
1

©Jesper Larsson TräffSS23

Introduction to Parallel Computing
Performance, Parallel Computing Objectives

Jesper Larsson Träff

TU Wien

Institute of Computer Engineering

Parallel Computing

2

©Jesper Larsson TräffSS23

Parallel computing objectives

• Than what?

• How do we account for better performance?

• How many parallel resources (processors) can be productively

used?

• What are obstacles to good parallel performance?

(Traditional) Objective:

Solve given computational problem faster

3

©Jesper Larsson TräffSS23

Non-specific model:

p dedicated parallel processors collaborate to solve given problem of

input size n.

• Processors work independently (local memory, program, MIMD),

but start at the same time

• Processors are occupied until last processor finishes

• Collaboration can incur overheads (communication, coordination,

algorithmic)

Recall: Parallel computing assumes dedicated processors:

We must “pay” for system time until all processors are done

4

©Jesper Larsson TräffSS23

Let a computational problem P with input I be given

• Seq: Sequential algorithm (or implementation) solving P(I)

• Par: Parallel algorithm (or implementation) solving P(I)

I(n) input of size n. P(n) short-hand for P(I(n)) in the worst case

(either, we quantify over all inputs, or the input is not important…)

• Theory: Algorithm in given, specific model

• Practice: Concrete implementation for some specific type of

parallel computer

5

©Jesper Larsson TräffSS23

Let

• Tseq(n): Time for 1 processor to solve P(n) using Seq

• Tpar(p,n): Time for p processors to solve P(n) using Par, time

for last/slowest processor to finish

Goal: Achieve as large speed-up as possible (for some n, all n) for

as many processors as possible

The gain in moving from sequential computation with algorithm Seq

to parallel computation with algorithm Par is expressed as the

speed-up of Par over Seq:

Sp(n) = Tseq(n)/Tpar(p,n)

Note: Both parameters p and n can be varied

6

©Jesper Larsson TräffSS23

• Time for some algorithm for solving problem?

• Time for a specific algorithm (Seq, Par) for solving problem?

• Time for best known algorithm for problem?

• Time for best possible algorithm for problem?

• Time for specific input of size n, average case, worst case, …?

• Asymptotic time, large n, large p?

• Do constants matter, e.g. O(f(p,n)) or 25n/p+3ln (4 p/n) … ?

What exactly is Tseq(n), Tpar(p,n)?

Tim Roughgarden: Beyond worst-case analysis. Comm. ACM 62(3):

88-96 (2019)

7

©Jesper Larsson TräffSS23

Tseq(n):

• Theory: Number of instructions (or other critical cost measure)

executed in the worst case for inputs of size n

• The number of instructions carried out is the required work

• Practice: Measured time (or other parameter) of execution over

some inputs (experiment design)

Choose sequential algorithm (theory), choose an implementation of

this algorithm (practice)

Theory and practice:

Always state baseline sequential algorithm&implementation

8

©Jesper Larsson TräffSS23

Examples:

Tseq(n) = O(n), =Θ(n):

Tseq(n,m) = Θ(n+m) :

Tseq(n) = O(n log n):

Tseq(n,m) = O(n log n + m):

Tseq(n) = O(n3):

…

Finding maximum of n numbers in

unsorted array; prefix-sums

Merging of two sequences; BFS/DFS in

graph

Comparison-based sorting

Single-source Shortest Path (SSSP)

Matrix multiplication, input two nxn

matrices

…

Standard, worst-case, asymptotic complexities

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms. 3rd ed.,

MIT Press, 2009

Can be solved in o(n3), by

Strassen etc.

9

©Jesper Larsson TräffSS23

Practice:

• Construct meaningful inputs to measure Tseq(n): experiment

design, experimental methodology

• Worst-case not always possible, not always interesting; best

case, average case? (what is that?)

• Experimental methods to get stable, accurate, repeatable

Tseq(n): Repeat measurements many times (thumb rule:

average over at least 30 repetitions. Be very careful!)

Experimental science:

Always some assumptions about realism, repeatability, regularity,

determinism, …

10

©Jesper Larsson TräffSS23

Practice:

• Construct meaningful inputs to measure Tseq(n): experiment

design, experimental methodology

• Worst-case not always possible, not always interesting; best

case, average case? (what is that?)

• Experimental methods to get stable, accurate, repeatable

Tseq(n): Repeat measurements many times (thumb rule:

average over at least 30 repetitions. Be very careful!)

New issue with modern processors:

Clock speed may not be constant (turbomode, power capping, …),

behavior can change with time

Modern software: Behavior can change with time… (“intelligent”,

adaptive software)

11

©Jesper Larsson TräffSS23

Example: AMD EPYC Series: Turbo-mode vs. all cores

One core: 3.2GHz. All cores: 2.20GHz

12

©Jesper Larsson TräffSS23

Definition (Absolute Speed-up, theory):

Let Tseq(n) be the (worst-case) time of the best possible/best known

specific, sequential algorithm Seq for P, and Tpar(n,p) the (worst-

case) time of a parallel algorithm Par. The absolute speed-up of Par

on p processors over Seq is

Sp(n) = Tseq(n)/Tpar(p,n)

Observation (proof follows):

Best-possible, absolute speed-up is linear in p

Goal: Obtain (linear) absolute speed-up for as large p as possible (as

function of problem size n), for as many n as possible

13

©Jesper Larsson TräffSS23

Goal: Obtain (linear) absolute speed-up for as large p as possible (as

function of problem size n), for as many n as possible

The difficult objective of parallel computing:

To develop algorithms and techniques (and interfaces and compilers)

that allow us to ultimately be faster than the best known sequential

approaches!

If this is not possible, why parallelize? Resources can be used better

differently&elsewhere

14

©Jesper Larsson TräffSS23

For speed-up (and other complexity measures), distinguish:

• Problem P to be solved (mathematical specification)

• Some algorithm A to solve P

• Best possible (lower bound) algorithm A* for P, best known

algorithm A+ for P: The complexity of P

• Implementation of A on some machine M

“Best possible” algorithm is most often not known. Lower bounds in

computer science are somewhat rare and difficult to establish. Must

therefore settle for “best known”.

15

©Jesper Larsson TräffSS23

Work

• The work of a sequential algorithm Seq on input of size n is the

total number of operations (integer, FLOP, memory, …; that which

matters most, according to model) carried out when Seq runs to

completion on n

• The work of a parallel algorithm Par on input of size n is the total

number of operations carried out by all assigned processors, not

including idle or waiting times

• The work required for some problem P is the work by a best

possible algorithm (complexity of P)

A (parallel) algorithm that performs work proportional to a best

possible (sequential) algorithm is called work optimal

16

©Jesper Larsson TräffSS23

Subproblem:

Sum of n/p

elements

Subproblem:

sum of n/p

elements

Subproblem:

sum of n/p

elements

Subproblem:

sum of n/p

elements

Problem: sum of two n-element vectors

Example: “Data parallel” (SIMD) computation

for (i=0; i<n; i++) {

a[i] = b[i]+c[i];

}

Seq algorithm/

implementation:

Tpar(p,n) = Tseq(n)/p

Sp(n) = n/(n/p) = p

Best possible parallelization:

sequential work divided evenly across

p processors

Complexity: Tseq(n) = Θ(n)

17

©Jesper Larsson TräffSS23

Subproblem:

Sum of n/p

elements

Subproblem:

sum of n/p

elements

Subproblem:

sum of n/p

elements

Subproblem:

sum of n/p

elements

Problem: sum of two n-element vectors

Example: “Data parallel” (SIMD) computation

for (i=0; i<n; i++) {

a[i] = b[i]+c[i];

}

• Perfect speed-up

• “Embarrassingly parallel”

• “Pleasantly parallel”

Tpar(p,n) = c(n/p) for constant c≥1

Seq algorithm/

implementation:

18

©Jesper Larsson TräffSS23

Work

Time

Tseq(n)

start

The work, measured in instructions and/or

time that has to be carried out for problem of

size n (worst-case)

stop

19

©Jesper Larsson TräffSS23

Work

Perfect parallelization: Sequential work evenly

divided between p processors, no overhead,

so Tpar(p,n) = Tseq(n)/p

Perfect speed-up

Sp(n) = Tseq(n)/(Tseq(n)/p) = p

Very rare in practice

Time

Tseq(n)

p processors

20

©Jesper Larsson TräffSS23

Ti

Non-perfect speed-up: Sequential work

unevenly divided between p processors,

load imbalance, Tpar(p,n)>Tseq(n)/p, even

though ∑Ti(n)=Tseq(n)

start

stop

Tpar is time for slowest processor to

complete, all processors assumed to

start at same time

Define Tpar(p,n) = max Ti(n) over all processors,

starting at the same time

Time

Tseq(n)

p processors

21

©Jesper Larsson TräffSS23

Measuring parallel time, Tpar(p,n)

Time of slowest processor-core to finish, assuming all processors

start at the same time (recall definition of parallel computing:

dedicated resources)

Ti

start

stop

for (number of repetitions) {

// synchronize processors, all start at same time

Ti = stop-start

Tpar(p,n) = max0≤i<pTi

}

// Do statistics

“barrier” sync.

“barrier” sync.

22

©Jesper Larsson TräffSS23

Ti

p processors

Wpar(n) = ∑Ti(n) is the work of the parallel

algorithm, total number of instructions

performed by the p processors

Product C(n) = pTpar(p,n) is the cost of the parallel

algorithm, total time in which the p processors are

reserved (: have to be paid for)

Area C(n) = pTpar(p,n)

Time

Tseq(n)

23

©Jesper Larsson TräffSS23

“Theorem:”

Linear (perfect) speed-up Sp(n) = cp is best possible and cannot be

exceeded (for some constant c, 0<c≤1).

“Proof”:

A sequential algorithm can be constructed from a parallel algorithm

by simulating the parallel algorithm on a single processor. The

instructions of the p processors have to be carried out in some

correct order on the sequential processor. The time for the simulation

is Tsim(n) ≤ pTpar(p,n).

Assume Sp(n) > p for some n. Now Tseq(n)/Tpar(p,n) > p implies

Tseq(n) > pTpar(p,n) ≥ Tsim(n), and contradicts that Tseq(n) was

best possible/known time.

Reminder: Speed-up is calculated (measured) relative to “best”

sequential algorithm (implementation)

Advantage of a theoretical model: Using the PRAM, a

technical proof with all details can be given

24

©Jesper Larsson TräffSS23

Ti

p processors

By assumption C(n) = pTpar(p,n) < Tseq(n)

Simulation A: one step of P1, one step of P2, …, one

step of P(p-1), one step of P1, …, for C(n) iterations

Simulation B: steps of P1 until

communication/synchronization, steps of P2 until

communication/synchronization, …

Time

Tseq(n)

25

©Jesper Larsson TräffSS23

Ti

1 processor

By assumption C(n) = pTpar(p,n) < Tseq(n)

Both simulations yield a new, sequential

algorithm Tsim(n) with

Tsim(n)≤pTpar(p,n)<Tseq(n)

This contradicts that Tseq(n) was time of best

possible/best known sequential algorithm

Time

Tseq(n)

26

©Jesper Larsson TräffSS23

Ti

1 processor

Time

Tseq(n) Aside:

Such simulations are actually sometimes

done, and can be very useful to understand

(model) and debug parallel algorithms

Some simulation tools:

• SimGrid (INRIA)

• LogPOPSim (Hoefler et al.)

• …

…Or when running parallel program at

home on one (or a few) processors

27

©Jesper Larsson TräffSS23

Lesson:

Parallelism offers only “modest potential”, speed-up cannot be more

than p on p processors

Simulation construction shows that the total parallel work must be at

least as large as the sequential work Tseq, otherwise, better

sequential algorithm can be constructed.

Crucial assumptions: Sequential simulation is possible (enough

memory to hold problem and state of parallel processors), sequential

memory behaves as parallel memory, …

This is NOT TRUE for real systems and real problems

28

©Jesper Larsson TräffSS23

Definitions:

A parallel algorithm Par(p,n) has linear absolute speed-up relative to

a best-known sequential algorithm Seq(n) if

Sp(n) = Θ(p)

A parallel algorithm Par(p,n) has “perfect” absolute speed-up relative

to a best-known sequential algorithm Seq(n) if

Sp(n) ≈ p

“Perfect” speed-up is the rare case where the actual (measured or

theoretically proven) speed-up is actuall close to p (constant close to

1)

Given the simulation, the definitions of linear and perfect speed-up

can be strengthened to:

29

©Jesper Larsson TräffSS23

Wpar(p,n) = ∑Ti(n) is the parallel work of the parallel algorithm: total

number of instructions performed by p processors

The product C(n) = pTpar(p,n) is the cost of the parallel algorithm:

Total time in which the p processors are occupied

Definition:

Parallel algorithm is called cost-optimal if C(n) = O(Tseq(n)). A cost-

optimal algorithm has linear (perhaps perfect) speed-up

Definition:

Parallel algorithm is called work-optimal if Wpar(p,n) = O(Tseq(n)). A

work-optimal algorithm has potential for linear speed-up (for some

number of processors)

30

©Jesper Larsson TräffSS23

Examples:

Let Tseq(n) = O(n) for some (best known) algorithm Seq.

Any parallel algorithm with Tpar(p,n) = O(n/p) is cost-optimal, since

for some constant c, p O(n/p) ≤ p (c(n/p)) = c n = O(n).

Parallel algorithms with Tpar(p,n) = O(n/√p) or Tpar(p,n) = O(n/(p/log

p)) = O((n log p)/p) are not cost-optimal.

We have p c(n/√p) = c √p n which not O(n) since √p is not constant

(bounded). Likewise, p c (n log p)/p = c n log p is not O(n).

Such algorithms cannot have linear speed-up.

31

©Jesper Larsson TräffSS23

Proof (linear-speed up of cost-optimal algorithm):

The constant factor c captures the load imbalance and overheads

(see later) of the parallel algorithm relative to best sequential

algorithm. The smaller c, the closer the speed-up to perfect

Given cost-optimal parallel algorithm with pTpar(p,n) = cTseq(n) =

O(Tseq(n)). This implies Tpar(p,n) = cTseq(n)/p, so

Sp(n) = Tseq(n)/Tpar(p,n) = p/c

32

©Jesper Larsson TräffSS23

Ti

p processors

Given work-optimal parallel algorithm, ∑Ti(n) =

Tseq(n), with Tpar(p,n) = max Ti(n)

Time

Tseq(n)

33

©Jesper Larsson TräffSS23

Ti

p processors

Given work-optimal parallel algorithm, ∑Ti(n) =

Tseq(n), with Tpar(p,n) = max Ti(n)

Execute on smaller number of processors p’, such

that ∑Ti(n) = p’Tpar(p’,n) = O(Tseq(n))

Time

Tseq(n)

34

©Jesper Larsson TräffSS23

Proof idea (work-optimal algorithm can have linear speed-up):

1. Work-optimal algorithm

2. Schedule work-items Ti(n) on p’ processors, such that

p’Tpar(p’,n) = O(Tseq(n))

3. With this number of processors, algorithm is cost-optimal

4. Cost-optimal algorithms have linear speed-up

Parallel algorithms’ design goal:

Work-optimal parallel algorithm with as small Tpar(p,n) as possible

(and therefore large parallelism: many processors can be utilized)

The scheduling in Step 2 is possible in principle, but may not be

trivial in concrete terms

35

©Jesper Larsson TräffSS23

par (0<=i<n) b[i] = true; // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

O(n2) operations (work), but sequential maximum finding requires

only O(n) operations

Speed-up with perfect parallelization

Sp(n) = O(n)/O(n2/p) = O(p/n) Bad!

Not work-optimal

Only small (linear, for fixed n) speed-up, and decreasing with n

36

©Jesper Larsson TräffSS23

Example: Another not work-optimal algorithm

Given DumbSort(n) with T(n) = O(n2) that can be perfectly

parallelized, Tpar(p,n) = O(n2/p)

Well-known that Tseq(n) = Θ(n log n), many algorithms and good

implementations, so

Sp(n) = O(n log n)/O(n2/p) = O(p (log n)/n)

Linear speed-up for fixed n but not independent of n (decreasing)

Not work-optimal algorithm: Speed-up decreases with n

37

©Jesper Larsson TräffSS23

• PRAM Maximum Finding: Tpar(p,n) < Tseq(n) n2/p < n p > n

• DumbSort: Tpar(p,n) < Tseq(n) n2/p < n log n n/p < log n

p > n/log n

Break-even:

How many processors are needed for parallel algorithm to be faster

than sequential algorithm?

Bad! (Almost) as many processors needed as problem size n to be

as fast as sequential algorithm.

38

©Jesper Larsson TräffSS23

Lesson:

It does not make sense to parallelize an inferior algorithm (although

sometimes much easier). Almost never…

But parallelizing an efficient, best known sequential algorithm can be

difficult.

Efficient, sequential algorithm often has:

• No redundant work (because efficient)

• Tight dependencies, forcing things to be done in a specific,

sequential order: One thing (and not many) after the other

Lesson from much hard work in (e.g., PRAM) theory and practice:

Work/cost-optimal parallel solution of a given problem often requires

a new algorithmic idea!

Parallel computing is a creative endeavor!

39

©Jesper Larsson TräffSS23

But:

Many sequential algorithms often have a lot of potential for easy

parallelization (loops, independent functions, …). Why not exploit

this?

Also:

Non-work optimal algorithms can sometimes be useful, as

subroutine

Lesson from much hard work in (e.g., PRAM) theory and practice:

Work/cost-optimal parallel solution of a given problem often requires

a new algorithmic idea!

40

©Jesper Larsson TräffSS23

Example: Time and speed-up for four linear work algorithms

Tseq(n) = O(n)

Fix n=10000, ignore

(normalize) constants

What are the parallel

running times?

Which ones have linear

speed-up?

Tpar0(p,n), Tpar1(p,n), Tpar2(p,n) look similar

41

©Jesper Larsson TräffSS23

Example: Time and speed-up for four linear work algorithms

Tpar0(p,n) = Tseq(n)/p

Tpar1(p,n) = Tseq(n)/p/2

Tpar2(p,n) =

Tseq(n)/log2p

Tpar3(p,n) =

Tseq(n)(1-p/96)
Careful with looking at time alone

42

©Jesper Larsson TräffSS23

Disproof (I): Is super-linear speed-up possible?

Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Sequential search order (DFS)

Marijn J. H. Heule, Oliver Kullmann: The science of brute force.

Commun. ACM 60(8): 70-79 (2017)

Solution after

Ω(2n/k) steps

43

©Jesper Larsson TräffSS23

Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Solution after

o(2n/k) steps

Parallelization: k trees in parallel on k processors. Now solution in

o(2n/k) steps, say n/k. Lucky processor finds solution fast

n/k

44

©Jesper Larsson TräffSS23

Combinatorial problems are often solved by clever tree-search

2n/k 2n/k 2n/k 2n/k

…

k subtrees

Speed-up is c 2n/(n/k) = k 2n/n » k for k processors and large n

45

©Jesper Larsson TräffSS23

But this does not contradict that linear/perfect speed-up is best

possible.

The parallel and the sequential algorithms are just different. In the

example, DFS is not the best search strategy, the parallel algorithm

does a mix of BFS and DFS, which might be better (and hard to

know in advance).

Reasons for “algorithmic” super-linear speed-up:

• Different algorithms

• Randomization, luck

• Non-determinism

Other factors can also lead to super-linear speed-up. See later

46

©Jesper Larsson TräffSS23

Definition (Relative speed-up): The ratio

SRelp(n) = Tpar(1,n)/Tpar(p,n)

is the relative speed-up of algorithm Par. Relative speed-up

expresses how well Par utilizes p processors (scalability)

Relative speed-up not to be confused with absolute speed-up.

Absolute speed-up expresses how much can be gained over the

best (known/possible) sequential implementation by parallelization.

Absolute vs. relative speed-up

Absolute speed-up is what ultimately matters

47

©Jesper Larsson TräffSS23

Beware:

Literature (research papers and books) is not always clear about the

distinction between Absolute and Relative speed-up.

It is easier to achieve and document good relative speed-up.

Reporting speed-up relative to an inferior, sequential implementation

is misleading and technically incorrect (goal: achieve speed-up over

a best known algorithm/implementation)

Goal:

Obtain (linear) absolute speed-up for as large p as possible (as

function of problem size n), for as many n as possible

48

©Jesper Larsson TräffSS23

Definition:

T∞(n): The smallest possible running time of parallel algorithm Par

given arbitrarily many processors. Per definition T∞(n) ≤ Tpar(p,n) for

all p. Relative speed-up is limited by

SRelp(n) = Tpar(1,n)/Tpar(p,n) ≤ Tpar(1,n)/T∞(n)

Definition:

The ratio Tpar(1,n)/T∞(n) is called the parallelism of the parallel

algorithm Par

The parallelism is the largest number of processors that can be

employed and still give linear, relative speed-up: Assume

Tpar(1,n)/T∞(n)<p’, the equation above tells that SRelp(n) < p’

49

©Jesper Larsson TräffSS23

Statements on speed-up, e.g.,

1. Sp(n) = c1p for some c1<1

2. Sp(n) = c2√p for some c2<1

etc. implicitly assumes some upper bound on the number of

processors for which this holds. Often, this upper limit is not stated,

but there is always a point for which it does not make sense to use

additional processors.

The parallelism Tpar(1,n)/T∞(n) is one such limit

50

©Jesper Larsson TräffSS23

par (0<=i<n) b[i] = true; // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

O(n2) operations (work), but sequential maximum finding requires

only O(n) operations

SRelp(n) = O(n2)/O(n2/p) = O(p)

Parallelism: O(n2)/O(1) = n2

This (terrible) parallel algorithm has linear relative speed-up for p up

to n2 processors (!). And great parallelism.

51

©Jesper Larsson TräffSS23

par (0<=i<n) b[i] = true; // a[i] could be
par (0<=i<n, 0<=j<n)
if (a[i]<a[j]) b[i] = false; // a[i] is not

par (0<=i<n) if (b[i]) x = a[i];

Example: CRCW PRAM Maximum Finding algorithm

This (terrible) algorithm has linear relative speed-up for p up to n2

processors

Nevertheless: Useful as a building block

Theorem: There exist a work-optimal CRCW PRAM algorithm that

runs in O(log log n) steps requiring O(n) parallel work

Advanced material. And last fact about PRAM in this lecture

52

©Jesper Larsson TräffSS23

An algorithm has good scalability and relative speed-up if

Tpar(1,n)/Tpar(p,n) = Θ(p)

Example:

Someone reports for algorithm Par that 0.1p ≤ Tpar(1,n)/Tpar(p,n) ≤

0.5p is reported. Sounds good!

Even for work-optimal Tpar(1,n) = 100Tseq(n) = O(Tseq(n)) it would

take at least 200 processors to break even with the sequential

algorithm with the reported relative speed-up

But what if Tpar(1,n) = 100Tseq(n)?

Or Tseq(n) = O(n) but Tpar(p,n) = O((n log n)/p + log n)?

Constants, as always, do matter (for the practitioner)

Relative speed-up

53

©Jesper Larsson TräffSS23

Work-optimality property:

For work-optimal algorithms, absolute and relative speed-up

coincide (asymptotically), since Tpar(1,n) = O(Tseq(n))

Again: Work-optimality is a strong property

54

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Parallelization most often incurs overheads:

• Algorithmic: Parallel algorithm may do

extra work not in sequential algorithm

• Coordination: Communication and

synchronization

• …

Tpar(p,n) Note T(1,n)≥Tseq(n)

Tseq(n)

55

©Jesper Larsson TräffSS23

Parallelization overheads

Parallel overhead is the work that does not have to be done by a

sequential algorithm

• Communication: Exchanging data, keeping data consistent

• Synchronization: Ensuring that processors have reached the

same point in the computation (typically SPMD programs)

• Algorithmic: Extra or redundant computations

(Communication) Overheads for processor i sometimes modeled as

Toverhead(p,ni) = α(p) + βni

where α(p) is the latency (dependent on p), and β the cost per data

item ni that needs to be communicated by processor i. For

synchronization operations, ni = 0

56

©Jesper Larsson TräffSS23

Ti

Oi

Overheads are counted as part of the parallel work (idle time is not

counted, or time where processors are doing something else)

Wpar(p,n) = ∑0≤i<pTi(n)+Oi(n)

Parallel algorithm can still be work/cost-optimal if

overheads are not too large, that is Wpar(p,n) =

O(Tseq(n))

57

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

If algorithm is cost-optimal, pTpar(p,n) =

kTseq(n), speed-up becomes imperfect, but

still linear, Sp(n) = p/k

Tseq(n)

58

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Note: This denotes cumulated time (“profile”)

over the whole Tpar(p,n) execution; not a

trace. Computation, overhead, and idle time

can be (is) spread over the whole execution

Tseq(n)

59

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Note: This denotes cumulated time (“profile”)

over the whole Tpar(p,n) execution; not a

trace. Computation, overhead, and idle time

can be (is) spread over the whole execution

Tseq(n)

Oi

Idle

60

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Tseq(n)

Oi

Idle

Typical overhead by communication and

coordination.

The (smallest) time between coordination

periods is called the granularity of the parallel

computation

61

©Jesper Larsson TräffSS23

(Loose) Definition: Granularity of parallel computations:

• “Coarse-grained” parallel computation/algorithm: Time/number of

instructions between coordination intervals (synchronization

operations, communication operations) is large (relative to total

time or work)

• “Fine-grained” parallel computation/algorithm: Time/number of

instructions between… is small

Coarse-grained computation means less frequent coordination (with

possibly larger data), potential for “hiding” coordination behind

computation (: doing computation concurrently with communication)

Fine-grained computation requires more efficient coordination,

otherwise coordination may dominate, algorithm could become non

work-optimal

62

©Jesper Larsson TräffSS23

Time

Ti

p processors

Oi

Tpar(p,n) Note T(1,n)≥Tseq(n)

Idle

Tseq(n)

Oi

Idle

Definition:

Difference between max (Ti(n)+Oi(n)) and min

(Ti(n)+Oi(n)) is the load imbalance

Achieving Tpar(i,n) ≈ Tpar(j,n) for all

processors i, j is called load balancing

63

©Jesper Larsson TräffSS23

Time

p processors

Oi

Tpar(p,n) close to Tseq(n)/p

Idle

A best possible parallelization has no load

imbalance (and no overhead), so Tpar(p,n) =

Tseq(n)/p

Tseq(n)

Ti

64

©Jesper Larsson TräffSS23

Load balancing: Achieving for all processors, i, j, an even amount of

work, Tpar(i,n) ≈ Tpar(j,n)

• Static, oblivious: Load balance achieved by splitting the problem

into p pieces, regardless of the input (except its size n)

• Static, problem dependent, adaptive: Load balance achieved by

splitting the problem into p pieces, using the (structure of) the

input

• Dynamic: Load balance achieved by dynamically (during program

execution) readjusting the work assigned to processors. Entails

overheads (example: work stealing, see later)

65

©Jesper Larsson TräffSS23

Parallelizing sequential algorithm Seq

Perfectly parallelizable (static, oblivious load balancing): Tpar(p,n) =

O(Tseq(n)/p)

Seq may have parts that cannot (easily) be parallelized, some

fraction s(n), such that Tseq(n) = s(n)Tseq(n) + (1-s(n))Tseq(n)

Part that could be parallelized

and Tpar(p,n) = s(n)Tseq(n) + (1-s(n))/p Tseq(n)

66

©Jesper Larsson TräffSS23

Time

Tseq(n) = (s+r)Tseq(n)

Ti

p processors

Maximum possible speed-up becomes severely limited

if sequential part is a constant fraction of the total work

(regardless of n)

Tpar(p,n) ≥ sTseq(n)+rTseq(n)/p

Sequential overhead: constant fraction

67

©Jesper Larsson TräffSS23

Amdahl’s Law (parallel version):

Let a program Seq contain a fraction r that can be “perfectly”

parallelized, and a fraction s=(1-r) that is “purely sequential”, i.e.,

cannot be parallelized at all (s and r independent of n). The

maximum achievable speed-up is 1/s, independently of n

Proof:

• Tseq(n) = (s+r)Tseq(n)

• Tpar(p,n) = sTseq(n) + rTseq(n)/p

Sp(n) = Tseq(n)/(sTseq(n)+rTseq(n)/p)

= 1/(s+r/p) ─> 1/s, for p ─> ∞

G. Amdahl: Validity of the single processor approach to achieving

large scale computing capabilities. AFIPS Spring Joint Conf., 483-

485, 1967

68

©Jesper Larsson TräffSS23

Typical victims of Amdahl‘s law:

• Sequential input/output could be a constant fraction

• Sequential initialization of global data structures

• Sequential processing of „hard-to-parallelize“ parts of algorithm,

e.g., shared data structures

• Everything that takes O(n) for input size n, and work O(n)…

Amdahl‘s law limits (kills!) speed-up in such cases, if they are a

constant fraction of total time, independent of problem size

The hard work (alternative definition of parallel computing):

Find ways to avoid constant-fraction non-parallelizable work

69

©Jesper Larsson TräffSS23

Example:

1. Processor 0: Read input, some precomputation

2. Split problem into p parts (of size ≈n/p), send part i to processor i

3. All processors i: Solve part i

4. All processors i: Send partial solution back to processor 0

Typical Amdahl, sequential bottleneck: Constant sequential fraction

(3 out of 4 steps) limits speed-up)

10n
9n

Amdahl: s=0.1, SU at most 10

When interested in parallel aspects, input-output and problem

splitting is often explicitly not measured!

70

©Jesper Larsson TräffSS23

// Sequential initialization

x = (int*)calloc(n,sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example: K iterations before

convergence, (parallel)

convergence check cheap, f(i)

fast O(1)…

Sp(n) ─> 1+K

Tseq(n) = n+K+Kn

Tpar(p,n) = n+K+Kn/p

Sequential fraction ≈ 1/(1+K)

Problem: calloc(n) system

function initializes memory and

takes O(n) time

71

©Jesper Larsson TräffSS23

// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example: K iterations before

convergence, (parallel)

convergence check cheap, f(i)

fast O(1)…

Sp(n) ─> p when n>p and n ─> ∞

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)

Note:

A constant sequential part (not

constant fraction) does not limit

SU

72

©Jesper Larsson TräffSS23

Example:

Lesson:

Be careful with system

functions (calloc, malloc), may

need to be parallelized as well

K iterations before

convergence, (parallel)

convergence check cheap, f(i)

fast O(1)…

Sp(n) ─> p when n>p, n ─> ∞

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)

// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

73

©Jesper Larsson TräffSS23

Avoiding Amdahl: Scaled speed-up, efficiency

Sequential, strictly non-parallelizable part is most often not a

constant fraction of the total execution time (number of instructions)

Indeed, the sequential part s(n) may decrease with problem size n.

Good speed-up can be maintained by increasing problem size with p

Recall Tpar(p,n) = s(n)Tseq(n) + (1-s(n))/p Tseq(n)

Not constant fraction

74

©Jesper Larsson TräffSS23

Assume

Tseq(n) = t(n)+T(n)

with sequential part t(n) and perfectly parallelizable part T(n), such

that

Tpar(p,n) = t(n)+T(n)/p

Assume t(n)/T(n) ─> 0 for n ─> ∞

The speed-up as a function of p and n is

Sp(n) = (t(n)+T(n)) / (t(n)+T(n)/p)

= (t(n)/T(n)+1) / (t(n)/T(n)+1/p) ─> 1/(1/p) = p for n ─> ∞

75

©Jesper Larsson TräffSS23

Lesson:

Depending on how fast t(n)/T(n) converges, linear speed-up can be

achieved by increasing problem size n accordingly

Definition:

Speed-up as function of p and n, with sequential and parallelizable

times t(n) and T(n) is termed scaled speed-up

With Tpar(p,n) = t(n)+T(n)/p, the fastest possible parallel time is

T∞(n) = t(n), and the parallelism is Tpar(1,n)/T∞(n) = (t(n)+T(n)) / t(n)

= 1+T(n)/t(n).

Small t(n) relative to T(n) means large parallelism

76

©Jesper Larsson TräffSS23

Special case (Gustafson-Barsis “law”):

Assume the parallelizable part of the work increases linearly in p

with T(n) = pt(n). Then

Sp(n) = (t(n)+T(n)) / (t(n)+T(n)/p)

= (t(n)+pt(n)) / (t(n)+t(n)) = (p+1)/2

John L. Gustafson: Reevaluating Amdahl's Law. Commun. ACM

31(5): 532-533 (1988)

(The paper actually says something different, makes the calculation

somewhat similar to the proof of Amdahl’s law, in a way that doesn’t

really make sense (in my opinion))

77

©Jesper Larsson TräffSS23

Remarks:

• Tseq(n) time for best known/possible sequential algorithm

• E(p,n) ≤ 1, since Sp(n) = Tseq(n)/Tpar(n,p) ≤ p

• E(p,n) = c (constant, ≤1): linear speed-up

Definition:

The efficiency of parallel algorithm Par is the ratio of best possible

parallel time to actual parallel time for given p and n:

E(p,n) = (Tseq(n)/p) / Tpar(p,n)

= Sp(n)/p = Tseq(n) / (p Tpar(p,n))

Cost, so efficiency is also ratio of

sequential to parallel cost

• Cost-optimal algorithms have constant efficiency

78

©Jesper Larsson TräffSS23

Scalability

Definition:

A parallel algorithm/implementation is strongly scaling if

Sp(n) = Θ(p) (linear, independent of (sufficiently large) n)

Definition:

A parallel algorithm/implementation is weakly scaling if there is a

slowly growing function f(p), such that for n = Ω(f(p)), E(p,n) remains

constant. The function f is called the iso-efficiency function

Ananth Grama, Anshul Gupta, Vipin Kumar: Isoefficiency: measuring

the scalability of parallel algorithms and architectures. IEEE

Transactions Par. Dist. Computing. 1(3): 12-21 (1993)

79

©Jesper Larsson TräffSS23

Example:

Some work-optimal parallel algorithm runs in O(n2/p+log2p). The iso-

efficiency function for this algorithm (“how must problem size n

increase as a function of p to maintain constant efficiency?”) is

e = n2/(p(n2/p+log2p) = n2/(n2+p log2p)

n2(1-e) = e p log2p

n = √(e/(1-e)) √p log p

Reminder:

log2n is shorthand for (log n)2, not log log n (iterated logarithm, which

is written log(2)n)

Efficiency e can be kept, if n≥√(e/(1-e)) √p log p

e ist the given efficiency

80

©Jesper Larsson TräffSS23

Example:

If the algorithm instead runs in O(n2/p+log2n), the iso-efficiency

function for this algorithm (“how must problem size n increase as a

function of p to maintain constant efficiency?”) is

e = n2/(p(n2/p+log2n)) = n2/(n2+p log2n)

n2(1-e) = e p log2n

n/log n = √(e/(1-e)) √p

No analytical solution

But we can maintain efficiency at least e, if n/log n≥√(e/(1-e)) √p

Reminder:

log2n is shorthand for (log n)2, not log log n (iterated logarithm, which

is written log(2)n)

O-constants

normalized to 1

81

©Jesper Larsson TräffSS23

Example:

Parallel running time

O(n2/p+log2n)

vs.

O(n2/p+log2p)

Parallel “overhead” a function of problem size

Parallel “overhead” a function of number of

processors, “caused by parallelization alone”

Both kind of algorithms/analyses occur frequently. Sometimes the

latter is easier to handle (iso-efficiency), sometimes the former

82

©Jesper Larsson TräffSS23

Deriving the iso-efficiency function f(p)

Constant efficiency e in e = Tseq(n) / (p Tpar(p,n)), simplify,

approximate, solve for n, gives function f(p) with the constant e

somewhere that tells how n must grow with p to maintain constant e.

Technically, an algorithm is strongly scalable iff f(p) = O(1).

This is, technically speaking, never the case: All algorithms are at

best weakly scalable, at least as much work is required as there are

processors.

But often, constants and lower order terms can safely be ignored, so

that the algorithm is strongly scalable for some range of n and p

83

©Jesper Larsson TräffSS23

Summary: Stating parallel performance

It is convenient to state parallel performance and scalability of a

parallel algorithm/implementation as

Tpar(p,n) = O(T(n)/p+t(p,n))

T(n) represents the parallel part, t(p,n) the non-parallel part of the

algorithm beyond which no improvement is possible, regardless of

how many processors are used. The parallelism is 1+T(n)/t(p,n)

The cost of the algorithm is

W = O(p(T(n)/p+t(p,n))) = O(T(n)+pt(p,n))

The algorithm is cost-optimal when T(n) is O(Tseq(n)) and pt(p,n) is

O(Tseq(n))

84

©Jesper Larsson TräffSS23

This code is weakly scalable, n has to increase as Ω(p log p) to

maintain constant efficiency, Ω(log p) per processor (if the work in

the iterations is load-balanced)

// Sequential initialization

x = (int*)malloc(n*sizeof(int));

…

// Parallelizable part

do {

for (i=0; i<n; i++) {

x[i] = f(i);

}

// check for convergence

done = …;

} while (!done)

Example (again): K iterations before

convergence, (parallel)

convergence check cheap, f(i)

fast O(1)…

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential part ≈ 1/(1+n)

85

©Jesper Larsson TräffSS23

Speed-up in practice

Speed-up as an empirical quantity, “measured time”, based on

experiment (benchmark)

Tseq(n): Running time for “reasonable”, good, best available,

sequential implementation, on “reasonable” inputs

Tpar(p,n): Parallel running time, measured for a number of

experiments with different, typical, relevant (worst-case? best-case?)

inputs

Sp(n) = Tseq(n)/Tpar(p,n)

Empirical speed-up typically not independent of problem size n, and

problem instance

86

©Jesper Larsson TräffSS23

David H. Bailey: Twelve Ways to Fool the Masses When Giving

Performance Results on Parallel Computers. Supercomputing

Review, Aug. 1991, pp. 54-55

Torsten Hoefler, Roberto Belli: Scientific benchmarking of parallel

computing systems: twelve ways to tell the masses when reporting

performance results. SC 2015: 73:1-73:12

Empirical, relative speed-up without absolute performance baseline

(and comparison to reasonable, sequential algorithm and

implementation) is grossly misleading

87

©Jesper Larsson TräffSS23

Scalability analysis

• Strong scaling: Keep problem size (work) fixed, increase number

of processors. Algorithm/implementation is strongly scaling, if

Tpar(p,n) decreases proportionally to p (linear speed-up).

• Weak scaling (alternative definition): Keep average work (work

per processor) fixed, that is increase problem size together with

number of processors. Algorithm/implementation is weakly

scaling if the running time remains constant (=Tseq(n’) for non-

scaled input of size n’). Let K = Tseq(n’), then the input size

scaling function is n = Tseq-1(pK) = g(p)

For input of size n, the average work for p processors is Tseq(n)/p. In

the weak scaling analysis, this is to be kept constant, e.g., Tseq(n’)

88

©Jesper Larsson TräffSS23

Example:

Consider again algorithms for matrix-vector multiplication running in

parallel time O(n2/p+log n) with sequential work O(n2).

The average work (work per processor) should be kept fixed at

O(n’2) for some n’. The total work with p processors is O(p n’2), for

which input of size n in O(n’√p) is needed (solve n2 = (p n’2)).

The running time is O((n’√p)2/p + log(n’√p)) = O(n’2 + log n’ + log√p),

which is O(n’2) as long as log√p is smaller than (some constant

times) n’2.

This algorithm is weakly scaling up to a very large number of

processors (exponential in n’).

The algorithm is also strongly scalable (linear speed-up) up to p in

O(n2/log n) processors (the parallelism)

89

©Jesper Larsson TräffSS23

Combining the two notions of weak scaling, a parallel algorithm Par

is weakly scaling if the iso-efficiency function f(p) is growing no faster

than the input size scaling function g(p)

The second, alternative notion of weak scaling (keep parallel time

constant) puts an upper bound on the growth of the slowly growing

iso-efficiency function. This is a (sometimes too) strong requirement.

95

©Jesper Larsson TräffSS23

Limitations of speed-up as an empirical measure

Empirical speed-up (speed-up in practice) assumes that Tseq(n) can

be measured.

For very large n and p, this may not be the case: A large HPC

system has much more (distributed) main memory than any single-

processor system

Scalability measured by other means:

• Stepwise speed-up (1-1000 processors, 1000-10,000 processors,

10,000 to 100,000 processors, …)

• Other notions of efficiency

Sometimes Tseq(n) may be so large that it cannot be measured for

real (large, combinatorially hard problems)

96

©Jesper Larsson TräffSS23

Examples (Tpar, Speed-up, Optimality, Efficiency, Iso-efficiency):

1. Tpar0(p,n) = n/p+1

2. Tpar1(p,n) = n/p+log p

3. Tpar2(p,n) = n/p+log2 p

4. Tpar3(p,n) = n/p+√p

5. Tpar4(p,n) = n/p+p

Linear time computation, Tseq(n) = n (constants ignored)

Embarrassingly “data parallel”

computation, constant overhead

logarithmic overhead, e.g.

convergence check

Linear overhead, e.g. data exchange

Typical, good, work-optimal parallel algorithms

97

©Jesper Larsson TräffSS23

n=128

98

©Jesper Larsson TräffSS23

1. Tpar0(p,n) = n/p+1: pTpar(p,n) = n+p = O(n) for p=O(n)

2. Tpar1(p,n) = n/p+log p:

pTpar(p,n) = n+p log p = O(n) for p log p = O(n)

3. Tpar2(p,n) = n/p+log2 p:

pTpar(p,n) = n+p log2 p = O(n) for p log2 p=O(n)

4. Tpar3(p,n) = n/p+√p: pTpar(p,n) = n+p√p = O(n) for p√p=O(n)

5. Tpar4(p,n) = n/p+p: pTpar(p,n) = n+p2 = O(n) for p2=O(n)

Cost-optimality:

All five algorithms have potential for linear speed-up up to the

calculated number of processors

99

©Jesper Larsson TräffSS23

n=128

100

©Jesper Larsson TräffSS23

n=128, but p up to 256

101

©Jesper Larsson TräffSS23

n=16384 (=16K=1282)

102

©Jesper Larsson TräffSS23

n=2097152 (=2M=1283)

103

©Jesper Larsson TräffSS23

n=128

104

©Jesper Larsson TräffSS23

n=16384 (=16K=1282)

105

©Jesper Larsson TräffSS23

n=2097152 (=2M=1283)

106

©Jesper Larsson TräffSS23

Efficiency, iso-efficiency, weak scaling:

1. Tpar0(p,n) = n/p+1: f0(p) = [e/(1-e)] p

2. Tpar1(p,n) = n/p+log p: f1(p) = [e/(1-e)] (p log p)

3. Tpar2(p,n) = n/p+log2 p: f2(p) = [e/(1-e)] (p log2 p)

4. Tpar3(p,n) = n/p+√p: f3(p) = [e/(1-e)] (p√p)

5. Tpar4(p,n) = n/p+p: f4(p) = [e/(1-e)] p2

To maintain constant efficiency e=Tseq(n)/(pTpar(p,n)), n has to

increase as

107

©Jesper Larsson TräffSS23

Maintained efficiency = 0.9 (90%)

108

©Jesper Larsson TräffSS23

Matrix-vector multiplication parallelizations:

Tseq(n) = n2

Tpar0(p,n) = n2/p + n

Tpar1(p,n) = n2/p + n + log p

109

©Jesper Larsson TräffSS23

n=100

110

©Jesper Larsson TräffSS23

n=1000

111

©Jesper Larsson TräffSS23

Some non work-optimal parallel algorithms

Amdahl case, linear sequential running time, 10% sequential

fraction:

TparA(p,n) = 0.9n/p+0.1n

1. Tseq1(n) = n log n Tpar1(p,n) = n2/p+1

2. Tseq2(n) = n Tpar2(p,n) = (n log n)/p+1

112

©Jesper Larsson TräffSS23

n1 = 128

n2 = 16384

113

©Jesper Larsson TräffSS23

Some non cost-optimal parallel algorithms

1. Tseq(n) = n Tpar1(p,n) = n/√p + √p

2. Tseq(n) = n Tpar2(p,n) = n/(p/log p) + log p

• Sp(n) = n/(n/√p + √p) = √pn/(n+p) = √p/(1+p/n). The fastest

running time (equate the two terms in Tpar1(p,n)) and highest

speedup is for p=n, with Sp = √p/2

• Sp(n) = n/(n/(p/log p) + log p) = pn/((log p)(n+p)) = (p/log p)

(n/(n+p)) < p/log p. Again, the fastest running time and highest

speed-up is for p = n with Sp = p/log p 1/2

114

©Jesper Larsson TräffSS23

n1 = 128

n2 = 16384

n3 = 209152

115

©Jesper Larsson TräffSS23

Lecture summary, checklist

• Sequential baseline

• Sequential and parallel time, Tseq, Tpar

• Speed-up (in theory and practice)

• Work and cost optimality

• Amdahl’s law

• Efficiency, iso-efficiency function

• Scaled speed-up, strong and weak scaling

