Statistics and Probability Theory

Exam Example

Exam - Before to start

- Please bring:
a. a personal document/ID with your photo (mandatory)
b. a pen with either blue or black ink (mandatory)
c. a non-programmable calculator and a two-sided handwritten A4 sheet may be used during the exam (optional)
d. water, fruits, snacks, etc. (optional)
- In the exam, you will get the following documents:

1. Answer Form
2. Question Form
3. Statistical Tables

- Note that computers, smartphones, tablets, notes, books, etc., as well as discussions and consultations are prohibited during the exam.

1. Answer Form

- Blank Answer Form.

- Please, fill in your personal information: Name, surname, signature, matriculation number (student ID number) and its coding. A coding example is given below.

2. Question Form

107.254 Statistics and Probability Theory 2022W

Sixth examination term, Written Exam, Wednesday 17.01.2024, 12:00 PM
Group A

Name:

Matriculation number:

Signature:

This is a multiple-choice exam. It consists of 20 multiple-choice problems. All the problems carry 5 points each. The maximum score is 100 .

For each problem, four possible answers (a, b, c, d) are offered and exactly one answer is correct. The answer that best completes the statement or answers the question should be chosen by ticking in the Answers form. There are no negative points for ticking a wrong answer. Ticking no answer or ticking more than one answer leads to the question being marked as incorrect. A pen with either blue or black ink has to be used
A non-programmable calculator, a two-sided handwritten A4 sheet and statistical tables, which will be provided, may be used during the exam. The formulae sheet has to be submitted with the exam. Please note that a copy of a handwritten sheet is not a handwritten sheet and cannot be used in the exam. Computers, smartphones, tablets, notes, books, etc., as well as discussions and consultations are prohibited during the exam. It is mandatory to bring a personal document/ID with picture.
The examination time is 90 minutes.
Good luck!

- Please, fill in your Name and surname, ID number and signature.

107.254 Statistics and Probability Theory 2022W

Sixth examination term, Written Exam, Wednesday 17.01.2024, 12:00 PM
FILL iN
Name: NAME \& SURNAME
Matriculation number: ID NUMBER
Signature: SIGNATURE

This is a multiple-choice exam. It consists of 20 multiple-choice problems. All the problems carry 5 points each. The maximum score is 100 .

For each problem, four possible answers ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) are offered and exactly one answer is correct. The answer that best completes the statement or answers the question should be chosen by ticking in the Answers form. There are no negative points for ticking a wrong answer. Ticking no answer or ticking more than one answer leads to the question being marked as incorrect. A pen with either blue or black ink has to be used
A non-programmable calculator, a two-sided handwritten A4 sheet and statistical tables, which will be provided, may be used during the exam. The formulae sheet has to be submitted with the exam. Please note that a copy of a handwritten sheet is not a handwritten sheet and cannot be used in the exam. Computers, smartphones, tablets, notes, books, etc., as well as discussions and consultations are prohibited during the exam. It is mandatory to bring a personal document/ID with picture.
The examination time is 90 minutes.
Good luck!

3. Statistical Tables

- Tables of Standard normal probabilities, Chi square distribution and t-distribution.

Table entry for z is the area under the standard of z.

TABLE A Standard normal probabilities (continued)

z	-	. 01	. 02	. 03	. 04	. 06	. 06	, 07	08	. 09
00	. 5000	. 5010	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
01	. 5328	. 5438	5478	. 5617	. 5557	. 5596	. 5636	. 6675	. 5714	. 5753
02	. 5793	. 5832	5871	. 5910	. 5948	. 5888	. 60236	6064	. 6103	. 6141
03	. 6179	. 6217	. 6255	. 6293	. 6331	.6238	. 6406	. 6443	. 6450	. 6517
0.4	,6554	6591	6628	. 6664	. 6700	. 6736	. 6772	. 6808	.6844	6879
0.5	. 6915	6950	6985	. 7019	. 7064	. 7088	7123	. 7157	. 7190	7224
06	. 7257	7291	7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	7611	7642	. 7673	7704	7734	7764	7794	. 7823	7852
08	. 7881	7910	. 7939	. 7967	. 7505	. 8023	8051	. 8078	8106	8133
0.9	. 8159	8186	8212	. 8238	. 8284	. 8289	8315	. 8340	. 8365	8389
1.0	. 8413	8438	8461	8485	. 8508	8531	8554	. 8577	. 8589	. 8621
1.1	. 8643	. 8665	.8586	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8807	. 8925	. 8944	8962	. 8980	. 8997	. 9015
1.3	. 9088	9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9198	. 92007	9222	. 9233	. 9251	9265	. 9279	. 9292	. 9806	. 9319
1.5	. 9932	. 9345	. 9357	9370	. 9382	9994	9406	. 9418	9429	. 9441
1.6	. 9452	. 9463	9474	. 9484	. 9495	. 9505	. 9515	.9525	9535	. 9545
17	9554	9564	9573	. 9582	. 9591	.9699	9608	. 9616	9625	. 9633
1.8	. 9641	9649	9656	. 9664	. 9671	. 9678	. 9886	. 9098	9909	. 9706
1.9	. 9713	. 9719	9725	. 9732	9735	9744	9750	9756	9761	. 9767
20	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	9803	. 9608	9812	. 9817
21	Se2l	. 9826	.9830	. 9834	. 9838	. 5842	. 9846	. 9850	9854	. 9857
22	. 9881	. 9964	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
23	. 9893	. 9996	5898	. 9901	5904	. 9906	9909	. 9911	. 9913	. 9916
24	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	.9931	9932	. 9934	. 9936
25	. 9938	. 9940	. 9841	. 9043	. 9945	. 9946	9948	. 9049	.9951	9952
26	9953	9955	9956	9067	. 9959	. 9960	9961	. 9962	. 9963	9964
27	. 9965	9966	9967	9968	${ }^{9969}$	9970	. 9971	. 9972	. 9973	. 9074
28	9974	9975	. 9976	. 9977	9977	9978	9979	. 9979	. 9980	. 9081
29	9981	. 9982	.9982	. 9983	. 9894	. 9984	. 9985	. 9985	. 9986	9086
30	. 9988	. 9987	. 9087	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	9990
31	. 9990	9991	. 9991	. 99901	. 9992	. 9990	. 9992	. 9092	. 9093	. 9093
32	. 9993	. 9993	. 90094	. 99094	. 9904	. 9994	. 9994	.9095	. 9095	. 9995
33	. 9996	. 9995	9096	. 9986	. 9906	. 9966	. 9899	. 9096	9996	9997
3.4	9997	. 9997	9997	9997	9007	.9997	. 9897	9997	geg	9998

Table entry for p is the critical value x^{*} with probability p lying to its

TABLE E Chi-square distribution critical values

df	p											
	25	20	. 15	. 10	.05	. 025	. 12	. 01	. 005	. 0025	001	.0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	1083	12.12
2	2.77	3.22	3.79	4.61	599	7.38	782	9.21	10.60	11.98	1382	15.20
3	4.11	4.64	5.32	6.25	781	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	2051	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	2959	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	1981	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	2354	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	${ }^{21.61}$	22.98	24.77	27.59	30.19	31.00	33,41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	4231	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	4750
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	4.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	5495
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	5786
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34,80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	53.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	1123	1163	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	1358	1402	144.3	149.4	153.2

Table entry for p and C is the critical value t^{*} with probability p lying to its right and probability C lying between

$$
-t^{\prime \prime} \text { and } t^{\prime}
$$

TABLE C t distribution critical values

df	Upper tail probability p											
	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	005	. 0025	. 001	0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	1273	318.3	636.6
2	0.816	1.061	1.386	1886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	58.84	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2871	3.174	3.390
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2813	3.098	3.300
z*	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%
	Confidence level C											

Exam Example - Front page

This is a multiple-choice exam. It consists of 20 multiple-choice problems. All the questions carry 5 points each. The maximum score is 100.

For each problem, four possible answers (a, b, c, d) are offered and exactly one answer is correct. The answer that best completes the statement or answers the question should be chosen by ticking in the Answers form. There are no negative points for ticking a wrong answer. Ticking no answer or ticking more than one answer leads to the question being marked as incorrect. A pen with either blue or black ink has to be used.

The completion period is 90 minutes.
Good luck!

Examples

(1) A plumbing contractor obtains 60% of her boiler circulators from a company whose defect rate is 0.005 , and the rest from a company whose defect rate is 0.01 . What is the probability that a randomly chosen circulators is defective? If the chosen circulator is defective, what is the probability that it came from the first company?
a. 0.007 and 0.429
b. 0.007 and 0.571
c. 0.034 and 0.882
d. 0.034 and 0.118

Answer:

Let $C_{i}=\{$ boiler circulators are obtained from ith company $\}, i=1,2$ and $D=\{$ a circulator is defective $\}$. The following are given

$$
P\left(D \mid C_{1}\right)=0.005, P\left(D \mid C_{2}\right)=0.01, P\left(C_{1}\right)=0.6 \text { and } P\left(C_{2}\right)=0.4
$$

By the formula of the total probability, the probability of a defected circulator is

$$
P(D)=P\left(D \mid C_{1}\right) \cdot P\left(C_{1}\right)+P\left(D \mid C_{2}\right) \cdot P\left(C_{2}\right)=0.6 \cdot 0.005+0.4 \cdot 0.01=0.007
$$

From the Bayes rule we obtain

$$
P\left(C_{1} \mid D\right)=\frac{P\left(C_{1} \cap D\right)}{P(D)}=\frac{P\left(D \mid C_{1}\right) \cdot P\left(C_{1}\right)}{P(D)}=\frac{0.6 \cdot 0.005}{0.007}=0.4285 \approx 0.429
$$

Examples

(2) Can the function

$$
p(x)=\left\{\begin{array}{cc}
a x^{2}+2 x-1 & x=1,2,3 \tag{1}\\
0 & \text { else }
\end{array}\right.
$$

be the probability mass function for some discrete random variable? Here a is a real number.
a. Yes, only for a unique positive a.
b. No, because probabilities cannot be negative.
c. No, because probabilities cannot be greater than 1.
d. Yes, only for a unique negative a.

Answer:
The probabilities must be nonegative and to sum up to one.

x	1	2	3	
p	$a+1$	$4 a+3$	$9 a+5$	$14 a+9$

Thus, from $1=\sum_{x=1}^{3} P(X=x)=a+1+4 a+3+9 a+5=14 a+9$ we get that only for $a=-4 / 7$ the probabilities sum up to one. In this case, $p(1)=P(X=1)=3 / 7$, $p(2)=P(X=2)=5 / 7$ but $p(3)=P(X=3)=9 a+5=-\frac{36}{7}+5=-\frac{1}{7}<0$. Thus, the function (1) cannot be the pdf of a discrete random variable.

Examples

(3) Pumpkins grown on a certain farm have normally distributed weights with a standard deviation of 2 kilograms. What is the expected weight if 85% of the pumpkins weigh less than 16 kg ?
a. 14.30
b. 13.92
c. 14.88
d. 15.70

Answer:
Let X denotes the weight of a pampkin. Then $X \sim \mathcal{N}\left(\mu, 2^{2}\right)$. The goal is to find μ knowing that $P(X<16)=85 \%$. Then, from

$$
0.85=P(X<16)=P\left(\frac{X-\mu}{2}<\frac{16-\mu}{2}\right)=P\left(Z<\frac{16-\mu}{2}\right)=\Phi\left(\frac{16-\mu}{2}\right)
$$

where Φ is the cdf of the standard normal distribution. From

$$
\frac{16-\mu}{2}=\Phi^{-1}(0.85)
$$

we obtain

$$
\mu=16-2 \cdot \Phi^{-1}(0.85) \underset{\text { Tables }}{=} 16-2 \cdot 1.04=13.92
$$

Examples

(4) Let X_{1}, \ldots, X_{64} be a random sample from a distribution with the expectation 1.2 and variance 4 . Let

$$
\bar{X}=\frac{1}{64} \sum_{i=1}^{64} X_{i}
$$

be the sample mean. Determine the approximate value of $P(\bar{X} \leqslant 1.55)$ using the Central limit theorem and express it in terms of a a suitable R-function.
a. pnorm(1.4)
b. pnorm(0.175)
c. pnorm(1.55, 1.2, 4)
d. pnorm(0.35, 0, 0.5)

Answer:
For the sample mean we have $\mathbb{E} \bar{X}=\mathbb{E} X_{i}=1.2$ and $\mathbb{V a r} \bar{X}=\frac{\sigma^{2}}{n}=\frac{1}{16}=0.25^{2}$. By the CLT, for n large enough, the distribution of $\bar{X} \approx \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)=\mathcal{N}\left(1.2,0.25^{2}\right)$. Thus,

$$
\frac{\bar{X}-\mathbb{E} \bar{X}}{\sqrt{\operatorname{Var} \bar{X}}}=\frac{\bar{X}-1.2}{\frac{1}{4}}=\mathrm{Z} \approx \mathcal{N}(0,1)
$$

The unknown probability is approximately

$$
P(\bar{X} \leqslant 1.55) \approx P\left(Z \leqslant \frac{1.55-1.2}{0.25}\right)=P(Z \leqslant 1.4)=\Phi(1.4)=\text { pnorm }(1.4)
$$

Examples

(5) Let X be a random variable with the probability density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
1, & 0 \leqslant x \leqslant 1 \\
0, & \text { else }
\end{array} .\right.
$$

Let $Z=-\ln X$ and let q be the first quartile of Z. Approximate q by using the table of approximate values of the natural logarithm.

x	1	1.5	2	4	8
$\approx \ln (x)$	0	0.4	0.7	1.4	2.1

a. q is smaller than 0.2
b. q is smaller than 0.45 but bigger than 0.2
c. q is bigger than 0.45
d. q is not unique

Answer:

For the unknown q it holds $F_{Z}(q)=0.25$, i.e. $1-e^{-q}=0.25$. Namely,

$$
0.25=F_{Z}(q)=P(-\ln X \leqslant q)=P(\ln X \geqslant-q)=P\left(X \geqslant e^{-q}\right)=\int_{e^{-q}}^{1} d x=1-e^{-q}
$$

The lower quartile is $q=-\ln \frac{3}{4}=-\ln \frac{1.5}{2}=\ln 2-\ln 1.5 \approx 0.3 \in(0.2,0.45)$.

Examples

(6) Which one of the following holds true for two independent random variables X and Y whose variances are finite?
a. $\operatorname{Var}(X+Y) \geqslant \mathbb{V a r}(X)$
b. $\operatorname{Var}(X+Y) \leqslant \mathbb{V} \operatorname{ar}(Y)$
c. $\operatorname{Var}(2 X-Y)=2 \mathbb{V} \operatorname{ar}(X)-\mathbb{V} \operatorname{ar}(Y)$
d. $\operatorname{Var}(2 X-Y) \leqslant 4 \operatorname{Var}(X)$

Answer:
In general, the variance of the sum of two random variables is

$$
\operatorname{Var}(X+Y)=\mathbb{V} \operatorname{ar}(X)+\mathbb{V} \operatorname{ar}(Y)+2 \cdot \operatorname{Cov}(X, Y)
$$

The random variables X and Y are independent, thus, their covariance equals zero. Then,

$$
\mathbb{V} \operatorname{ar}(X+Y)=\mathbb{V} \operatorname{ar}(X)+\mathbb{V} \operatorname{ar}(Y) \geqslant \mathbb{V} \operatorname{ar}(X)
$$

since $\operatorname{Var}(Y) \geqslant 0$. Also,

$$
\begin{aligned}
\mathbb{V} \operatorname{ar}(2 X-Y) & =\mathbb{V} \operatorname{ar}(2 X)+\mathbb{V} \operatorname{ar}(-Y)+2 \operatorname{Cov}(2 X,-Y) \\
& =2^{2} \cdot \operatorname{V} \operatorname{ar}(X)+(-1)^{2} \cdot \mathbb{V} \operatorname{ar}(Y)+2 \cdot 2 \cdot(-1) \cdot \operatorname{Cov}(X, Y) \\
& =4 \mathbb{V} \operatorname{ar}(X)+\mathbb{V a r}(Y) \geqslant 4 \mathbb{V} \operatorname{ar}(X)
\end{aligned}
$$

Examples

(7) In the situation of a left-sided one-sample t-test we find $\bar{x}=-8, s=5$ and $n=25$. For a given significance level we find the rejection region $R=(-\infty,-2.2]$. Then, for the null hypothesis $H_{0}: \mu=-5$ it holds
a. we reject H_{0}, and we would also reject for any larger significance level.
b. we reject H_{0}, and we would also reject for any smaller significance level.
c. we do not reject H_{0}, but we would reject if only the significance level was chosen large enough.
d. we do not reject H_{0}, but we would reject if only the significance level was chosen small enough.

Answer:

We test $H_{0}: \mu=-5$ against $H_{A}: \mu<-5$. We perform a t-test for the unknown population mean. The value of the test statistic $T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}$ for the given sample is

$$
t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}=\frac{-8-(-5)}{\frac{5}{5}}=-3 \in R
$$

We reject the null with the level of significance α. Moreover we would reject H_{0} for any larger significance level as the rejection region $R \subseteq R_{1}$ for $\alpha \leqslant \alpha_{1}$.

Examples

(8) You perform a χ^{2}-test for independence in R using chisq.test(). From the output you can not read
a. the p-value
b. the χ^{2}-statistic
c. the degrees of freedom
d. the 95%-confidence interval for the expectation.

Answer: d

For example, let us look to the following output of chisq.test (x, y)

$$
\begin{aligned}
& \text { Pearson's Chi-squared test } \\
& \text { data: } x \text { and } y \\
& \text { X-squared }=6, \mathrm{df}=4, \mathrm{p} \text {-value }=0.1991
\end{aligned}
$$

Examples

(9) In general, how does doubling the sample size change the confidence interval size?
a. Doubles the interval size
b. Halves the interval size
c. Multiplies the interval size by $\sqrt{2}$
d. Divides the interval size by $\sqrt{2}$

Answer:
The $(1-\alpha) \cdot 100 \%$ CI for the unknown population mean is given by

$$
\left(\bar{x}-q_{1-\frac{\alpha}{2}} \cdot S E M, \bar{x}+q_{1-\frac{\alpha}{2}} \cdot S E M\right)
$$

where q_{α} is the α th quantile of the standard normal or of an appropriate t-distribution and SEM $=\frac{s}{\sqrt{n}}$. The size of the CI is $\operatorname{size}_{n}=2 q_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$. For the doubled sample size $2 n$ we obtain

$$
\operatorname{size}_{2 n}=2 q_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{2 n}}=2 q_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \cdot \frac{1}{\sqrt{2}}=\operatorname{size}_{n} \cdot \frac{1}{\sqrt{2}} .
$$

Examples

(10) What is the critical t-value for finding a 90% confidence interval estimate from a sample of 15 observations?
a. 1.341
b. 1.761
c. 1.350
d. 1.753

Answer:

With $d f=15-1=14$ and 5% in each tail, from the table we read that the critical t-value is 1.761 .

TABLE C t distribution critical values

	Upper tail probability p											
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015

Answer: b

Examples

(11) A study cross-classified 1500 randomly selected adults in three categories of education level (not a high school graduate, high school graduate, and college graduate) and five categories of major sports interest (baseball, basketball, football, hockey, and tennis). If the p-value of an appropriate χ^{2} - test for independence is 0.083 , what can be said, Is there evidence of a relationship between education level and sports interest?
a. The data prove there is a relationship between education level and sports interest.
b. There is sufficient evidence at the 5% significance level of a relationship between education level and sports interest.
c. There is sufficient evidence at the 10% significance level, but not at the 5% significance level, of a relationship between education level and sports interest.
d. The p-value is greater than 0.10 , so there is no evidence of a relationship between education level and sports interest.

Answer:

We use a χ^{2} - test for independence to test
H_{0} : education level and sports interest are independent against
H_{A} : education level and sports interest are not independent.

Examples

The p-value $=P_{H_{0}}\left(X^{2} \geqslant x^{2}\right)=0.083$.
If p-value $<\alpha$ then we reject H_{0} and conclude that there is sufficient evidence at level α of a relationship between education level and interests in sports.

Since

$$
0.05<0.083<0.10
$$

we reject H_{0} for $\alpha=10 \%$ and do not reject H_{0} for $\alpha=5 \%$.
Conclusion: there is sufficient evidence at the 10% significance level, but not at the 5% significance level, of a relationship between education level and sports interest.

Examples

(12) Which one of the following is a true statement?
a. The larger the sample, the larger the spread in the sampling distribution.
b. Sample parameters are used to make inferences about population statistics.
c. Provided that the population size is significantly greater than the sample size, the spread of the sampling distribution does not depend on the population size.
d. Statistics from smaller samples have less variability.

Answer:

The sampling distribution, i.e. the distribution of \bar{X}, has expectation (mean) μ and standard deviation $\frac{\sigma}{\sqrt{n}}$. This means that by increasing the sample size the variance of \bar{X} is decreasing, i.e., the larger the sample, the smaller the spread in the sampling distribution.
Sample statistics are used to make inferences about population parameters. Statistics from smaller samples have more variability.

Examples

(13) Data on the number of yearly accidents were collected from four intersections (A-D) over a 20 year period. Which of the following statements is false?

a. During at least 75% of years, intersection D had fewer accidents than the lowest 25% of years at intersection A.
b. During at least 15 years, fewer than 12 accidents occurred at intersection D.
c. The maximum number accidents that occurred in a single intersection is 27.
d. All of the accidents totals at intersection D were lower than the median number of accidents at intersection B.

Answer:

First quartile A is lower than third quartile D .
15 is $3 / 4$, at the third quartile of D is below 12 .

Examples

(14) Suppose you do five independent right-sided tests for testing $H_{0}: \mu=38$, each at the $\alpha=0.01$ significance level. What is the probability of committing a Type I error and incorrectly rejecting a true null hypothesis in at least one of the five tests?
a. 0.01
b. 0.049
c. 0.226
d. 0.951

Answer:

First note, Type I error $=$ the level of significance $=0.01$.
Denote by X the number of tests (out of five) in which a Type I error was committed. Then, $X \sim B(5,0.01)$. We are looking for the probability

$$
\begin{aligned}
P(\text { at least one Type I error }) & =1-P(\text { no Type I errors }) \\
& =1-P(X=0)= \\
& 1-(0.99)^{5}=0.049 .
\end{aligned}
$$

Examples

(15) Suppose the correlation is negative. Given two points from the scatterplot, which of the following is possible?

I The first point has a larger x-value and a smaller y-value than the second point.
II The first point has a larger x-value and a larger y-value than the second point.
III The first point has a smaller x-value and a larger y-value than the second point.
a. I only
b. II only
c. I and III
d. I, II, and III

Answer:

Negative correlation shows a tendency for higher values of one variable to be associated with lower values of the other. However, given any two points, anything is possible.

Examples

(16) Suppose the average score on a certain test is 500 with a standard deviation of 100. If each score is increased by 25 , what are the new mean and standard deviation?
a. 500, 100
b. 500,125
c. 525,100
d. 525,125

Answer: It is given

$$
\bar{x}=\frac{1}{n} \sum_{i} x_{i}=500 \quad \text { and } \quad \sigma^{2}=\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=100^{2}
$$

Then, the sample mean and variance of the modified sequence are

$$
\begin{aligned}
& \bar{x}_{\text {mod }}=\frac{1}{n} \sum_{i}\left(x_{i}+25\right)=\frac{1}{n}\left(\sum_{i} x_{i}+25 n\right)=\frac{1}{n} \sum_{i} x_{i}+25=\bar{x}+25=525 \\
& \sigma_{\text {mod }}^{2}=\frac{1}{n} \sum_{i}\left(x_{i}+25-\bar{x}_{\text {mod }}\right)^{2}=\frac{1}{n} \sum_{i}\left(x_{i}+25-\bar{x}-25\right)^{2}=\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=100^{2} .
\end{aligned}
$$

Adding the same constant to every value increases the mean by that same constant. The distances between the increased values and the increased mean stay the same, and so the standard deviation is unchanged.

Examples

(17) In a linear regression model (' y_{i} modeled as a linear function of x_{i} plus error') the parameters are estimated via least squares. For the mean and the empirical variance of the x and y values we obtain $\bar{x}=5, s_{x}^{2}=4, \bar{y}=7$ and $s_{y}^{2}=9$. It holds that
a. the regression line goes through $(5,6)$.
b. the regression line goes through $(7,7)$.
c. the slope of the regression line is smaller or equals 1.5 .
d. the slope of the regression line is larger than 1.5 .

Answer:
The regression line is $y=b_{0}+b_{1} x$, where the slope isgiven as

$$
b_{1}=\frac{r s_{y}}{s_{x}}=r \cdot \frac{3}{2}
$$

and as $|r| \leqslant 1$, the slope is smaller or equals 1.5. Also, we know that the regression line passes through the center of the masses $(\bar{x}, \bar{y})=(5,7)$, so (a) and (b) are not correct.

Examples

(18) The sampling distribution of the sample mean is close to the normal distribution
a. only if both the original population has a normal distribution and n is large.
b. if the standard deviation of the original population is known.
c. no matter what the value of n or what the distribution of the original population.
d. if n is large, no matter what the distribution of the original population.

Answer:
From the CLT, it follwos that for n large the distribution of the sample mean is

$$
\bar{X} \approx \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

no matter what is the distribution of the original population. In particular, if the sample comes from a normal distribution then the sample mean is also normally distributed.

Examples

(19) In the context of a statistical test at significance level α, the p-value is below α. Which of the following is true?
a. The test statistic lies in the rejection region.
b. We would also reject at level $\alpha / 2$.
c. The value of the null hypothesis lies within the $(1-\alpha) 100 \%$ confidence interval computed from these data.
d. The rejection region would be bigger if we would have used level $\alpha / 2$.

Answer:
As p-value $<\alpha$ we reject H_{0} and the test statistic falls in the rejection region. As we reject on the level of significance α we would also reject for all significance levels bigger than α as in this case the rejection regions increase.

Examples

(20) A 95% confidence interval for a population mean based on a sample of size 400 was $(20,28)$. Which of the following is true?
a. If we were to collect a new sample, then the interval created using it would contain the true population mean with probability 95%.
b. Across many samples, 95% of sample means should lie within an interval made by this method.
c. The sample mean has a 95% chance of being in $(20,28)$.
d. There is a 95% probability that the true value of the population mean is 24 .

Examples

(20) A 95% confidence interval for a population mean based on a sample of size 400 was $(20,28)$. Which of the following is true?
a. If we were to collect a new sample, then the interval created using it would contain the true population mean with probability 95%.
b. Across many samples, 95% of sample means should lie within an interval made by this method.
c. The sample mean has a 95% chance of being in $(20,28)$.
d. There is a 95% probability that the true value of the population mean is 24 .

Answer: a

Answer Form - Filled

- All questions answered. Anwer Form completed.

Thank you for your attention and good luck in the exam!

Course evaluation

Thank you for evaluating the course!

