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Parallel computing objectives

• Than what?

• How do we account for better performance?

• How many parallel resources (processors) can be productively 

used?

• What are obstacles to good parallel performance?

(Traditional) Objective: 

Solve given computational problem faster
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Non-specific model:

p dedicated parallel processors collaborate to solve given problem of 

input size n. 

• Processors work independently (local memory, program, MIMD), 

but start at the same time

• Processors are occupied until last processor finishes

• Collaboration can incur overheads (communication, coordination, 

algorithmic) 

Recall: Parallel computing assumes dedicated processors:

We must “pay” for system time until all processors are done
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Let a computational problem P with input I be given

• Seq: Sequential algorithm (or implementation) solving P(I)

• Par: Parallel algorithm (or implementation) solving P(I)

I(n) input of size n. P(n) short-hand for P(I(n)) in the worst case 

(either, we quantify over all inputs, or the input is not important…)

• Theory: Algorithm in given, specific model

• Practice: Concrete implementation for some specific type of 

parallel computer
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Let

• Tseq(n): Time for 1 processor to solve P(n) using Seq

• Tpar(p,n): Time for p processors to solve P(n) using Par, time 

for last/slowest processor to finish

Goal: Achieve as large speed-up as possible (for some n, all n) for 

as many processors as possible

The gain in moving from sequential computation with algorithm Seq

to parallel computation with algorithm Par is expressed as the 

speed-up of Par over Seq:

Sp(n) = Tseq(n)/Tpar(p,n) 

Note: Both parameters p and n can be varied
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• Time for some algorithm for solving problem?

• Time for a specific algorithm (Seq, Par) for solving problem?

• Time for best known algorithm for problem?

• Time for best possible algorithm for problem?

• Time for specific input of size n, average case, worst case, …?

• Asymptotic time, large n, large p?

• Do constants matter, e.g. O(f(p,n)) or 25n/p+3ln (4 p/n) … ?

What exactly is Tseq(n), Tpar(p,n)?

Tim Roughgarden: Beyond worst-case analysis. Comm. ACM 62(3): 

88-96 (2019)
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Tseq(n):

• Theory: Number of instructions (or other critical cost measure) 

executed in the worst case for inputs of size n

• The number of instructions carried out is the required work

• Practice: Measured time (or other parameter) of execution over 

some inputs (experiment design)

Choose sequential algorithm (theory), choose an implementation of 

this algorithm (practice)

Theory and practice:

Always state baseline sequential algorithm&implementation
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Examples:

Tseq(n) = O(n), =Θ(n): 

Tseq(n,m) = Θ(n+m) :

Tseq(n) = O(n log n):

Tseq(n,m) = O(n log n + m):

Tseq(n) = O(n3):

…

Finding maximum of n numbers in 

unsorted array; prefix-sums

Merging of two sequences; BFS/DFS in 

graph

Comparison-based sorting

Single-source Shortest Path (SSSP)

Matrix multiplication, input two nxn

matrices

…

Standard, worst-case, asymptotic complexities

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. 3rd ed., 

MIT Press, 2009

Can be solved in o(n3), by 

Strassen etc.
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Practice:

• Construct meaningful inputs to measure Tseq(n): experiment 

design, experimental methodology

• Worst-case not always possible, not always interesting; best 

case, average case? (what is that?)

• Experimental methods to get stable, accurate, repeatable 

Tseq(n): Repeat measurements many times (thumb rule: 

average over at least 30 repetitions. Be very careful!)

Experimental science:

Always some assumptions about realism, repeatability, regularity, 

determinism, …
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Practice:

• Construct meaningful inputs to measure Tseq(n): experiment 

design, experimental methodology

• Worst-case not always possible, not always interesting; best 

case, average case? (what is that?)

• Experimental methods to get stable, accurate, repeatable 

Tseq(n): Repeat measurements many times (thumb rule: 

average over at least 30 repetitions. Be very careful!)

New issue with modern processors:

Clock speed may not be constant (turbomode, power capping, …), 

behavior can change with time

Modern software: Behavior can change with time… (“intelligent”, 

adaptive software)
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Example: AMD EPYC Series: Turbo-mode vs. all cores

One core: 3.2GHz. All cores: 2.20GHz
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Definition (Absolute Speed-up, theory):

Let Tseq(n) be the (worst-case) time of the best possible/best known

specific, sequential algorithm Seq for P, and Tpar(n,p) the (worst-

case) time of a parallel algorithm Par. The absolute speed-up of Par 

on p processors over Seq is

Sp(n) = Tseq(n)/Tpar(p,n) 

Observation (proof follows):

Best-possible, absolute speed-up is linear in p

Goal: Obtain (linear) absolute speed-up for as large p as possible (as 

function of problem size n), for as many n as possible
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Goal: Obtain (linear) absolute speed-up for as large p as possible (as 

function of problem size n), for as many n as possible

The difficult objective of parallel computing:

To develop algorithms and techniques (and interfaces and compilers) 

that allow us to ultimately be faster than the best known sequential 

approaches!

If this is not possible, why parallelize? Resources can be used better 

differently&elsewhere
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For speed-up (and other complexity measures), distinguish:

• Problem P to be solved (mathematical specification)

• Some algorithm A to solve P

• Best possible (lower bound) algorithm  A* for P, best known 

algorithm A+ for P: The complexity of P

• Implementation of A on some machine M

“Best possible” algorithm is most often not known. Lower bounds in 

computer science are somewhat rare and difficult to establish. Must 

therefore settle for “best known”.
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Work

• The work of a sequential algorithm Seq on input of size n is the 

total number of operations (integer, FLOP, memory, …; that which 

matters most, according to model) carried out when Seq runs to 

completion on n

• The work of a parallel algorithm Par on input of size n is the total 

number of operations carried out by all assigned processors, not 

including idle or waiting times

• The work required for some problem P is the work by a best 

possible algorithm (complexity of P)

A (parallel) algorithm that performs work proportional to a best 

possible (sequential) algorithm is called work optimal
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Subproblem:

Sum of n/p 

elements

Subproblem: 

sum of n/p 

elements

Subproblem:

sum of n/p 

elements

Subproblem: 

sum of n/p 

elements

Problem: sum of two n-element vectors

Example: “Data parallel” (SIMD) computation

for (i=0; i<n; i++) {

a[i] = b[i]+c[i];

}

Seq algorithm/

implementation:

Tpar(p,n) = Tseq(n)/p

Sp(n) = n/(n/p) = p

Best possible parallelization: 

sequential work divided evenly across 

p processors

Complexity: Tseq(n) = Θ(n)
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Subproblem:

Sum of n/p 

elements

Subproblem: 

sum of n/p 

elements

Subproblem:

sum of n/p 

elements

Subproblem: 

sum of n/p 

elements

Problem: sum of two n-element vectors

Example: “Data parallel” (SIMD) computation

for (i=0; i<n; i++) {

a[i] = b[i]+c[i];

}

• Perfect speed-up

• “Embarrassingly parallel”

• “Pleasantly parallel”

Tpar(p,n) = c(n/p) for constant c≥1

Seq algorithm/

implementation:



18

©Jesper Larsson TräffSS23

Work

Time

Tseq(n)

start

The work, measured in instructions and/or 

time that has to be carried out for problem of 

size n (worst-case)

stop
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Work

Perfect parallelization: Sequential work evenly 

divided between p processors, no overhead, 

so Tpar(p,n) = Tseq(n)/p

Perfect speed-up

Sp(n) = Tseq(n)/(Tseq(n)/p) = p

Very rare in practice

Time

Tseq(n)

p processors
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Ti

Non-perfect speed-up: Sequential work 

unevenly divided between p processors,

load imbalance, Tpar(p,n)>Tseq(n)/p, even 

though ∑Ti(n)=Tseq(n)

start

stop

Tpar is time for slowest processor to 

complete, all processors assumed to 

start at same time

Define Tpar(p,n) = max Ti(n) over all processors, 

starting at the same time

Time

Tseq(n)

p processors
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Measuring parallel time, Tpar(p,n)

Time of slowest processor-core to finish, assuming all processors 

start at the same time (recall definition of parallel computing: 

dedicated resources)

Ti

start

stop

for (number of repetitions) {

// synchronize processors, all start at same time

Ti = stop-start

Tpar(p,n) = max0≤i<pTi

}

// Do statistics

“barrier” sync.

“barrier” sync.
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Ti

p processors

Wpar(n) = ∑Ti(n) is the work of the parallel 

algorithm, total number of instructions 

performed by the p processors

Product C(n) = pTpar(p,n) is the cost of the parallel 

algorithm, total time in which the p processors are 

reserved (: have to be paid for)

Area C(n) = pTpar(p,n)

Time

Tseq(n)
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“Theorem:”

Linear (perfect) speed-up Sp(n) = cp is best possible and cannot be 

exceeded (for some constant c, 0<c≤1).

“Proof”:

A sequential algorithm can be constructed from a parallel algorithm 

by simulating the parallel algorithm on a single processor. The 

instructions of the p processors have to be carried out in some 

correct order on the sequential processor. The time for the simulation 

is Tsim(n) ≤ pTpar(p,n). 

Assume Sp(n) > p for some n. Now Tseq(n)/Tpar(p,n) > p implies 

Tseq(n) > pTpar(p,n) ≥ Tsim(n), and contradicts that Tseq(n) was 

best possible/known time.

Reminder: Speed-up is calculated (measured) relative to “best” 

sequential algorithm (implementation)

Advantage of a theoretical model: Using the PRAM, a 

technical proof with all details can be given
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Ti

p processors

By assumption C(n) = pTpar(p,n) < Tseq(n)

Simulation A: one step of P1, one step of P2, …, one 

step of P(p-1), one step of P1, …, for C(n) iterations

Simulation B: steps of P1 until 

communication/synchronization, steps of P2 until 

communication/synchronization, … 

Time

Tseq(n)
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Ti

1 processor

By assumption C(n) = pTpar(p,n) < Tseq(n)

Both simulations yield a new, sequential 

algorithm Tsim(n) with 

Tsim(n)≤pTpar(p,n)<Tseq(n)

This contradicts that Tseq(n) was time of best 

possible/best known sequential algorithm

Time

Tseq(n)
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Ti

1 processor

Time

Tseq(n) Aside:

Such simulations are actually sometimes 

done, and can be very useful to understand 

(model) and debug parallel algorithms

Some simulation tools:

• SimGrid (INRIA)

• LogPOPSim (Hoefler et al.)

• …

…Or when running parallel program at 

home on one (or a few) processors



27

©Jesper Larsson TräffSS23

Lesson:

Parallelism offers only “modest potential”, speed-up cannot be more 

than p on p processors

Simulation construction shows that the total parallel work must be at 

least as large as the sequential work Tseq, otherwise, better 

sequential algorithm can be constructed.

Crucial assumptions: Sequential simulation is possible (enough 

memory to hold problem and state of parallel processors), sequential 

memory behaves as parallel memory, …

This is NOT TRUE for real systems and real problems
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Definitions:

A parallel algorithm Par(p,n) has linear absolute speed-up relative to 

a best-known sequential algorithm Seq(n) if

Sp(n) = Θ(p)

A parallel algorithm Par(p,n) has “perfect” absolute speed-up relative 

to a best-known sequential algorithm Seq(n) if

Sp(n) ≈ p

“Perfect” speed-up is the rare case where the actual (measured or 

theoretically proven) speed-up is actuall close to p (constant close to 

1)

Given the simulation, the definitions of linear and perfect speed-up 

can be strengthened to:
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Wpar(p,n) = ∑Ti(n) is the parallel work of the parallel algorithm: total 

number of instructions performed by p processors

The product C(n) = pTpar(p,n) is the cost of the parallel algorithm: 

Total time in which the p processors are occupied

Definition:

Parallel algorithm is called cost-optimal if C(n) = O(Tseq(n)). A cost-

optimal algorithm has linear (perhaps perfect) speed-up

Definition:

Parallel algorithm is called work-optimal if Wpar(p,n) = O(Tseq(n)). A 

work-optimal algorithm has potential for linear speed-up (for some 

number of processors)
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Examples:

Let Tseq(n) = O(n) for some (best known) algorithm Seq.

Any parallel algorithm with Tpar(p,n) = O(n/p) is cost-optimal, since 

for some constant c, p O(n/p) ≤ p (c(n/p)) = c n = O(n).

Parallel algorithms with Tpar(p,n) = O(n/√p) or Tpar(p,n) = O(n/(p/log 

p)) = O((n log p)/p) are not cost-optimal.

We have p c(n/√p) = c √p n which not O(n) since √p is not constant 

(bounded). Likewise, p c (n log p)/p = c n log p is not O(n). 

Such algorithms cannot have linear speed-up.
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Proof (linear-speed up of cost-optimal algorithm):

The constant factor c captures the load imbalance and overheads 

(see later) of the parallel algorithm relative to best sequential 

algorithm. The smaller c, the closer the speed-up to perfect

Given cost-optimal parallel algorithm with pTpar(p,n) = cTseq(n) = 

O(Tseq(n)). This implies Tpar(p,n) = cTseq(n)/p, so

Sp(n) = Tseq(n)/Tpar(p,n) = p/c
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Ti

p processors

Given work-optimal parallel algorithm, ∑Ti(n) = 

Tseq(n), with Tpar(p,n) = max Ti(n)

Time

Tseq(n)
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Ti

p processors

Given work-optimal parallel algorithm, ∑Ti(n) = 

Tseq(n), with Tpar(p,n) = max Ti(n)

Execute on smaller number of processors p’, such 

that ∑Ti(n) = p’Tpar(p’,n) = O(Tseq(n)) 

Time

Tseq(n)
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Proof idea (work-optimal algorithm can have linear speed-up):

1. Work-optimal algorithm

2. Schedule work-items Ti(n) on p’ processors, such that 

p’Tpar(p’,n) = O(Tseq(n))

3. With this number of processors, algorithm is cost-optimal

4. Cost-optimal algorithms have linear speed-up

Parallel algorithms’ design goal:

Work-optimal parallel algorithm with as small Tpar(p,n) as possible 

(and therefore large parallelism: many processors can be utilized)

The scheduling in Step 2 is possible in principle, but may not be 

trivial in concrete terms
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par (0<=i<n) b[i] = true;      // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

O(n2) operations (work), but sequential maximum finding requires 

only O(n) operations

Speed-up with perfect parallelization

Sp(n) = O(n)/O(n2/p) = O(p/n) Bad!

Not work-optimal

Only small (linear, for fixed n) speed-up, and decreasing with n
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Example: Another not work-optimal algorithm

Given DumbSort(n) with T(n) = O(n2) that can be perfectly 

parallelized, Tpar(p,n) = O(n2/p)

Well-known that Tseq(n) = Θ(n log n), many algorithms and good 

implementations, so

Sp(n) = O(n log n)/O(n2/p) = O(p (log n)/n)

Linear speed-up for fixed n but not independent of n (decreasing) 

Not work-optimal algorithm: Speed-up decreases with n
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• PRAM Maximum Finding: Tpar(p,n) < Tseq(n)  n2/p < n  p > n

• DumbSort: Tpar(p,n) < Tseq(n)  n2/p < n log n  n/p < log n 

p > n/log n

Break-even:

How many processors are needed for parallel algorithm to be faster 

than sequential algorithm?

Bad! (Almost) as many processors needed as problem size n to be 

as fast as sequential algorithm.
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Lesson: 

It does not make sense to parallelize an inferior algorithm (although 

sometimes much easier). Almost never…

But parallelizing an efficient, best known sequential algorithm can be 

difficult.

Efficient, sequential algorithm often has:

• No redundant work (because efficient)

• Tight dependencies, forcing things to be done in a specific, 

sequential order: One thing (and not many) after the other

Lesson from much hard work in (e.g., PRAM) theory and practice:

Work/cost-optimal parallel solution of a given problem often requires 

a new algorithmic idea!

Parallel computing is a creative endeavor!
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But:

Many sequential algorithms often have a lot of potential for easy 

parallelization (loops, independent functions, …). Why not exploit 

this?

Also:

Non-work optimal algorithms can sometimes be useful, as 

subroutine

Lesson from much hard work in (e.g., PRAM) theory and practice:

Work/cost-optimal parallel solution of a given problem often requires 

a new algorithmic idea!
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Example: Time and speed-up for four linear work algorithms

Tseq(n) = O(n)

Fix n=10000, ignore 

(normalize) constants

What are the parallel 

running times?

Which ones have linear 

speed-up?

Tpar0(p,n), Tpar1(p,n), Tpar2(p,n) look similar
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Example: Time and speed-up for four linear work algorithms

Tpar0(p,n) = Tseq(n)/p

Tpar1(p,n) = Tseq(n)/p/2

Tpar2(p,n) = 

Tseq(n)/log2p

Tpar3(p,n) = 

Tseq(n)(1-p/96)
Careful with looking at time alone
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Disproof (I): Is super-linear speed-up possible?

Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Sequential search order (DFS)

Marijn J. H. Heule, Oliver Kullmann: The science of brute force. 

Commun. ACM 60(8): 70-79 (2017)

Solution after 

Ω(2n/k) steps
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Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Solution after 

o(2n/k) steps

Parallelization: k trees in parallel on k processors. Now solution in 

o(2n/k) steps, say n/k. Lucky processor finds solution fast

n/k
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Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Speed-up is c 2n/(n/k) = k 2n/n » k for k processors and large n
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But this does not contradict that linear/perfect speed-up is best 

possible. 

The parallel and the sequential algorithms are just different. In the 

example, DFS is not the best search strategy, the parallel algorithm 

does a mix of BFS and DFS, which might be better (and hard to 

know in advance).

Reasons for “algorithmic” super-linear speed-up:

• Different algorithms

• Randomization, luck

• Non-determinism

Other factors can also lead to super-linear speed-up. See later
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Definition (Relative speed-up): The ratio

SRelp(n) = Tpar(1,n)/Tpar(p,n)

is the relative speed-up of algorithm Par. Relative speed-up 

expresses how well Par utilizes p processors (scalability)

Relative speed-up not to be confused with absolute speed-up. 

Absolute speed-up expresses how much can be gained over the 

best (known/possible) sequential implementation by parallelization. 

Absolute vs. relative speed-up

Absolute speed-up is what ultimately matters
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Beware:

Literature (research papers and books) is not always clear about the 

distinction between Absolute and Relative speed-up.

It is easier to achieve and document good relative speed-up. 

Reporting speed-up relative to an inferior, sequential implementation 

is misleading and technically incorrect (goal: achieve speed-up over 

a best known algorithm/implementation)

Goal:

Obtain (linear) absolute speed-up for as large p as possible (as 

function of problem size n), for as many n as possible
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Definition:

T∞(n): The smallest possible running time of parallel algorithm Par 

given arbitrarily many processors. Per definition T∞(n) ≤ Tpar(p,n) for 

all p. Relative speed-up is limited by

SRelp(n) = Tpar(1,n)/Tpar(p,n) ≤ Tpar(1,n)/T∞(n)

Definition:

The ratio Tpar(1,n)/T∞(n) is called the parallelism of the parallel 

algorithm Par

The parallelism is the largest number of processors that can be 

employed and still give linear, relative speed-up: Assume 

Tpar(1,n)/T∞(n)<p’, the equation above tells that SRelp(n) < p’
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Statements on speed-up, e.g., 

1. Sp(n) = c1p for some c1<1

2. Sp(n) = c2√p for some c2<1

etc. implicitly assumes some upper bound on the number of 

processors for which this holds. Often, this upper limit is not stated, 

but there is always a point for which it does not make sense to use 

additional processors. 

The parallelism Tpar(1,n)/T∞(n) is one such limit
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par (0<=i<n) b[i] = true;      // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

O(n2) operations (work), but sequential maximum finding requires 

only O(n) operations

SRelp(n) = O(n2)/O(n2/p) = O(p)

Parallelism: O(n2)/O(1) = n2

This (terrible) parallel algorithm has linear relative speed-up for p up 

to n2 processors (!). And great parallelism.
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par (0<=i<n) b[i] = true;      // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

This (terrible) algorithm has linear relative speed-up for p up to n2

processors

Nevertheless: Useful as a building block

Theorem: There exist a work-optimal CRCW PRAM algorithm that 

runs in O(log log n) steps requiring O(n) parallel work

Advanced material. And last fact about PRAM in this lecture
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An algorithm has good scalability and relative speed-up if 

Tpar(1,n)/Tpar(p,n) = Θ(p)

Example: 

Someone reports for algorithm Par that 0.1p ≤ Tpar(1,n)/Tpar(p,n) ≤ 

0.5p is reported. Sounds good!

Even for work-optimal Tpar(1,n) = 100Tseq(n) = O(Tseq(n)) it would 

take at least 200 processors to break even with the sequential 

algorithm with the reported relative speed-up

But what if Tpar(1,n) = 100Tseq(n)? 

Or Tseq(n) = O(n) but Tpar(p,n) = O((n log n)/p + log n)?

Constants, as always, do matter (for the practitioner)

Relative speed-up
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Work-optimality property:

For work-optimal algorithms, absolute and relative speed-up 

coincide (asymptotically), since Tpar(1,n) = O(Tseq(n))

Again: Work-optimality is a strong property
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Time

Ti

p processors

Oi

Parallelization most often incurs overheads:

• Algorithmic: Parallel algorithm may do 

extra work not in sequential algorithm

• Coordination: Communication and 

synchronization

• …

Tpar(p,n) Note T(1,n)≥Tseq(n)

Tseq(n)
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Parallelization overheads

Parallel overhead is the work that does not have to be done by a 

sequential algorithm 

• Communication: Exchanging data, keeping data consistent

• Synchronization: Ensuring that processors have reached the 

same point in the computation (typically SPMD programs)

• Algorithmic: Extra or redundant computations

(Communication) Overheads for processor i sometimes modeled as

Toverhead(p,ni) = α(p) + βni

where α(p) is the latency (dependent on p), and β the cost per data 

item ni that needs to be communicated by processor i. For 

synchronization operations, ni = 0
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Ti

Oi

Overheads are counted as part of the parallel work (idle time is not 

counted, or time where processors are doing something else)

Wpar(p,n) = ∑0≤i<pTi(n)+Oi(n)

Parallel algorithm can still be work/cost-optimal if 

overheads are not too large, that is Wpar(p,n) = 

O(Tseq(n))
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Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

If algorithm is cost-optimal, pTpar(p,n) = 

kTseq(n), speed-up becomes imperfect, but 

still linear, Sp(n) = p/k 

Tseq(n)
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Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Note: This denotes cumulated time (“profile”) 

over the whole Tpar(p,n) execution; not a 

trace. Computation, overhead, and idle time 

can be (is) spread over the whole execution

Tseq(n)
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Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Note: This denotes cumulated time (“profile”) 

over the whole Tpar(p,n) execution; not a 

trace. Computation, overhead, and idle time 

can be (is) spread over the whole execution

Tseq(n)

Oi

Idle
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Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Tseq(n)

Oi

Idle

Typical overhead by communication and 

coordination.

The (smallest) time between coordination 

periods is called the granularity of the parallel 

computation
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(Loose) Definition: Granularity of parallel computations:

• “Coarse-grained” parallel computation/algorithm: Time/number of 

instructions between coordination intervals (synchronization 

operations, communication operations) is large (relative to total 

time or work)

• “Fine-grained” parallel computation/algorithm: Time/number of 

instructions between… is small

Coarse-grained computation means less frequent coordination (with 

possibly larger data), potential for “hiding” coordination behind 

computation (: doing computation concurrently with communication)

Fine-grained computation requires more efficient coordination, 

otherwise coordination may dominate, algorithm could become non 

work-optimal
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Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Tseq(n)

Oi

Idle

Definition:

Difference between max (Ti(n)+Oi(n)) and min 

(Ti(n)+Oi(n)) is the load imbalance

Achieving Tpar(i,n) ≈ Tpar(j,n) for all 

processors i, j is called load balancing
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Time

p processors

Oi

Tpar(p,n) close to Tseq(n)/p

Idle

A best possible parallelization has no load 

imbalance (and no overhead), so Tpar(p,n) = 

Tseq(n)/p

Tseq(n)

Ti



64

©Jesper Larsson TräffSS23

Load balancing: Achieving for all processors, i, j, an even amount of 

work, Tpar(i,n) ≈ Tpar(j,n)

• Static, oblivious: Load balance achieved by splitting the problem 

into p pieces, regardless of the input (except its size n)

• Static, problem dependent, adaptive: Load balance achieved by 

splitting the problem into p pieces, using the (structure of) the 

input

• Dynamic: Load balance achieved by dynamically (during program 

execution) readjusting the work assigned to processors. Entails 

overheads (example: work stealing, see later)
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Parallelizing sequential algorithm Seq

Perfectly parallelizable (static, oblivious load balancing): Tpar(p,n) = 

O(Tseq(n)/p)

Seq may have parts that cannot (easily) be parallelized, some 

fraction s(n), such that Tseq(n) = s(n)Tseq(n) + (1-s(n))Tseq(n)

Part that could be parallelized

and Tpar(p,n) = s(n)Tseq(n) + (1-s(n))/p Tseq(n)
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Time

Tseq(n) = (s+r)Tseq(n)

Ti

p processors

Maximum possible speed-up becomes severely limited 

if sequential part is a constant fraction of the total work 

(regardless of n)

Tpar(p,n) ≥ sTseq(n)+rTseq(n)/p

Sequential overhead: constant fraction
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Amdahl’s Law (parallel version):

Let a program Seq contain a fraction r that can be “perfectly” 

parallelized, and a fraction s=(1-r) that is “purely sequential”, i.e., 

cannot be parallelized at all (s and r independent of n). The 

maximum achievable speed-up is 1/s, independently of n

Proof:

• Tseq(n) = (s+r)Tseq(n)

• Tpar(p,n) = sTseq(n) + rTseq(n)/p

Sp(n) = Tseq(n)/(sTseq(n)+rTseq(n)/p) 

= 1/(s+r/p) ─> 1/s, for p ─> ∞

G. Amdahl: Validity of the single processor approach to achieving 

large scale computing capabilities. AFIPS Spring Joint Conf., 483-

485, 1967 
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Typical victims of Amdahl‘s law:

• Sequential input/output could be a constant fraction

• Sequential initialization of global data structures

• Sequential processing of „hard-to-parallelize“ parts of algorithm, 

e.g., shared data structures

• Everything that takes O(n) for input size n, and work O(n)…

Amdahl‘s law limits (kills!) speed-up in such cases, if they are a 

constant fraction of total time, independent of problem size

The hard work (alternative definition of parallel computing):

Find ways to avoid constant-fraction non-parallelizable work
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Example:

1. Processor 0: Read input, some precomputation

2. Split problem into p parts (of size ≈n/p), send part i to processor i

3. All processors i: Solve part i

4. All processors i: Send partial solution back to processor 0

Typical Amdahl, sequential bottleneck: Constant sequential fraction 

(3 out of 4 steps) limits speed-up)

10n
9n

Amdahl: s=0.1, SU at most 10  

When interested in parallel aspects, input-output and problem 

splitting is often explicitly not measured!
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// Sequential initialization

x = (int*)calloc(n,sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example: K iterations before 

convergence, (parallel) 

convergence check cheap, f(i) 

fast O(1)…

Sp(n) ─> 1+K

Tseq(n) = n+K+Kn

Tpar(p,n) = n+K+Kn/p

Sequential fraction ≈ 1/(1+K)

Problem: calloc(n) system 

function initializes memory and 

takes O(n) time
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// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example: K iterations before 

convergence, (parallel) 

convergence check cheap, f(i) 

fast O(1)…

Sp(n) ─> p when n>p and n ─> ∞

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)

Note:

A constant sequential part (not  

constant fraction) does not limit 

SU
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Example:

Lesson:

Be careful with system 

functions (calloc, malloc), may 

need to be parallelized as well

K iterations before 

convergence, (parallel) 

convergence check cheap, f(i) 

fast O(1)…

Sp(n) ─> p when n>p, n ─> ∞

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)

// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)
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Avoiding Amdahl: Scaled speed-up, efficiency

Sequential, strictly non-parallelizable part is most often not a 

constant fraction of the total execution time (number of instructions)

Indeed, the sequential part s(n) may decrease with problem size n. 

Good speed-up can be maintained by increasing problem size with p

Recall Tpar(p,n) = s(n)Tseq(n) + (1-s(n))/p Tseq(n)

Not constant fraction
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Assume

Tseq(n) = t(n)+T(n)

with sequential part t(n) and perfectly parallelizable part T(n), such 

that 

Tpar(p,n) = t(n)+T(n)/p

Assume t(n)/T(n) ─> 0 for n ─> ∞

The speed-up as a function of p and n is

Sp(n) = (t(n)+T(n)) / (t(n)+T(n)/p) 

= (t(n)/T(n)+1) / (t(n)/T(n)+1/p) ─> 1/(1/p) = p for n ─> ∞ 
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Lesson:

Depending on how fast t(n)/T(n) converges, linear speed-up can be 

achieved by increasing problem size n accordingly

Definition:

Speed-up as function of p and n, with sequential and parallelizable 

times t(n) and T(n) is termed scaled speed-up

With Tpar(p,n) = t(n)+T(n)/p, the fastest possible parallel time is 

T∞(n) = t(n), and the parallelism is Tpar(1,n)/T∞(n) = (t(n)+T(n)) / t(n) 

= 1+T(n)/t(n).

Small t(n) relative to T(n) means large parallelism
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Special case (Gustafson-Barsis “law”):

Assume the parallelizable part of the work increases linearly in p 

with T(n) = pt(n). Then

Sp(n) = (t(n)+T(n)) / (t(n)+T(n)/p) 

= (t(n)+pt(n)) / (t(n)+t(n)) = (p+1)/2

John L. Gustafson: Reevaluating Amdahl's Law. Commun. ACM 

31(5): 532-533 (1988)

(The paper actually says something different, makes the calculation 

somewhat similar to the proof of Amdahl’s law, in a way that doesn’t 

really make sense (in my opinion))
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Remarks:

• Tseq(n) time for best known/possible sequential algorithm

• E(p,n) ≤ 1, since Sp(n) = Tseq(n)/Tpar(n,p) ≤ p

• E(p,n) = c (constant, ≤1): linear speed-up

Definition:

The efficiency of parallel algorithm Par is the ratio of best possible 

parallel time to actual parallel time for given p and n:

E(p,n) = (Tseq(n)/p) / Tpar(p,n)

= Sp(n)/p = Tseq(n) / (p Tpar(p,n))

Cost, so efficiency is also ratio of 

sequential to parallel cost

• Cost-optimal algorithms have constant efficiency
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Scalability

Definition:

A parallel algorithm/implementation is strongly scaling if 

Sp(n) = Θ(p) (linear, independent of (sufficiently large) n)

Definition:

A parallel algorithm/implementation is weakly scaling if there is a 

slowly growing function f(p), such that for n = Ω(f(p)), E(p,n) remains 

constant. The function f is called the iso-efficiency function

Ananth Grama, Anshul Gupta, Vipin Kumar: Isoefficiency: measuring 

the scalability of parallel algorithms and architectures. IEEE 

Transactions Par. Dist. Computing. 1(3): 12-21 (1993)
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Example:

Some work-optimal parallel algorithm runs in O(n2/p+log2p). The iso-

efficiency function for this algorithm (“how must problem size n 

increase as a function of p to maintain constant efficiency?”) is

e = n2/(p(n2/p+log2p) = n2/(n2+p log2p) 

n2(1-e) = e p log2p 

n = √(e/(1-e)) √p log p

Reminder:

log2n is shorthand for (log n)2, not log log n (iterated logarithm, which 

is written log(2)n)

Efficiency e can be kept, if n≥√(e/(1-e)) √p log p

e ist the given efficiency
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Example:

If the algorithm instead runs in O(n2/p+log2n), the iso-efficiency 

function for this algorithm (“how must problem size n increase as a 

function of p to maintain constant efficiency?”) is

e = n2/(p(n2/p+log2n)) = n2/(n2+p log2n) 

n2(1-e) = e p log2n 

n/log n = √(e/(1-e)) √p

No analytical solution

But we can maintain efficiency at least e, if n/log n≥√(e/(1-e)) √p

Reminder:

log2n is shorthand for (log n)2, not log log n (iterated logarithm, which 

is written log(2)n)

O-constants 

normalized to 1
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Example:

Parallel running time 

O(n2/p+log2n)

vs.

O(n2/p+log2p)

Parallel “overhead” a function of problem size

Parallel “overhead” a function of number of 

processors, “caused by parallelization alone”

Both kind of algorithms/analyses occur frequently. Sometimes the 

latter is easier to handle (iso-efficiency), sometimes the former
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Deriving the iso-efficiency function f(p)

Constant efficiency e in e = Tseq(n) / (p Tpar(p,n)), simplify, 

approximate, solve for n, gives function f(p) with the constant e 

somewhere that tells how n must grow with p to maintain constant e.

Technically, an algorithm is strongly scalable iff f(p) = O(1). 

This is, technically speaking, never the case: All algorithms are at 

best weakly scalable, at least as much work is required as there are 

processors. 

But often, constants and lower order terms can safely be ignored, so 

that the algorithm is strongly scalable for some range of n and p



83

©Jesper Larsson TräffSS23

Summary: Stating parallel performance

It is convenient to state parallel performance and scalability of a 

parallel algorithm/implementation as

Tpar(p,n) = O(T(n)/p+t(p,n))

T(n) represents the parallel part, t(p,n) the non-parallel part of the 

algorithm beyond which no improvement is possible, regardless of 

how many processors are used. The parallelism is 1+T(n)/t(p,n)

The cost of the algorithm is

W = O(p(T(n)/p+t(p,n))) = O(T(n)+pt(p,n))

The algorithm is cost-optimal when T(n) is O(Tseq(n)) and pt(p,n) is 

O(Tseq(n))
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This code is weakly scalable, n has to increase as Ω(p log p) to 

maintain constant efficiency, Ω(log p) per processor (if the work in 

the iterations is load-balanced)

// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example (again): K iterations before 

convergence, (parallel) 

convergence check cheap, f(i) 

fast O(1)…

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)
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Speed-up in practice

Speed-up as an empirical quantity, “measured time”, based on 

experiment (benchmark)

Tseq(n): Running time for “reasonable”, good, best available, 

sequential implementation, on “reasonable” inputs

Tpar(p,n): Parallel running time, measured for a number of 

experiments with different, typical, relevant (worst-case? best-case?) 

inputs

Sp(n) = Tseq(n)/Tpar(p,n)

Empirical speed-up typically not independent of problem size n, and 

problem instance 
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David H. Bailey: Twelve Ways to Fool the Masses When Giving 

Performance Results on Parallel Computers. Supercomputing 

Review, Aug. 1991, pp. 54-55

Torsten Hoefler, Roberto Belli: Scientific benchmarking of parallel 

computing systems: twelve ways to tell the masses when reporting 

performance results. SC 2015: 73:1-73:12

Empirical, relative speed-up without absolute performance baseline 

(and comparison to reasonable, sequential algorithm and 

implementation) is grossly misleading
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Scalability analysis

• Strong scaling: Keep problem size (work) fixed, increase number 

of processors. Algorithm/implementation is strongly scaling, if 

Tpar(p,n) decreases proportionally to p (linear speed-up).

• Weak scaling (alternative definition): Keep average work (work 

per processor) fixed, that is increase problem size together with 

number of processors. Algorithm/implementation is weakly 

scaling if the running time remains constant (=Tseq(n’) for non-

scaled input of size n’). Let K = Tseq(n’), then the input size 

scaling function is n = Tseq-1(pK) = g(p)

For input of size n, the average work for p processors is Tseq(n)/p. In 

the weak scaling analysis, this is to be kept constant, e.g., Tseq(n’)
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Example:

Consider again algorithms for matrix-vector multiplication running in 

parallel time O(n2/p+log n) with sequential work O(n2).

The average work (work per processor) should be kept fixed at 

O(n’2) for some n’. The total work with p processors is O(p n’2), for 

which input of size n in O(n’√p) is needed (solve n2 = (p n’2)).

The running time is O((n’√p)2/p + log(n’√p)) = O(n’2 + log n’ + log√p), 

which is O(n’2) as long as log√p is smaller than (some constant 

times) n’2. 

This algorithm is weakly scaling up to a very large number of 

processors (exponential in n’).

The algorithm is also strongly scalable (linear speed-up) up to p in 

O(n2/log n) processors (the parallelism)
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Combining the two notions of weak scaling, a parallel algorithm Par 

is weakly scaling if the iso-efficiency function f(p) is growing no faster 

than the input size scaling function g(p)

The second, alternative notion of weak scaling (keep parallel time 

constant) puts an upper bound on the growth of the slowly growing 

iso-efficiency function. This is a (sometimes too) strong requirement.
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Limitations of speed-up as an empirical measure

Empirical speed-up (speed-up in practice) assumes that Tseq(n) can 

be measured.

For very large n and p, this may not be the case: A large HPC 

system has much more (distributed) main memory than any single-

processor system

Scalability measured by other means:

• Stepwise speed-up (1-1000 processors, 1000-10,000 processors, 

10,000 to 100,000 processors, …)

• Other notions of efficiency

Sometimes Tseq(n) may be so large that it cannot be measured for 

real (large, combinatorially hard problems)
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Examples (Tpar, Speed-up, Optimality, Efficiency, Iso-efficiency):

1. Tpar0(p,n) = n/p+1

2. Tpar1(p,n) = n/p+log p

3. Tpar2(p,n) = n/p+log2 p

4. Tpar3(p,n) = n/p+√p

5. Tpar4(p,n) = n/p+p

Linear time computation, Tseq(n) = n (constants ignored)

Embarrassingly “data parallel” 

computation, constant overhead

logarithmic overhead, e.g. 

convergence check

Linear overhead, e.g. data exchange

Typical, good, work-optimal parallel algorithms
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n=128
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1. Tpar0(p,n) = n/p+1: pTpar(p,n) = n+p = O(n) for p=O(n)

2. Tpar1(p,n) = n/p+log p:

pTpar(p,n) = n+p log p = O(n) for p log p = O(n)

3. Tpar2(p,n) = n/p+log2 p:

pTpar(p,n) = n+p log2 p = O(n) for p log2 p=O(n)

4. Tpar3(p,n) = n/p+√p: pTpar(p,n) = n+p√p = O(n) for p√p=O(n)

5. Tpar4(p,n) = n/p+p: pTpar(p,n) = n+p2 = O(n) for p2=O(n)

Cost-optimality:

All five algorithms have potential for linear speed-up up to the 

calculated number of processors
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n=128
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n=128, but p up to 256
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n=16384 (=16K=1282)
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n=2097152 (=2M=1283)
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n=128
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n=16384 (=16K=1282)
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n=2097152 (=2M=1283)
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Efficiency, iso-efficiency, weak scaling:

1. Tpar0(p,n) = n/p+1: f0(p) = [e/(1-e)] p

2. Tpar1(p,n) = n/p+log p: f1(p) = [e/(1-e)] (p log p) 

3. Tpar2(p,n) = n/p+log2 p: f2(p) = [e/(1-e)] (p log2 p)

4. Tpar3(p,n) = n/p+√p: f3(p) = [e/(1-e)] (p√p)

5. Tpar4(p,n) = n/p+p: f4(p) = [e/(1-e)] p2

To maintain constant efficiency e=Tseq(n)/(pTpar(p,n)), n has to 

increase as
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Maintained efficiency = 0.9 (90%)
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Matrix-vector multiplication parallelizations:

Tseq(n) = n2

Tpar0(p,n) = n2/p + n

Tpar1(p,n) = n2/p + n + log p
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n=100
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n=1000
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Some non work-optimal parallel algorithms

Amdahl case, linear sequential running time, 10% sequential 

fraction:

TparA(p,n) = 0.9n/p+0.1n

1. Tseq1(n) = n log n Tpar1(p,n) = n2/p+1

2. Tseq2(n) = n Tpar2(p,n) = (n log n)/p+1 
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n1 = 128

n2 = 16384
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Some non cost-optimal parallel algorithms

1. Tseq(n) = n Tpar1(p,n) = n/√p + √p

2. Tseq(n) = n Tpar2(p,n) = n/(p/log p) + log p 

• Sp(n) = n/(n/√p + √p) = √pn/(n+p) = √p/(1+p/n). The fastest 

running time (equate the two terms in Tpar1(p,n)) and highest 

speedup is for p=n, with Sp = √p/2

• Sp(n) = n/(n/(p/log p) + log p) = pn/((log p)(n+p)) = (p/log p) 

(n/(n+p)) < p/log p. Again, the fastest running time and highest 

speed-up is for p = n with Sp = p/log p 1/2
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n1 = 128

n2 = 16384

n3 = 209152
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Lecture summary, checklist

• Sequential baseline

• Sequential and parallel time, Tseq, Tpar

• Speed-up (in theory and practice)

• Work and cost optimality

• Amdahl’s law

• Efficiency, iso-efficiency function

• Scaled speed-up, strong and weak scaling


