
Cache Coherency

E2. Advanced Computer Architecture

Daniel Mueller-Gritschneder

Sources

V1.0 2

Multi-Cores.

Literature: Yan Solihin : Fundamentals of Parallel Multicore
Architecture, 2015

Online from TU Wien library:
https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma5111
2913160003336

ACA

https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma51112913160003336
https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma51112913160003336

Write propagation & Transaction serialization

• Cache coherence : Support for coherent view of data values in multiple caches

• Requires:

• Write propagation: Propagate changes in one cache to other caches

• Transaction serialization: Multiple operations (reads or writes) to a single memory
location are seen in the same order by all processors

V1.0 3ACA

V1.0 4

E2.1 Cache Controllers

ACA

Coherence Controller

V1.0 5

Bus

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

L2 Cache

Bus

Snooper
Outstanding
Transaction Table FSM

Cache

Processor (P)

Coherence
Controller (CC)

Cache blocksTag entries

Cache

P0

CC

Cache

P1

CC

Cache

P2

CC

Cache

P3

CC

ACA

Outstanding transaction table & Snooper

• Outstanding transaction table
• In the split transaction bus, multiple requests to different addresses can be placed on the bus even

when the oldest request has not obtained its data.

• keeps track of bus transactions that have not completed.

• Bus snooper.
• Snoops each bus transaction

• checks the cache tag array to see if it has the block that is involved in the transaction

• checks the current state of the block (if the block is found)

• changes the state of the block

• New state of block -> a finite state machine (FSM) implementing the cache coherence protocol

• Data that is sent out is placed in a queue called the write back buffer

V1.0 6ACA

V1.0 7

E2.3 Coherence Protocol for Write Through Caches

ACA

Coherence Protocol for Write Through Caches - Requests

• The simplest cache coherence: write through caches.

• Requests from the processor side, as well as from the bus side are snooped by the snooper.

Processor requests to the cache include:

1.PrRd: processor-side request to read to a cache block.

2.PrWr: processor-side request to write to a cache block.

Snooped requests to the cache include:

1.BusRd: snooped request that indicates there is a read request to a block made by another
processor.

2.BusWr: snooped request that indicates there is a write request to a block made by another
processor. In the case of a write through cache, the BusWr is a write through to the main memory
performed by another processor.

V1.0 8ACA

Coherence Protocol for Write Through Caches – Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Valid (V): the cache block is valid and clean, meaning that the cached value is the same
with that in the lower-level memory component (in this case the main memory).

2. Invalid (I): the cache block is invalid. Accesses to this cache block will generate cache
misses.

V1.0 9ACA

FSM for Coherence Protocol for Write Through Caches – Snooper FSM

• Processor Side Request

V1.0 10

V

PrRd/-
PrWr/BusWr

I

PrRd/BusRd

PrWr/BusWr

• Bus Side Request

V

BusRd/-

I

BusWr/-

BusRd/-
BusWr/-

FSM

PrRd PrWr

BusRd BusWr BusRd BusWr

Bus

Cache

FSM

Processor (P)

The processor in the book uses a write around (write no-allocate) policy so the value is
directly updated in the memory and not fetched to the cache (remains invalid)ACA

Cache Coherency Write through - Example 2

Request P1 P2 P3 Bus Request Data Transfer

0 Initially – – – – –

1 R1 V – – BusRd Mem -> P1‘s cache

2 W1 V – – BusWr P1‘s cache -> Mem (Write through)

3 R3 V – V BusRd Mem -> P3‘s cache

4 W3 I – V BusWr P3‘s cache -> Mem (Write through)

5 R1 V – V BusRd Mem -> P1‘s cache

6 R3 V – V - -

7 R2 V V V BusRd Mem -> P2‘s cache

V1.0 11

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

ACA

V1.0 12

E2.3 MSI Protocol with Write Back Caches

ACA

MSI Protocol with Write Back Caches - Requests

In the MSI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read from a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by
another processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a
cache block made by another processor.

3. Flush: snooped request that indicates that an entire cache block is written back to the
main memory by another processor.

V1.0 13ACA

MSI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state extends the meaning of the dirty
state in a write back cache for a single processor system, except that now it also implies
exclusive ownership. Whereas dirty means the cached value is potentially different than
the value in the main memory, modified means both the cached value is potentially
different than the value in the main memory, and it is cached only in one location.

2. Shared (S): the cache block is valid, potentially shared by multiple processors, and is
clean (the value is the same as the one in the main memory). The shared state is similar
to the valid state in the coherence protocol for write through caches.

3. Invalid (I): the cache block is invalid (either not cached, or cached but outdated).

V1.0 14ACA

MSI Protocol with Write Back Caches – State Transistions

• Modified state (M): read/write permission

• Shared state (S): read/no-write permission

• Invalid state (I): no-read/no-write permission

• Intervention: Downgrade to S state

• Invalidation: Downgrade to I state

V1.0 15

Downgrade Upgrade

ACA

MSI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 16

M

PrRd/-
PrWr/-

I
PrWr/BusRdX

• Bus Side Request

S

PrRd/BusRd

M

PrRd/-

I
BusRdX/Flush

BusRd/-
BusRdX/-

S

BusRdX/-

PrWr/BusRdX BusRd/Flush

BusRd/-

FSM

PrRd PrWr

BusRd BusRdX BusRd BusRdX

Bus

Cache

Flush

Processor (P)

Flush

ACA

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

Cache Coherency MSI - Example

V1.0 17

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 18

Write x[0]=0, miss,
fetch from Mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCCPrWr/BusRdX

0x1000 (I->M): x[0]=0

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

BusRdX/-

0x1000:
Not cached

BusRdX

Memory
Controller
sees BusRdX
Will supply
data from
main memory

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 19

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M->M): x[0]=0

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

PrRd/-Read x[0]=0, hit

a0=0

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 20

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M): x[0]=0
0x2000 (I->S): a[0]=3

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

PrRd/BusRd BusRd/-

BusRd

0x2000:
Not cached

a0=0
a1=3

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 21

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M): x[0]=0
0x2000 (S): a[0]=3

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

0x2000:
Not cached

a0=3
a1=3

x[0]=x[0]+a[0]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 22

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M->M): x[0]=3
0x2000 (S): a[0]=3

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

PrWr/-

Write x[0]=3, hit

a0=3
a1=3

x[0]=x[0]+a[0]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 23

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M->S): x[0]=3
0x2000 (S): a[0]=3

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0] miss -> fetch from mem

0x1000 (I->S): x[0]=3

PrRd/BusRd

Flush
BusRd

BusRd/Flush

Flush: Value is written back to
memory and read by other processor
cache
Data transfer:
P0‘s cache -> Mem -> P1‘s cache

a0=3
a1=3

a0=3
a0=3
a1=3

x[0]=x[0]+a[0]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 24

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (S): x[0]=3
0x2000 (S): a[0]=3
0x2004: not cached

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0] miss -> fetch from mem

0x1000 (S): x[0]=3
0x2004 (I->S): a[1]=7

PrRd/BusRd

BusRd

BusRd/-

Read a[1]=7, miss -> fetch

a0=3
a1=7

a0=3
a1=3

a0=3
a1=7

a0=3
a1=3

x[0]=x[0]+a[0]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 25

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (S): x[0]=3
0x2000 (S): a[0]=3
0x2004: not cached

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0] miss -> fetch from mem

0x1000 (S): x[0]=3
0x2004 (S): a[1]=7

Read a[1]=7, miss -> fetch

a0=3
a1=7

a0=3
a1=3

a0=10
a1=7

a0=3
a1=3

x[0]=x[0]+a[0]

x[0]=x[0]+a[1]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 26

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (S->I): x[0]=3
0x2000 (S): a[0]=3

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0]=3 miss -> fetch from mem

0x1000 (S->M): x[0]=10
0x2004 (S): a[1]=7

PrWr/BusRdX

BusRdX

BusRdX/-

Read a[1]=7, miss -> fetch

Write x[0]=10 hit

a0=10
a1=7

a0=3
a1=3

x[0]=x[0]+a[0]

x[0]=x[0]+a[1]

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 27

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (I->M): x[0]=10
0x2000 (S): a[0]=3

0x1000: x[0]=10
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0]=3 miss -> fetch from mem

0x1000 (M->I): x[0]=10
0x2004 (S): a[1]=7

BusRd/Flush

BusRd
FlushRead a[1]=7, miss -> fetch

Write x[0]=10 hit

Read x[0]=10, miss

a0=10
a1=7

a0=3
a1=3
a2=10

result=10

PrRd/BusRd

x[0]=x[0]+a[0]

x[0]=x[0]+a[1]

ACA

MSI Protocol with Write Back Caches – Processor Side Request

V1.0 28

• In invalid state (I):
• Processor read request (PrRd):

• Cache miss occurs
• To load the data into the cache, a BusRd is posted on the bus
• Fetching block from memory -> Set state to S

• Processor write Request (PrWr):
• posts a BusRdX request on the bus
• Other caches will invalidate their cached copies
• Fetching block from memory -> Set state to M
• Processor can update the block

• In shared state (S):
• Processor read request (PrRd):

• Block already cached -> provide value to processor
• No bus transaction

• Processor write Request (PrWr):
• Block already cached
• posts a BusRdX request on the bus
• Other caches will invalidate their cached copies
• Processor can update the block in its own cache

• In modified state (M):
• Processor read request (PrRd) & Processor write Request (PrWr)

• No change in state

• Processor Side Request

M

PrRd/-
PrWr/-

I
PrWr/BusRdX

S

PrRd/BusRd

PrRd/-

PrWr/BusRdX

ACA

MSI Protocol with Write Back Caches – Bus Side Request

V1.0 29

• Bus Side Request

M

I
BusRdX/Flush

BusRd/-
BusRdX/-

S

BusRd/Flush

BusRd/-

• In invalid state (I):
• Bus read request (BusRd, BusRedX):

• No change in state as block can be ignored (not cached or invalid)

• In shared state (S):
• Bus read request (BusRd):

• Another cache is fetching the block for read
• No state change

• Exclusive bus read request (BusRdX):
• Another processor is fetching the block for write
• Invalide our copy

• In modified state (M):
• Bus read request (BusRd): - Intervention

• Another cache is fetching the block for read and has a miss
• Flush the block to the other cache and to the memory (clean sharing)
• Move the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX):
• Another cache is fetching the block for read and has a miss
• Flush the block to the other cache and to the memory (clean sharing)
• Invalidate our copy

BusRdX/-

ACA

Cache Coherency MSI - Example 2

Request P1 P2 P3 Bus Request Data Transfer

0 Initially – – – – –

1 R1 S – – BusRd Mem -> P1‘s cache

2 W1 M – – BusRdX Mem -> discarded

3 R3 S – S BusRd P1’s -> Mem (flush) -> P3‘s cache

4 W3 I – M BusRdX Mem -> discarded

5 R1 S – S BusRd P3’s -> Mem (flush) -> P1‘s cache

6 R3 S – S – –

7 R2 S S S BusRd Mem -> P2‘s cache

V1.0 30

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

ACA

MSI Protocol with Write Back Caches – Drawback

• Drawback with the MSI protocol:
• For each read-then-write sequence two bus transactions are involved:

• a BusRd to fetch the block into the shared state,

• and a BusRdX to invalidate other cached copies.

• Example:
• P1 has a copy due to read request 1 (R1), The BusRdX is useless for request 2 (W1) since cache of P1 does not

need a copy from memory as no other cache has this block

• The memory controller will still supply the value even though the cache does not need it (discards!) because it
does not know that cache of P1 already has a copy and only wants to upgrade from S to M).

• Unnecessary BW to memory!

V1.0 31

Request P1 P2 P3 Bus Request Data Transfer

0 Initially – – – – –

1 R1 S – – BusRd Mem -> P1‘s cache

2 W1 M – – BusRdX Mem -> discarded

3 R3 S – S BusRd P1’s -> Mem (flush) -> P3‘s cache

4 W3 I – M BusRdX Mem -> discarded

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI - Example

V1.0 32

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (S->I): x[0]=3
0x2000 (S): a[0]=3

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0]=3 miss -> fetch from mem

0x1000 (S->M): x[0]=10
0x2004 (S): a[1]=7

PrWr/BusRdX

BusRdX

BusRdX/-

Read a[1]=7, miss -> fetch

Write x[0]=10 hit

a0=10
a1=7

a0=3
a1=3

Memory
Controller
sees BusRdX
Will supply
data from
main memory
Not needed!

Local
copy
available

ACA

MSI Protocol with Write Back Caches and BusUpgr - Snooper FSM

• Processor Side Request

V1.0 33

M

PrRd/-
PrWr/-

I
PrWr/BusRdX

• Bus Side Request

S

PrRd/BusRd

M

PrRd/-

I
BusRdX/Flush

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/-
BusUpgr/-

PrWr/BusUpgr BusRd/Flush

BusRd/-

ACA

MSI Protocol with Write Back Caches and BusUpgr

• New bus request called a bus upgrade (BusUpgr).
• If a cache already has a valid copy of the block and only needs to upgrade its permission from S to M, it

posts a BusUpgr instead of BusRdX.

• On the other hand, if it does not have the block in the cache and needs the memory or another cache
to supply it, it posts a BusRdX.

• The memory controller responds differently in these two cases: Ignores the BusUpgr, but fetches the
block when it snoops a BusRdX.

V1.0 34

Request P1 P2 P3 Bus Request Data Supplier

0 Initially – – – – –

1 R1 S – – BusRd Mem -> P1‘s cache

2 W1 M – – BusUpgr -

3 R3 S – S BusRd P1’s -> Mem (flush) -> P3‘s cache

4 W3 I – M BusUpgr -

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MSI with BusUgr):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MSI with BusUgr - Example

V1.0 35

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (S->I): x[0]=3
0x2000 (S): a[0]=3

0x1000: x[0]=3
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

Write x[0]=3, hit

Read x[0]=3 miss -> fetch from mem

0x1000 (S->M): x[0]=10
0x2004 (S): a[1]=7

PrWr/BusUpgr

BusUpgr

BusUpgr/-

Read a[1]=7, miss -> fetch

Write x[0]=10 hit

a0=10
a1=7

a0=3
a1=3

Memory
Controller
sees BusUpgr
Will not
supply data
from main
memory

ACA

V1.0 36

E2.4 MESI Protocol with Write Back Caches

ACA

MESI Protocol with Write Back Caches - Requests

In the MESI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read from a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another
processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache
block made by another processor which does not already have the block.

3. BusUpgr: snooped request that indicates that there is a write request to a cache block that
another processor already has in its cache.

4. Flush: snooped request that indicates that an entire cache block is written back to the main
memory by another processor.

5. FlushOpt: snooped request that indicates that an entire cache block is posted on the bus in
order to supply it to another processor. We refer to such an optional block flush as cache-to-
cache transfer.

V1.0 37ACA

MESI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state has the same meaning as the
dirty state in a write back cache for a single processor system.

2. Exclusive (E): the cache block is valid, clean, and only resides in one cache.

3. Shared (S): the cache block is valid, clean, but may reside in multiple caches.

4. Invalid (I): the cache block is invalid.

New signal C at Snooper (is high if any processor has a copy of the cache block)

V1.0 38ACA

MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 39

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

MESI: Keeps track if processor has the data exclusively:

• Often threads operate on private data that would
either be in exlusive (E) or modified (M) state.

• For this private data no bus signaling is required
(see blue box)

• Bus signalling always incurs performance overheads as
other CCs and memory controller need to react.

ACA

MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 40

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In invalid state (I):
• Processor read request, other processor has cache block (PrRd(C)):

• Cache miss occurs

• To load the data into the cache, a BusRd is posted on the bus

• Other processors indicate with C that they have a copy in cache

• Fetching block from other cache (FlushOpt) -> Set state to S

• Processor read request, no other processor has cache block (PrRd(!C)):
• Cache miss occurs

• To load the data into the cache, a BusRd is posted on the bus

• Other processors indicate with C that they do not have a copy in cache

• Fetching block from memory -> Set state to E

• Processor write Request (PrWr):
• posts a BusRdX request on the bus

• Other caches will invalidate their cached copies, possibly flush to mem

• Fetching block from memory -> Set state to M

• Processor can update the block

ACA

MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 41

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In shared state (S):
• processor read request (PrRd):

• Block already cached -> provide value to processor

• No bus transaction

• Processor write Request (PrWr):
• Block already cached

• posts a BusUpgr request on the bus

• Other caches will invalidate their cached copies

• Processor can update the block in its own cache

• In modified state (M):
• processor read request (PrRd) & Processor write Request (PrWr)

• No change in state

ACA

MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 42

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In exclusive state (E):
• processor read request (PrRd):

• Block already cached -> provide value to processor

• No bus transaction

• Processor write Request (PrWr):
• Block already cached

• No other processor has copy, no need to send bus message

• Processor can update the block in its own cache

One major advantage of MESI!

ACA

MESI Protocol with Write Back Caches - Snooper FSM

V1.0 43

• Bus Side Request

• In invalid state (I):
• Bus read request (BusRd, BusRdX,BusUpgr):

• No change in state as block can be
ignored (not cached or invalid)

• In shared state (S):
• Bus read request (BusRd):

• Another cache is fetching the block for read

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• No state change

• Exclusive bus read request (BusRdX):
• Another processor is fetching the block for write

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Invalide our copy

• Bus upgrade request (BusUpgr):
• Another processor is fetching the block for write;

but has a local copy

• Invalide our copy

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

ACA

MESI Protocol with Write Back Caches - Snooper FSM

V1.0 44

• Bus Side Request

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

• In modified state (M):
• Bus read request (BusRd):

• Another cache is fetching the block for read and has a
miss

• Flush the block to the other cache and to the memory
(clean sharing)

• Move to the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX):
• Another cache is fetching the block for write and has a

miss

• Flush the block to the other cache and to the memory
(clean sharing)

• Invalidate our copy

ACA

MESI Protocol with Write Back Caches - Snooper FSM

V1.0 45

• Bus Side Request

• In exclusive state (E):
• Bus read request (BusRd):

• Another cache is fetching the block for read and has a
miss

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Move the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX):
• Another cache is fetching the block for write and has a

miss

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Invalidate our copy

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

ACA

//Line 1 Thread 0 (P0): x[0]=0

SW zero,0(t0)

//Line 5: Thread 0 (P0):

// x[0] = x[0] + a[0];

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

// Line 8 Thread (P0):

// result=x[0]

LW a2,0(t0)

• Multi-threaded execution (MESI):

// Line 5: Thread 1 (P1):

// x[0] = x[0] + a[1];

LW a0,0(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,0(t0)

Thread 0 (P0): Thread 1 (P1):

Cache Coherency MESI - Example

V1.0 46

Write x[0]=0, miss,
fetch from mem & write

Interconnect

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

P0

CacheCache

CCCC

0x1000 (M): x[0]=0
0x2000 (I->E): a[0]=3

0x1000: ?
….
0x2000: a[0]=3
0x2004: a[1]=7

Read x[0]=0, hit
Read a[0]=3, miss -> fetch

PrRd/BusRd(!C) BusRd/-

BusRd

0x2000:
Not cached

a0=0
a1=3

ACA

Example

Request P1 P2 P3 Bus Request Data Transfers

0 Initially – – – – –

1 R1 E – – BusRd Mem -> P1’s cache

2 W1 M – – – –

3 R3 S – S BusRd P1’s cache -> Mem (flush) -> P3’s cache

4 W3 I – M BusUpgr –

5 R1 S – S BusRd P3’s cache -> Mem (flush) -> P1’s cache

6 R3 S – S – –

7 R2 S S S BusRd P1/P3’s cache -> P2’s cache (flushOpt)+

V1.0 47

Rx or Wx, where R stands for a read request, W stands for a write request, and x
stands for the ID of the processor making the request

+Clean Sharing: the block in memory is the same as in
all three caches (request 5 wrote it to the memory)

ACA

Comparison MSI vs. MESI

• Compared to the MSI protocol, the MESI protocol does not reduce the bandwidth usage
on the bus, but it does reduce the bandwidth use to the main memory due to the cache-
to-cache transfers (FlushOpt).

➢Bandwidth to the main memory is often a bottleneck when there is a lot of processors
connected to the same memory (known as the Memory wall!).

• Additionally, MESI keeps track of data that is exclusive to the thread (threads often
operate on private data, not all data is shared). No bus signaling required for this private
data.

V1.0 48ACA

V1.0 49

E2.5 MOESI Protocol with Write Back Caches

ACA

MOESI Protocol with Write Back Caches - Requests

In the MOESI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read to a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another
processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache block made
by another processor which does not already have the block.

3. BusUpgr: snooped request that indicates that there is a write request to a cache block that another
processor already has in its cache.

4. Flush: snooped request that indicates that an entire cache block is placed on the bus by a processor to
facilitate a transfer to another processor’s cache. (Different from MESI!, not to memory, closer to
FlushOpt in MESI!)

5. FlushOpt: snooped request that indicates that an entire cache block is posted on the bus in order to
supply it to another processor. (We refer to it as FlushOpt because unlike Flush which is needed for write
propagation correctness, FlushOpt is implemented as a performance enhancing feature that can be
removed without impacting correctness.)

6. FlushWB: snooped request that indicates that an entire cache block is written back to the main memory
by another processor, and it is not meant as a transfer from one cache to another.

V1.0 50ACA

MOESI Protocol with Write Back Caches - Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely)
different than the one in the main memory. This state has the same meaning as the
dirty state in a write back cache for a single processor system, except that now it also
implies exclusive ownership.

2. Owned (O): the cache block is valid, possibly dirty, and may reside in multiple caches.
However, when there are multiple cached copies, there can only be one cache that has
the block in owned state, other caches should have the block in state shared.

3. Exclusive (E): the cache block is valid, clean, and only resides in one cache.

4. Shared (S): the cache block is valid, possibly dirty, but may reside in multiple caches.

5. Invalid (I): the cache block is invalid.

V1.0 51ACA

MOESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 52

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)
O

PrRd/-

PrWr/BusUpgr

• In Owned State(O):
• Processor read request (PrRd):

• Block already cached -> provide value to
processor

• Processor write Request (PrWr):
• Block already cached
• posts a BusUpgr request on the bus
• Other caches will invalidate their cached

copies
• Processor can update the block in its

own cache

ACA

MOESI Protocol with Write Back Caches - Snooper FSM

V1.0 53

M

I

• Bus Side Request

E

BusRdX/
FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/Flush

BusRd/FlushOpt

BusRd/Flush

BusRd/-

BusRdX/-
BusUpgr/-

O

BusRd/Flush

BusRdX/Flush
BusUpgr/-

• In Owned State(O):
• Bus read request (BusRd):

• Block is owned by own cache and possibly
dirty

• Other cache fetches block for read
• Flush block to other processor (cache to

cache transfer, possibly dirty sharing)
• Own cache remains to be owner

• Exclusive bus write request (BusRdX):
• Block is owned by own cache and possibly

dirty
• Other cache fetches block for write
• Flush block to other processor (cache to

cache transfer, possibly dirty sharing)
• Invalidate own cache block, loose ownership

• Bus Upgrade Request (BusUpgr):
• Other cache fetches block for write and has

own up-to-date copy
• Invalidate own cache block, loose ownership

ACA

V1.0 5429.04.2025

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)
O

PrRd/-

PrWr/BusUpgr

M

I

E

BusRdX/
FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/Flush

BusRd/FlushOpt

BusRd/Flush

BusRd/-

BusRdX/-
BusUpgr/-

O

BusRd/Flush

BusRdX/Flush
BusUpgr/-

ACA

MOESI - Example

Request P1 P2 P3 Bus Request Data Transfer

0 Initially – – – – –

1 R1 E – – BusRd Mem -> P1’s cache

2 W1 M – – – –

3 R3 O – S BusRd P1’s cache -> P3’s cache (flush)*

4 W3 I – M BusUpgr –

5 R1 S – O BusRd P3’s cache -> P1’s cache (flush)*

6 R3 S – O – –

7 R2 S S O BusRd P3’s cache -> P2’s cache (flush)* +

V1.0 55

• The owner cache supplies the block
• As the owner could have modified the block, it may differ from the block in memory during transfer (dirty sharing)
• The memory controller (MC) only writes the block to memory during a flushWB, the flushWB is coming from the

owner (see next slide).

• * Dirty sharing: the copy of the block in the main memory has not seen the updates in request 2 and 4
• + MC: Writing the block also to memory as P3 was the owner (O) of block when it was flushed.

ACA

MOESI – FlushWB

• The owner (O) keeps track of the latest version on each block and supplies it.

• Dirty sharing: The memory may not have up-to-date copy.

• flushWB’s role:
• If the owner evicts the cache block, then it needs to be written back to the main memory (this is the

FlushWB), it is not in the FSM as it is not caused by a read/write of this cache block, but by another
block causing the evict.

• There is no owner after that but other caches may still have block in shared state (transfer of owner
can be implemented)

V1.0 56ACA

MOESI – FlushOpt

• FlushOpt‘s role:
• FlushOpt is happening when downgrading from Exclusive (E) to Shared (S) or invalid (I)

• As a key characteristic, MOESI fetches blocks from the owner

• If the block is in E state, it is not marked as „owned“

• Yet, as optimization feature flushOpt indicates that the block is supplied by the cache having it in „E“
state and not by the memory in a clean sharing cache-to-cache transfer

• This is not needed for correctness (write propagation) as the block could also be supplied by the
memory (clean sharing, memory has a valid copy)

V1.0 57ACA

MOESI vs. MESI

• MOESI allows for dirty sharing:
• Less memory traffic, Faster transfers (cache to cache)

• But with L2 cache, the effect may be less important, as L2 to L1 may still be fast.

• MOESI needs 3 bit per cache line to store state, MESI only 2 bit

• MESI, MOESI:
• Open question: When several blocks have clean cache block in shared state – Who supplies block?

V1.0 58ACA

V1.0 59

E2.6 Further Protocols

ACA

Further protocols

• MESIF (by Intel): MESI with a forwarding state (used as designated supplier when several
caches share a clean block), but no dirty sharing such as MOESI

• MSI, MESI; MOESI: Invalidation-based protocols

• Alternative are update-based protocols, e.g. Dragon protocol (see book)

V1.0 60ACA

Summary

Where we are

• Multi-cores with shared memory

• Cache coherency protocols

• Next: Memory consistency & Synchronization mechanisms

V1.0 62ACA

	Folie 1
	Folie 2: Sources
	Folie 3: Write propagation & Transaction serialization
	Folie 4
	Folie 5: Coherence Controller
	Folie 6: Outstanding transaction table & Snooper
	Folie 7
	Folie 8: Coherence Protocol for Write Through Caches - Requests
	Folie 9: Coherence Protocol for Write Through Caches – Cache Block States
	Folie 10: FSM for Coherence Protocol for Write Through Caches – Snooper FSM
	Folie 11: Cache Coherency Write through - Example 2
	Folie 12
	Folie 13: MSI Protocol with Write Back Caches - Requests
	Folie 14: MSI Protocol with Write Back Caches - Cache Block States
	Folie 15: MSI Protocol with Write Back Caches – State Transistions
	Folie 16: MSI Protocol with Write Back Caches - Snooper FSM
	Folie 17: Cache Coherency MSI - Example
	Folie 18: Cache Coherency MSI - Example
	Folie 19: Cache Coherency MSI - Example
	Folie 20: Cache Coherency MSI - Example
	Folie 21: Cache Coherency MSI - Example
	Folie 22: Cache Coherency MSI - Example
	Folie 23: Cache Coherency MSI - Example
	Folie 24: Cache Coherency MSI - Example
	Folie 25: Cache Coherency MSI - Example
	Folie 26: Cache Coherency MSI - Example
	Folie 27: Cache Coherency MSI - Example
	Folie 28: MSI Protocol with Write Back Caches – Processor Side Request
	Folie 29: MSI Protocol with Write Back Caches – Bus Side Request
	Folie 30: Cache Coherency MSI - Example 2
	Folie 31: MSI Protocol with Write Back Caches – Drawback
	Folie 32: Cache Coherency MSI - Example
	Folie 33: MSI Protocol with Write Back Caches and BusUpgr - Snooper FSM
	Folie 34: MSI Protocol with Write Back Caches and BusUpgr
	Folie 35: Cache Coherency MSI with BusUgr - Example
	Folie 36
	Folie 37: MESI Protocol with Write Back Caches - Requests
	Folie 38: MESI Protocol with Write Back Caches - Cache Block States
	Folie 39: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 40: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 41: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 42: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 43: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 44: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 45: MESI Protocol with Write Back Caches - Snooper FSM
	Folie 46: Cache Coherency MESI - Example
	Folie 47: Example
	Folie 48: Comparison MSI vs. MESI
	Folie 49
	Folie 50: MOESI Protocol with Write Back Caches - Requests
	Folie 51: MOESI Protocol with Write Back Caches - Cache Block States
	Folie 52: MOESI Protocol with Write Back Caches - Snooper FSM
	Folie 53: MOESI Protocol with Write Back Caches - Snooper FSM
	Folie 54
	Folie 55: MOESI - Example
	Folie 56: MOESI – FlushWB
	Folie 57: MOESI – FlushOpt
	Folie 58: MOESI vs. MESI
	Folie 59
	Folie 60: Further protocols
	Folie 61: Summary
	Folie 62: Where we are

