1000 (M->M): x[0]=0
SW zero, 0 (t0) Write x[0]=0, miss, ():xd :] | Cache || Cache
//Line 5: Thread 0 (PO): fetch from mem & write t t
// x[0] = x[0] + a[0]; - : .
LW a0,0 (t0) Read x[0]=0, hit PrRd/- CC CC
LW al,0(tl) :
ADD a0,a0,al :
SW a0, 0 (t0) !
// Line 5: Thread 1 (P1): E
// x[0] = x[0] + a[l]; Memory
LW a0,0(t0) I Controller (MC)
LW al,4(tl) !
ADD a0,a0,a1 | . TTTTITmTmmTTmTTTTTTTTTTITTTT
SW a0, 0 (t0) i
// Line 8 Thread (PO): 0x1000: ? .
// result=x[0] Main Memory
LW az,0(t0) 0x2000: a[0]=3
0x2004: a[1]=7 'mory Chip
V1.0 ACA

19

Cache Coherency MSI - Example

Processor Chip

* Multi-threaded execution (MSI):

a0=0 i
Thread 0 (PO): Thread 1 (P1): al=3 PO P1
//Line 1 Thread 0 (PO): x[0]=0 OXlOOO(Nﬂ'XHﬂ=6 t t OXZdOO'

SW zero,0(t0) Write x[0]=0, miss,
fetch from mem & write

0x2000 (I->S): a[0]=3 Cache Cache Not cached
//Line 5: Thread 0 (PO): |

// x[0] = x[0] + a[0]; ! : t |
LW 20,0 (£0) Read x[0]=0, hit PrRd/BusRd CC CC BusRd/-
LW al,0(tl) Read a[0]=3, miss -> fetch ! ' '
ADD a0,a0,al
SW a0, 0 (t0)

// x[0] = x[0] + a[l];
LW a0,0(t0)

LW al,4(tl)

ADD a0,a0,al

SW a0,0(t0) A '

// Line 5: Thread 1 (P1): E

// Line 8 Thread (PO): 0x1000: ? :
17 result=x[0] Main Memory
LW a2, 0 (t0) 0x2000: a[0]=3 |

0x2004: a[1]=7 'mory Chip

V1.0 ACA 20

Cache Coherency MSI - Example

Processor Chip

* Multi-threaded execution (MSI):

ad=3 |
Thread 0 (PO): Thread 1 (P1): al=3 PO P1
//Line 1 Thread 0 (P0): x[0]=0 I t t :
. . 0x1000 (M): x[0]=0 0x2000:
SW zero, 0 (t0) =

Write x[0]=0, miss, 0x2000 (5): af0]=3 ~_€ache || Cache not cached
//Line 5: Thread 0 (PO): fetch from mem & write : t t :
// x[0] = x[0] + a[0]; _ | :
LW a0, 0 (t0) Read x[0]=0, hit ! CC CC
LW al, 0 (tl) Read a[0]=3, miss -> fetch :
ADD a0,a0,al x[0]=x[0]+a[0] : |
SW a0,0(t0) : :
// Line 5: Thread 1 (P1): E i
// x[0] = x[0] + a[l]; Memory !
LW a0,0(t0) : Controller (MC)
LW al,4(tl) | :
ADD a0,a0,al1 | . TTTTTITTTTTTATT T
SW a0, 0(t0) A :
// Line 8 Thread (PO): 0x1000: ? :
/) vesultex [0] Main Memory
LW az,0(t0) 0x2000: a[0]=3 |
0x2004: a[1]=7 'mory Chip

V1.0 ACA 21

Cache Coherency MSI -

Example

* Multi-threaded execution (MSI):

Processor Chip

a0=3 |
Thread 0 (PO): Thread 1 (P1): al=3 PO P1
//Line 1 Thread 0 (P0O): x[0]=0 | t t
0x1000 (M->M): x[0]=3
SW zero, 0(t0) Write x[0]=0, miss, (): x[0] Cache || Cache
. 0x2000 (S): a[0]=3
//Line 5: Thread 0 (PO): fetch from mem & write : t t
// x[0] = x[0] + a[0]; _ Lo
LW a0, 0 (t0) Read x[0]=0, hit PrWr/- CC CC
LW al,0(tl) Read a[0]=3, miss -> fetch !
ADD a0,a0,al X[O X[O +agO] !
SW a0, 0 (t0) erte x[0]=3, hit :
// Line 5: Thread 1 (P1): E
// x[0] = x[0] + a[l]; Memory
LW a0,0(t0) : Controller (MC)
LW al,4(tl) !
ADD a0,a0,a1 | . TTTTITmTmmTTmTTTTTTTTTTITTTT
SW a0, 0 (t0) i
// Line 8 Thread (PO): 0x1000: ?

// result=x[0]
LW a2,0(t0)

V1.0

ACA

0x2000: a[0]=3
0x2004: a[1]=7

Main Memory

'mory Chip

22

Cache Coherency MSI - Example

* Multi-threaded execution (MSI): ao’_"3"‘"?ssor Chip 20=3
Thread 0 (PO): Thread 1 (P1): a1=3 PO PL |
//Line 1 Thread 0 (P0O): x[0]1=0 | t |
SW zero, 0 (t0) Write x[0]=0, miss, 0x1000 (M->S): x[0]=3 0x1000 (I->S): x[0]=3

Cache Cache |

{

0x2000 (S): a[0]=3

fetch from mem & write

//Line 5: Thread 0 (PO):
// x[0] = x[0] + a[0];

LW a0,0(t0) Read x[0]=0, hit PrRd/BusRd
LW al,0(tl) Read a[0]=3, miss -> fetch - !

ADD a0,a0,al x[O =x[0 +a£0]

SW a0, 0 (t0) erte x[0]=3, hit

// Line 5: Thread 1 (P1):
// x[0] = x[0] + a[l];
LW a0,0(t0) Read x[0] miss -> fetch from
LW al,4(tl)
ADD a0,a0,al
SWw a0,0(t0) | e !

Flush: Value is written back to 0x1000: x[0]=3
memory and read by other processor = «...

cache 0x2000: a[0]=3
Data transfer: 0x2004: a[1]=7 mory Chip

PO‘s cache -> Mem -> P1‘s cache '

3
3

// Line 8 Thread (PO):
// result=x[0]
LW a2,0(t0)

Main Memory

V1.0 ACA 23

Cache Coherency MSI - Example

* Multi-threaded execution (MSI): o! p-eassor Chip 10=3
a0=
Thread 0 (PO): Thread 1 (P1): 21=3 PO P1 al=/
//Line 1 Thread 0 (P0): x[0]=0 0x1000 (S): O‘_3i t :
SW zero, 0 (t0) Write x[0]=0, miss, X (S): x[0]= Cache Cache 0x1000 (S): x[0]=3
fetch from mem & write 0x2000 (3): a[0]=3 0x2004 (I->S): a[1]=7
//Line 5: Thread 0 (PO): 0x2004: not cached t t !
// =[0] = x[0] + a[0]; _ ' o I
LW a0, 0 (t0) Read x[0]=0, hit BusRd/- CC CC PrRd/BusRd
LW al,0(tl) Read a[0]=3, miss -> fetch - - :
ADD a0,a0,al x[0]=x[0 +a50] | :
SW a0, 0 (t0) erte x[0]=3, hit ! i
// Line 5: Thread 1 (P1): E E
// x[0] = x[0] + a[l]; ! '
LW a0,0(t0) Read x[0] miss -> fetch from mem
LW al,4(tl) Read a[l]=7, miss -> fetch ! :
ADD a0,a0,2x2 | TTTTEEmEmEmmmmmmgEoTToTTmmmmTooooT '
SW a0, 0 (t0) TR EEEEEEEE thRE LRt !
// Line 8 Thread (PO): 0x1000: x[0]=3 .
// result=x[0] Main Memory

LW a2,0(to0)

0x2000: a[0]=3
0x2004: a[1]=7 'mory Chip

V1.0 ACA 24

Cache Coherency MSI - Example

* Multi-threaded execution (MSI): o0 "7assor Chip 210=10
au=
Thread 0 (PO): Thread 1 (P1): a1=3 PO P1 Ial=7
//Line 1 Thread 0 (P0O): x[0]=0 0x1000 (S): O‘_3i t t |
SW zero, 0 (t0) Write x[0]=0, miss, X (S): x[0]= Cache Cache 0x1000 (S): x[0]=3
fetch from mem & write 0x2000 (3): a[0]=3 0x2004 (S): a[1]=7
//Line 5: Thread 0 (PO): 0x2004: not cached t !
// x[0] = x[0] + a[0]; ' - !
LW a0, 0 (t0) Read x[0]=0, hit | :
LW al,0(tl) Read a[0]=3, miss -> fetch :
ADD a0,a0,al x[0]=x[0 +a50] | :
SW a0, 0 (t0) erte x[0]=3, hit ! i
// Line 5: Thread 1 (P1): E E
// x[0] = x[0] + a[[l]]; ek ¢ | Memory |
LW a0,0(t0) Read x[0] miss -> fetch from mem !
LW al,4(tl) Read a[l]=7, miss -> fetch Controller (MC) :
ADD a0,a0,alx[0]=x[O]+af1] | ~~ Tyttt '
SW a0, 0 (t0) e b s '
// Line 8 Thread (PO): 0x1000: x[0]=3 .
// result=x[0] Main Memory

LW a2,0(to0)

0x2000: a[0]=3
0x2004: a[1]=7 'mory Chip

V1.0 ACA 25

Cache Coherency MSI - Example

// Line 5: Thread 1 (P1):
// x[0] = x[0] + a[ll;]
LW a0,0(t0) Read x[0]=3 miss -> fetch frommem BusRdX
LW al,4(tl) Read a[l]=7, miss -> fetch : Controller (MC :
ADD a0,a0,alx[0]=x[0]+a[1] | = ~~"TTTtTTtpTTTTTTToooo
SW a0,0(t0) Write x[0]=10 hit T LGCETTTE SRR ,

// Line 8 Thread (PO): 0x1000: x[0]=3
// result=x[0]
LW a2, 0 (t0)

* Multi-threaded execution (MSI): o0 "ressor Chip 210=10
au=
Thread 0 (PO): Thread 1 (P1): 21=3 PO P1 Ial=7
//Line 1 Thread 0 (P0): x[0]=0 | t t |
——
. X . d = X . d =

//Line 5: Thread 0 (PO): fetch from mem & write ; t (S): al1]
// %101 = x[0] + a[0]; _ L I
LW a0, 0 (t0) Read x[0]=0, hit BusRdX/- CC CC PrWr/BusRdX
LW al,0(tl) Read a[0]=3, miss -> fetch - - :
ADD a0,a0,al x[0]=x[0 +a50] :
SW a0, 0 (t0) erte x[0]=3, hit i

Main Memory

0x2000: a[0]=3
0x2004: a[1]=7 'mory Chip

V1.0 ACA 26

Cache Coherency MSI - Example

* Multi-threaded execution (MSI): a0=3 >cessor Chip 20=10
result=10 31=3 _
Thread 0 (PO): Thread 1 (P1): ~ PO p1 al=/
) a2-10 o
//Line 1 Thread 0 (P0O): x[0]1=0 T t :
SW zero, 0 (t0) Write x[0]=0, miss, 0x1000 (I->M): x[0]=10 cache || Cact 0x1000 (M->1): x[0]=10
: 0x2000 (S): a[0]=3 0x2004 (S): a[1]=
//Line 5: Thread 0 (PO): fetch from mem & write ; t | (S): af
// x[0] = x[0] + a[0]; : . |
LW a0, 0 (t0) Read x[0]=0, hit PrRd/BusRd CC
LW al,0(tl) Read a[0]=3, miss -> fetch -
ADD a0,a0,al x[0]=x[0 +agO]
SW a0, 0 (t0) erte x[0]=3, hit

// Line 5: Thread 1 (P1):
// x[0] = x[0] + a[l];
LW a0,0(t0) Read x[0]=3 miss -> fgtch fro
LW al,4(tl) Read a[l]=7, miss -> fetch
ADD a0,a0,alx[0]=x[0]+a[1]
SW a0,0(t0) Write x[0]=10 hit

// Line 8 Thread (PO): 0x1000: x[0]=10

// result=x[0] Main Memory
LW a2,0(t0) Read x[0]=10, miss 0x2000: a[0]=3

0x2004: a[1]=7 'mory Chip

V1.0 ACA 27

MSI Protocol with Write Back Caches — Processor Side Request

* Ininvalid state (l):
* Processor read request (PrRd):

* Processor Side Request * Cache miss occurs
* To load the data into the cache, a BusRd is posted on the bus

* Fetching block from memory -> Set stateto S
PrRd/- * Processor write Request (PrWr):
Prwr/- PrRd/- posts a BusRdX request on the bus
e Other caches will invalidate their cached copies
* Fetching block from memory -> Set state to M
* Processor can update the block

* In shared state (S):

* Processor read request (PrRd):
* Block already cached -> provide value to processor
* No bus transaction
* Processor write Request (PrWr):
* Block already cached
e posts a BusRdX request on the bus
e Other caches will invalidate their cached copies
* Processor can update the block in its own cache

* In modified state (M):
* Processor read request (PrRd) & Processor write Request (PrWr)

* No change in state
V1.0 ACA 28

PrWr/BusRdX

PrRd/BusRd

PrWr/BusRdX

MSI Protocol with Write Back Caches — Bus Side Request

* Ininvalid state (l):

* Bus Side Request * Bus read request (BusRd, BusRedX):
* No change in state as block can be ignored (not cached or invalid)

* |n shared state (S):

BusRd/- * Busread request (BusRd):
* Another cache is fetching the block for read
* No state change
» Exclusive bus read request (BusRdX):
* Another processor is fetching the block for write
* Invalide our copy

Busrdx/- * In modified state (M):

* Busread request (BusRd): - Intervention
* Another cache is fetching the block for read and has a miss
* Flush the block to the other cache and to the memory (clean sharing)
BusRd/- * Move the shared state (our copy is still up to date)
BusRdX/- * Exclusive bus read request (BusRdX):
* Another cache is fetching the block for read and has a miss
* Flush the block to the other cache and to the memory (clean sharing)
* Invalidate our copy

BusRd/Flush

BusRdX/Flush

V1.0 29

Cache Coherency MSI - Example 2

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

Request P1 P2 P3 Bus Request Data Transfer

0 Initially — — — — —

1 R1 S - - BusRd Mem -> P1‘s cache

2 W1 M - - BusRdX Mem -> discarded

3 R3 S — S BusRd P1’s -> Mem (flush) -> P3‘s cache
4 W3 I - M BusRdX Mem -> discarded

5 R1 S — S BusRd P3’s -> Mem (flush) -> P1‘s cache
6 R3 S - S - -

7 R2 S S S BusRd Mem -> P2‘s cache

V1.0 ACA 30

MSI Protocol with Write Back Caches — Drawback

* Drawback with the MSI protocol:

* For each read-then-write sequence two bus transactions are involved:
* a BusRd to fetch the block into the shared state,
e and a BusRdX to invalidate other cached copies.

* Example:

* P1 has a copy due to read request 1 (R1), The BusRdX is useless for request 2 (W1) since cache of P1 does not
need a copy from memory as no other cache has this block

* The memory controller will still supply the value even though the cache does not need it (discards!) because it
does not know that cache of P1 already has a copy and only wants to upgrade from S to M).

* Unnecessary BW to memory!

Request P1 P2 P3 Bus Request Data Transfer
0 Initially = = = = =
1 R1 S = = BusRd Mem -> P1‘s cache
2 W1 M — — BusRdX Mem -> discarded
3 R3 S — S BusRd P1’s -> Mem (flush) -> P3‘s cache
4 W3 I — M BusRdX Mem -> discarded

V1.0 ACA 31

Cache Coherency MSI - Example

 Multi-threaded execution (MSI): g5 ressor Chip ,0=10 Local
Thread 0 (P0): Thread 1 (P1): al=3 PO P1 ,a1=7 :Sap?;able
//Line 1 Thread 0 (P0): x[0]=0 0 1000(5 >”_ [O]L3 t : . _
e yrite xI01=0, miss, X000) afo)(]—3_ Cache]| Cach gxgggg E;>2/[I)1']X[70]_10
. . = X : =
//Line 5: Thread 0 (P0): fetch from mem & write ; t .
// %101 = x[0] + a[0]; _ L I
LW a0, 0 (t0) Read x[0]=0, hit BusRdX/- CC CC PrWr/BusRdX
LW al,0(tl) Read a[0]=3, miss -> fetch | - - ;
ADD a0,a0,al E |
SW a0, 0 (t0) Write x[0]=3, hit ! i
// Line 5: Thread 1 (P1): E E
// x[0] = x[0] + a[[l]]; . f ! Memory .B Rd-x
LW a0,0(t0) Read x[0]=3 miss -> fatch from:mem us
LW al,4(tl) Read a[l]=7, miss -> fetch Controlier (MC Memory
ApDD a0,a0,2x2 0 TTTTEEEmEmmmmmmAgEoTToommmomTES
sSW a0,0(t0) Write x[0]=10 hit T Controller
// Line 8 Thread (PO): 0x1000: x[0]=3 i M sees BusRdX
/) result=x[0] ain Memory Will supply
LW a2, 0 (t0) data from
2 0x2000: a[0]=3 main memory
0x2004: a[1]=7 :mory Chip Not needed!

V1.0 ACA 32

MSI Protocol with Write Back Caches and BusUpgr - Snooper FSM

* Processor Side Request * Bus Side Request
PrRd/-
PrWr/- i
PrRd/ BusRd/-

PrWr/BusUpgr BusRd/Flush

PrRd/BusRd

BusRdX/-

PrWr/BusRdX BusUpgr/-

BusRdX/Flush

BusRd/-
BusRdX/-
BusUpgr/-

V1.0 ACA 33

MSI Protocol with Write Back Caches and BusUpgr

* New bus request called a bus upgrade (BusUpgr).
 If a cache already has a valid copy of the block and only needs to upgrade its permission from S to M, it
posts a BusUpgr instead of BusRdX.

* On the other hand, if it does not have the block in the cache and needs the memory or another cache
to supply it, it posts a BusRdX.

* The memory controller responds differently in these two cases: Ignores the BusUpgr, but fetches the
block when it snoops a BusRdX.

Request P1 P2 P3 Bus Request Data Supplier
0 Initially - - - - -
1 R1 S - — BusRd Mem -> P1‘s cache
2 W1 M - — BusUpgr -
3 R3 S — S BusRd P1’s -> Mem (flush) -> P3‘s cache
4 W3 I - M BusUpgr -

V1.0 ACA 34

Cache Coherency MSI with BusUgr - Example

* Multi-threaded execution (MSI with BusUgr): o! onressor Chip 20-10
au=
Thread 0 (PO): Thread 1 (P1): 21=3 PO P1 Ial=7
//Line 1 Thread 0 (P0): x[0]=0 ! t t |
s
: X : a[0]= X all]=
//Line 5: Thread 0 (PO): fetch from mem & write ; t .(): all]
// x[0] = x[0] + a[0]; - L .
LW a0, 0 (t0) Read x[0]=0, hit BusUpgr/- CC CC PrWr/BusUpgr
LW al,0(tl) Read a[0]=3, miss -> fetch \ - - ;
ADD a0,a0,al E !
SW a0, 0 (t0) Write x[0]=3, hit ! i
// Line 5: Thread 1 (P1): E E
// x[0] = x[0] + a[[l]]; . f ! Memory .B U-
LW a0,0(t0) Read x[0]=3 miss -> fetch from:mem usupsgr
LW al,4(tl) Read a[l]=7, miss -> fetch ! Controller {MC Memor
Apb a0,a0,22 | TTTTTEmmmmmmmAEoToToomomommmmoT y
sW a0,0(t0) Write x[0]=10 hit R RataGhl CUTEECETEEEE Controller
// Line 8 Thread (PO): 0x1000: x[0]=3 _ sees BusUpgr
/) result=x[0] Main Memory Will not
LW a2, 0(t0) 0x2000: a[0]=3 ::‘Oprglz’n‘:?rt]a
0x2004: a[1]=7 'mory Chip
............................ memory

V1.0 ACA 35

V1.0

E2.4 MESI Protocol with Write Back Caches

ACA

36

MESI Protocol with Write Back Caches - Requests

In the MESI protocol, processor requests to the cache include:

1.
2.

PrRd: processor-side request to read from a cache block.
PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1.

2.

V1.0

BusRd: snooped request that indicates there is a read request to a cache block made by another
processor.

BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache
block made by another processor which does not already have the block.

BusUpgr: snooped request that indicates that there is a write request to a cache block that
another processor already has in its cache.

Flush: snooped request that indicates that an entire cache block is written back to the main
memory by another processor.

FlushOpt: snooped request that indicates that an entire cache block is posted on the bus in
order to supply it to another processor. We refer to such an optional block flush as cache-to-
cache transfer.

ACA 37

MESI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state has the same meaning as the
dirty state in a write back cache for a single processor system.

Exclusive (E): the cache block is valid, clean, and only resides in one cache.
Shared (S): the cache block is valid, clean, but may reside in multiple caches.

Invalid (I): the cache block is invalid.

New signal C at Snooper (is high if any processor has a copy of the cache block)

V1.0 ACA 38

MESI Protocol with Write Back Caches - Snooper FSM

* Processor Side Request

PrWr/BusUpgr

PrRd/-

V1.0

PrWr/BusRdX | prrd/BusRd(!C)

PrRd/BusRd(C)

MESI: Keeps track if processor has the data exclusively:

» Often threads operate on private data that would
either be in exlusive (E) or modified (M) state.

* For this private data no bus signaling is required
(see blue box)

* Bus signalling always incurs performance overheads as
other CCs and memory controller need to react.

ACA

39

MESI Protocol with Write Back Caches - Snooper FSM

* In invalid state (l):

* Processor Side Request * Processor read request, other processor has cache block (PrRd(C)):
e Cache miss occurs
* To load the data into the cache, a BusRd is posted on the bus
* Other processors indicate with C that they have a copy in cache
* Fetching block from other cache (FlushOpt) -> Set state to S
* Processor read request, no other processor has cache block (PrRd(!C)):
e Cache miss occurs
* To load the data into the cache, a BusRd is posted on the bus
PrRd/BusRd(!C) « Other processors indicate with C that they do not have a copy in cache
* Fetching block from memory -> Set state to E
* Processor write Request (PrWr):
* posts a BusRdX request on the bus
PrRd/BusRd(C) * Other caches will invalidate their cached copies, possibly flush to mem
PrRd/- * Fetching block from memory -> Set state to M
* Processor can update the block

PrRd/-
Prwr/- PrRd/-

PrWr/BusRdX
PrWr/BusUpgr rWr/Bus

V1.0 ACA 40

MESI Protocol with Write Back Caches - Snooper FSM

* In shared state (S):

* Processor Side Request e processor read request (PrRd):
* Block already cached -> provide value to processor

PrRd/- * No bus transaction

Prwr/- PrRd/- * Processor write Request (PrWr):

* Block already cached

e posts a BusUpgr request on the bus

e Other caches will invalidate their cached copies

* Processor can update the block in its own cache

PrRd/BusRd(!C)* In modified state (M):

* processor read request (PrRd) & Processor write Request (PrWr)
* No change in state

PrWr/BusRdX

PrWr/BusUpgr

PrRd/BusRd(C)
PrRd/-

V1.0 ACA 41

MESI Protocol with Write Back Caches - Snooper FSM

* Processor Side Request * In exclusive state (E):
e processor read request (PrRd):
PrRd/- * Block already cached -> provide value to processor
Prwr/- PrRd/- * No bus transaction

* Processor write Request (PrWr):
* Block already cached
* No other processor has copy, no need to send bus message
* Processor can update the block in its own cache
PrRd/BusRd(!C) One major advantage of MESI!

PrWr/BusRdX
PrWr/BusUpgr rWr/Bus

PrRd/BusRd(C)
PrRd/-

V1.0 ACA 42

MESI Protocol with Write Back Caches - Snooper FSM

* Bus Side Request

BusRd/Flush BusRd/

BusRdX/FlushOpt
FlushOpt

[
»

BusRdX/FlushOpt
BusUpgr/-

BusRd/FlushOpt

BusRd/-
BusRdX/-
BusUpgtr/-

V1.0

* In invalid state (l):

* Busread request (BusRd, BusRdX,BusUpgr):

* No change in state as block can be
ignored (not cached or invalid)

* In shared state (S):

* Busread request (BusRd):
* Another cache is fetching the block for read

* FlushOpt to allow a cache-to-cache transfer, as value
IS same as in memory

* No state change
* Exclusive bus read request (BusRdX):
* Another processor is fetching the block for write

* FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

* Invalide our copy
Bus upgrade request (BusUpgr):

* Another processor is fetching the block for write;
but has a local copy

ACA * |nvalide our copy -

MESI Protocol with Write Back Caches - Snooper FSM

* In modified state (M):

» Bus Side Request * Bus read request (BusRd):

* Another cache is fetching the block for read and has a
miss

* Flush the block to the other cache and to the memory
(clean sharing)

* Move to the shared state (our copy is still up to date)
BusRdX/Flushopt * Exclusive bus read request (BusRdX):

* Another cache is fetching the block for write and has a
miss

BusRd/Flush BusRd/
FlushOpt

R * Flush the block to the other cache and to the memory

BusRdX/FlushOpt (clean sharing)

BusUpgr/-

BusRd/-
BusRd/FlushOpt BusRdX/-

BusUpgtr/-

* |nvalidate our copy

V1.0 ACA 44

MESI Protocol with Write Back Caches - Snooper FSM

* |In exclusive state (E):

» Bus Side Request * Bus read request (BusRd):

* Another cache is fetching the block for read and has a
miss

* FlushOpt to allow a cache-to-cache transfer, as value
IS same as in memory

* Move the shared state (our copy is still up to date)

BusRdX/Flushopt * Exclusive bus read request (BusRdX):

* Another cache is fetching the block for write and has a
miss

BusRd/Flush BusRd/
FlushOpt

[
»

* FlushOpt to allow a cache-to-cache transfer, as value
IS same as in memory

BusRdX/FlushOpt
BusUpgr/-

BusRd/FlushOpt

* |nvalidate our copy
BusRd/-

BusRdX/-
BusUpgtr/-

V1.0 ACA 45

Cache Coherency MESI - Example

* Multi-threaded execution (MESI):

Processor Chip

Cache Not cached

{ i

CC BusRd/-

a0=0
Thread 0 (PO): Thread 1 (P1): al=3 PO P1
//Line 1 Thread 0 (P0O): x[0]=0) _I t t
SW zero, 0 (t0) Write x[0]=0, miss, LD (e IS Cache
. 0x2000 (I->E): a[0]=3
//Line 5: Thread 0 (PO): fetch from mem & write :
// x[0] = x[0] + a[0]; ! .
LW a0, 0 (t0) Read x[0]=0, hit PrRd/BusRd(!C) CC
LW al,0(tl) Read a[0]=3, miss -> fetch ! '
ADD a0,a0,al :
SW a0, 0 (t0) |
// Line 5: Thread 1 (P1): E
// x[0] = x[0] + a[l]; E
LW a0, 0 (t0) :
LW al,4(tl) ! i
ADD a0,a0,a1 | . TTTTITmTmmTTmTTTTTTTTTTITTTT
SW a0, 0 (t0) i !
// Line 8 Thread (PO): 0x1000: ?

// result=x[0]
LW a2,0(t0)

V1.0

ACA

Main Memory

0x2000: a[0]=3

0x2004: a[1]=7 'mory Chip

46

Example

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

Request P1 P2 P3 Bus Request Data Transfers

0 Initially — — — — —

1 R1 E - - BusRd Mem -> P1’s cache

2 W1 M - - - -

3 R3 S — S BusRd P1’s cache -> Mem (flush) -> P3’s cache
4 W3 I - M BusUpgr -

5 R1 S — S BusRd P3’s cache -> Mem (flush) -> P1’s cache
6 R3 S - S - -

7 R2 S S S BusRd P1/P3’s cache -> P2’s cache (flushOpt)*

*Clean Sharing: the block in memory is the same as in
all three caches (request 5 wrote it to the memory)

V1.0 ACA 47

Comparison MSI vs. MESI

 Compared to the MSI protocol, the MESI protocol does not reduce the bandwidth usage
on the bus, but it does reduce the bandwidth use to the main memory due to the cache-
to-cache transfers (FlushOpt).

»Bandwidth to the main memory is often a bottleneck when there is a lot of processors
connected to the same memory (known as the Memory wall!).

» Additionally, MESI keeps track of data that is exclusive to the thread (threads often
operate on private data, not all data is shared). No bus signaling required for this private
data.

V1.0 ACA 48

V1.0

E2.5 MOESI Protocol with Write Back Caches

ACA

49

MOESI Protocol with Write Back Caches - Requests

In the MOESI protocol, processor requests to the cache include:
1. PrRd: processor-side request to read to a cache block.
2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another
processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache block made
by another processor which does not already have the block.

3. BusUpgr: snooped request that indicates that there is a write request to a cache block that another
processor already has in its cache.

4. Flush: snooped request that indicates that an entire cache block is placed on the bus by a processor to
facilitate a transfer to another processor’s cache. (Different from MESI!, not to memory, closer to
FlushOpt in MESI!)

5. FlushOpt: snooped request that indicates that an entire cache block is posted on the bus in order to
supply it to another processor. (We refer to it as FlushOpt because unlike Flush which is needed for write
propagation correctness, FlushOpt is implemented as a performance enhancing feature that can be
removed without impacting correctness.)

6. FlushWB: snooped request that indicates that an entire cache block is written back to the main memory
by another processor, and it is not meant as a transfer from one cache to another.
V1.0 ACA 50

MOESI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

V1.0

Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state has the same meaning as the
dirty state in a write back cache for a single processor system, except that now it also
implies exclusive ownership.

Owned (O): the cache block is valid, possibly dirty, and may reside in multiple caches.
However, when there are multiple cached copies, there can only be one cache that has
the block in owned state, other caches should have the block in state shared.

Exclusive (E): the cache block is valid, clean, and only resides in one cache.
Shared (S): the cache block is valid, possibly dirty, but may reside in multiple caches.
Invalid (I): the cache block is invalid.

ACA 51

MOESI Protocol with Write Back Caches - Snooper FSM

* Processor Side Request

V1.0

PrRd/-
Prr/- PrRd/-

ACA

* In Owned State(O):
* Processor read request (PrRd):

Block already cached -> provide value to
processor

* Processor write Request (PrWr):

Block already cached

posts a BusUpgr request on the bus
Other caches will invalidate their cached
copies

Processor can update the block in its
own cache

52

MOESI Protocol with Write Back Caches - Snooper FSM

* In Owned State(O):

* Bus Side Request .

BusRd/Flush

BusRdX/ .
FlushOpt .

BusRd/FlushOpt
BusRdX/Flush

BusRdX/-

BusRd/Flush
UsRd/Flus BusUpgr/-

BusRd/-
BusRdX/-

BusRdX/Flush BusUpgr/-

BusUpgr/-

V1.0 ACA

Bus read request (BusRd):

Block is owned by own cache and possibly
dirty

Other cache fetches block for read

Flush block to other processor (cache to
cache transfer, possibly dirty sharing)
Own cache remains to be owner

Exclusive bus write request (BusRdX):

Block is owned by own cache and possibly
dirty

Other cache fetches block for write

Flush block to other processor (cache to
cache transfer, possibly dirty sharing)
Invalidate own cache block, loose ownership

Bus Upgrade Request (BusUpgr):

Other cache fetches block for write and has
own up-to-date copy
Invalidate own cache block, loose ownership

53

PrRd/-
Prwr/- PrRd/-

BusRd/Flush

PrWr/BusUpgr

BusRdX/
FlushOpt

BusRd/FlushOpt

BusRdX/Flush

Per/BUSRm O

BusRd/Flush

PrWr/BusUpgr

BusRdX/-
BusUpgtr/-

PrRd/-

BusRd/-
BusRdX/
BusUpgr

PrRd/BusRd(C)

PrRd/- BusRdX/Flush
BusUpgr/-

.04.20%4 .0 ACA 54

MOESI - Example

* The owner cache supplies the block

* As the owner could have modified the block, it may differ from the block in memory during transfer (dirty sharing)

* The memory controller (MC) only writes the block to memory during a flushWB, the flushWB is coming from the
owner (see next slide).

Request P1 P2 P3 Bus Request Data Transfer
0 Initially — — — - —
1 R1 E — — BusRd Mem -> P1’s cache
2 W1 M - - - -
3 R3 (0 — S BusRd P1’s cache -> P3’s cache (flush)*
4 W3 I - M BusUpgr -
5 R1 S — (0 BusRd P3’s cache -> P1’s cache (flush)*
6 R3 S - o) - -
7 R2 S S (0 BusRd P3’s cache -> P2’s cache (flush)* *

e * Dirty sharing: the copy of the block in the main memory has not seen the updates in request 2 and 4
* *MC: Writing the block also to memory as P3 was the owner (O) of block when it was flushed.

V1.0 ACA 55

MOESI - FlushWB

 The owner (O) keeps track of the latest version on each block and supplies it.

* Dirty sharing: The memory may not have up-to-date copy.

e flushWB’s role:

 If the owner evicts the cache block, then it needs to be written back to the main memory (this is the
FlushWB), it is not in the FSM as it is not caused by a read/write of this cache block, but by another

block causing the evict.
* There is no owner after that but other caches may still have block in shared state (transfer of owner
can be implemented)

V1.0 ACA 56

MOESI — FlushOpt

* FlushOpt’s role:

V1.0

FlushOpt is happening when downgrading from Exclusive (E) to Shared (S) or invalid (I)
As a key characteristic, MOESI fetches blocks from the owner
If the block is in E state, it is not marked as ,, owned”

Yet, as optimization feature flushOpt indicates that the block is supplied by the cache having it in ,E“
state and not by the memory in a clean sharing cache-to-cache transfer

This is not needed for correctness (write propagation) as the block could also be supplied by the
memory (clean sharing, memory has a valid copy)

ACA 57

MOESI vs. MESI

 MOESI allows for dirty sharing:
* Less memory traffic, Faster transfers (cache to cache)
* But with L2 cache, the effect may be less important, as L2 to L1 may still be fast.

 MOESI needs 3 bit per cache line to store state, MESI only 2 bit

* MESI, MOESI:

* Open guestion: When several blocks have clean cache block in shared state — Who supplies block?

V1.0 ACA 58

V1.0

E2.6 Further Protocols

ACA

59

Further protocols

* MESIF (by Intel): MESI with a forwarding state (used as designated supplier when several
caches share a clean block), but no dirty sharing such as MOESI

* MSI, MESI; MOESI: Invalidation-based protocols

 Alternative are update-based protocols, e.g. Dragon protocol (see book)

V1.0 ACA 60

Where we are

* Multi-cores with shared memory

* Cache coherency protocols

* Next: Memory consistency & Synchronization mechanisms

V1.0 ACA 62

	Folie 1
	Folie 2: Sources
	Folie 3: Write propagation & Transaction serialization
	Folie 4
	Folie 5: Coherence Controller
	Folie 6: Outstanding transaction table & Snooper
	Folie 7
	Folie 8: Coherence Protocol for Write Through Caches - Requests
	Folie 9: Coherence Protocol for Write Through Caches – Cache Block States
	Folie 10: FSM for Coherence Protocol for Write Through Caches – Snooper FSM
	Folie 11: Cache Coherency Write through - Example 2
	Folie 12
	Folie 13: MSI Protocol with Write Back Caches - Requests
	Folie 14: MSI Protocol with Write Back Caches - Cache Block States
	Folie 15: MSI Protocol with Write Back Caches – State Transistions
	Folie 16: MSI Protocol with Write Back Caches - Snooper FSM
	Folie 17: Cache Coherency MSI - Example
	Folie 18: Cache Coherency MSI - Example
	Folie 19: Cache Coherency MSI - Example
	Folie 20: Cache Coherency MSI - Example
	Folie 21: Cache Coherency MSI - Example
	Folie 22: Cache Coherency MSI - Example
	Folie 23: Cache Coherency MSI - Example
	Folie 24: Cache Coherency MSI - Example
	Folie 25: Cache Coherency MSI - Example
	Folie 26: Cache Coherency MSI - Example
	Folie 27: Cache Coherency MSI - Example
	Folie 28: MSI Protocol with Write Back Caches – Processor Side Request
	Folie 29: MSI Protocol with Write Back Caches – Bus Side Request
	Folie 30: Cache Coherency MSI - Example 2
	Folie 31: MSI Protocol with Write Back Caches – Drawback
	Folie 32: Cache Coherency MSI - Example
	Folie 33: MSI Protocol with Write Back Caches and BusUpgr - Snooper FSM
	Folie 34: MSI Protocol with Write Back Caches and BusUpgr
	Folie 35: Cache Coherency MSI with BusUgr - Example
	Folie 36
	Folie 37: MESI Protocol with Write Back Caches - Requests
	Folie 38: MESI Protocol with Write Back Caches - Cache Block States
	Folie 39: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 40: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 41: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 42: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 43: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 44: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 45: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 46: Cache Coherency MESI - Example
	Folie 47: Example
	Folie 48: Comparison MSI vs. MESI
	Folie 49
	Folie 50: MOESI Protocol with Write Back Caches - Requests
	Folie 51: MOESI Protocol with Write Back Caches - Cache Block States
	Folie 52: MOESI Protocol with Write Back Caches - Snooper FSM
	Folie 53: MOESI Protocol with Write Back Caches - Snooper FSM
	Folie 54
	Folie 55: MOESI - Example
	Folie 56: MOESI – FlushWB
	Folie 57: MOESI – FlushOpt
	Folie 58: MOESI vs. MESI
	Folie 59
	Folie 60: Further protocols
	Folie 61: Summary
	Folie 62: Where we are

