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What happened so far

» How bugs come into being:

» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

» We specified intended behaviour using assertions

» We proved our programs correct (inductive invariants).
» We learned how to test programs.

> We generated test cases.



Assertion Violations

How do we know what (a[i] > pi) means?

heap

a=1{1.0,3.1,5.2]}

stack

pc int 1 = 1;
< static data: pi = 3.14

code: assert(ali]>pi)




Assertion Violations

How do we know what (a[i] > pi) means?
» Programming Language Semantics

heap

a=1{1.0,3.1,5.2]}

stack

pc int 1 = 1;
< static data: pi = 3.14

code: assert(ali]>pi)




Use Formal Languages to Specify Semantics

Enables us to. ..

> unambiguously specify meaning of language constructs
» formally reason about correctness of

» program transformations/optimisations
» code generation
» program correctness



Which Formal Languages Do You Already Know?
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Which Formal Languages Do You Already Know?

» Propositional Logic (PL, “Aussagenlogik”)
» First-Order Logic (FOL, “Pradikatenlogik”)
This lecture:

Syntax & Semantics of PL & FOL

(Some of the following slides borrowed with permission from Aaron Bradley)
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formula = formula A formula | formula v formula |
formula = formula | formula < formula |
—~formula | (formula) | atom
atom = identifier | constant
constant = true | false

identifier < {P,Q,R,...}

Formulas built recursively from syntax:
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Syntax of Propositional Logic

formula := formula A formula | formula \/ formula |
formula = formula | formula < formula |
—~formula | (formula) | atom
atom = identifier | constant
constant = true | false

identifier € {P,Q,R,...}

Formulas built recursively from syntax:
» formula = (P A true) = Q

Can also be parsed recursively:
» formula ::=

» Syntax only specifies structure
» Formula adheres to syntax < Formula is well-formed



Semantics (Meaning) of Propositional Logic

Syntax does not tell us how to interpret formulas

Propositional Identifiers:
> P,QR,...
> represent “propositions”:
» ‘“itis raining”
» “the least significant bit of x is 1”



Semantics (Meaning) of Propositional Logic

Syntax does not tell us how to interpret formulas

Propositional Identifiers:
> P,QR,...
> represent “propositions”:
» ‘“itis raining”
» “the least significant bit of x is 1”
» We ignore the underlying meaning of propositions
» Propositions take the values true or false



Propositional Logic: Interpretations

An interpretation | assigns truth values to identifiers

I ={P+— true, Q — false, R — true, ...}

Meaning of Boolean operations is defined via truth table:
F; ‘ Fs H - F; ‘ FFANF | AVE | Fi=FR] FFse

false | false || true false false true true
false | true true false true true false
true | false || false false true false false

true | true || false true true true true



Evaluating Formulas

Evaluation of a formula using a truth table:
P| Q |[PrAQ] —Q |truev-Q | (PAQ)= (trueV Q)
true | false || false |true | true | true




Evaluating Formulas

Evaluation of a formula using a truth table:
P| Q |[PrAQ] —Q |truev-Q | (PAQ)= (trueV Q)
true | false || false |true | true | true

How many Boolean operations over n propositions are there?



Inductive Definition of Semantics

| = F if Fevaluatesto true under/
I = F if F evaluatesto false under/

Base case
I'=P iff I(P)=true
I~ P iff I(P) = false

Inductive case

I = -F iff | F

/):F1/\F2 iff I):F1andlkF2

/):F1\/F2 iff /):F1OI’/):F2

/}:F1:>F2 iff /%F1OF/)ZF2

IEF &R iff I=Fand/EF
or [~ Frand | = F



Inductive Definition of Semantics

Given an interpretation /, we can evaluate a formula recursively:
» | ={P true, Q + false}
» formula ::= P true vV -
'ormula ( A Q)= ( Q)

true false false



Inductive Definition of Semantics

Given an interpretation /, we can evaluate a formula recursively:
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» formulaz:= (P, A Q) = (true Vv —-Q)
~—~ ~— ~~
true false true



Inductive Definition of Semantics

Given an interpretation /, we can evaluate a formula recursively:
» | ={P ~ true, Q — false}

» formula:= (P A Q) = (true V Q)
~——— |
false true



Inductive Definition of Semantics

Given an interpretation /, we can evaluate a formula recursively:
» | ={P~ true, Q — false}
» formula:=(P A Q) = (true V -Q)

true



Satisfiability and Validity

F is satisfiable iff there exists an interpretation / such that / = F.
F is valid iff for all interpretations / it holds that / = F.

F is valid iff =F is unsatisfiable. |

Example:

F:PNQ= PV-Q

P Q PAQ| -Q | PV-Q| F
false false | false | true true true
false true | false | false false true
true false | false | true true true
true true true | false true true



Equivalence and Semantic Consequence

Fi and F, are equivalent (F1 = Fo)
if and only if
{HITEFRY = {[IEFR}

F1 entails F2 (F1 ‘: Fg)
if and only if
{11TEFRy < {1EF}

= and |= are symbols of the meta-language:
Fi = F> and Fy = F; are not formulas!



Equi-satisfiability

Two formulas with different propositional identifiers
» have incomparable interpretations
» can therefore not be equivalent

Fi and F, are equi-satisfiable
if and only if
F1 is satisfiable iff Fo is satisfiable



Equi-satisfiability

Two formulas with different propositional identifiers
» have incomparable interpretations
» can therefore not be equivalent

Fi and F, are equi-satisfiable
if and only if
F1 is satisfiable iff Fo is satisfiable

Example: PAQand RA (R< (P AQ))



Data Structures for Representing Formulas

Truth tables are just one (inefficient) way of representing Boolean
functions. Other forms are. ..

» Propositional Logic / (Quantified) Boolean Formulas
» Negation Normal Form, Conjunctive Normal Form
» Polynomials in GF(2)

» Boolean Circuits

» Binary Decision Trees/Diagrams (BDDs)



Functional Completeness

» A Boolean data structure is functionally complete if all
Boolean functions can be expressed in this data structure.

» All data structures mentioned above are functionally complete
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Functional Completeness

» A Boolean data structure is functionally complete if all
Boolean functions can be expressed in this data structure.

» All data structures mentioned above are functionally complete
Which Boolean operators result in a functionally complete logic?
» Vand —, or Aand —



Canonicity of Boolean Data Structures

Data structures for F and G are identical
if and only if
F and G are identical



Canonicity of Boolean Data Structures

Data structures for F and G are identical
if and only if
F and G are identical

Examples:
> Truth tables
» (Ordered) Binary Decision Diagrams
» Conjunctive Normal Form (with maxterms)
> ...



Binary Decision Diagrams (Bryant 86)

» Store formulas as directed acyclic graphs

» Nodes represent variables

» Edges represent assignments
» Assignments can be derived in O(#variables)
> Representation is canonical

> if in graph



Binary Decision Tree

» Encode decisions and outcome in tree

» Satisfying assignment can be found efficiently
> Wasteful, lot of redundancy

» Not much better than truth table

((X1 VAN X2) V (ﬁX1 N X3))



Binary Decision Tree: Reductions
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Binary Decision Tree: Reductions

> Merge leaf nodes
» Merge isomorphic subtrees
» Remove redundant nodes (introduce don'’t cares)

> Repeat reductions as long as possible



Constructing Binary Decision Diagrams

» Construction follows structure of formula

» By and B, represent F; and F»
then By = B, represents Fy x F» (where x € {A,V,...})

» Complexity of By x B2 bounded by |B1] - |B2|



Constructing Binary Decision Diagrams: Restrict

((X1 N Xg) \Y (—|X1 A X3))



Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F = (—\X/\F[X/O]) V (X/\F[X/1])



Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F = (—\X/\F[X/O]) V (X/\F[X/1])

Bl 82 Bl * 82

/
/
/
/

\\\ l///B]_[X]_/O]\\\\ l///B]_[X]_/]_]\\\\
- * I I * I

, I \ I
/// \\\\82[}(1/0]/// \\\\82[}(1/1]///




Constructing BDDs

Combining two BDDs 5, x B35

» Requirement: Same variable order!
» Start from root nodes v; and v»

» Case 1: var(vy) = var(vz2) = x1

51 82 Bl * 52

\\\ l///Bl[X]_/O]\\\\ l///B]_[X]_/].]\\\\
\l ! * ! [ * |

\ ! \ !
///I \\\BZ[XI/O]/// \\\82[}{1/1]///




Constructing BDDs

Combining two BDDs B x B>

» Case 2: var(vy) # var(va)
> var(v1) = X1, VaI‘(Vg) = X2
» x1 precedes x, in variable order
» Therefore, x1 does not occur in B>!

By B> Bi1 x B>

S Bilxa /1

\ !

\\ 82 //




Constructing BDDs

Combining two BDDs 5, x 3>

> Case 3: v; and v, are terminal nodes | 1]or 0]

B1 * 82 = Val(V1 ) * Val( Vi )

okt] = [ox1]



Constructing BDDs: Example
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\\ 82 // \\ B2 //
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Constructing BDDs: Example
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Constructing BDDs: Example

Bz

Bilz=0 V B2
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Constructing BDDs: Example

/ vV \ = (ORVAN

Bi|xy=1 B2 Bilx=1 V B2



Constructing BDDs: Example

X1V (—\X1 vV —|X2)



Constructing BDDs: Variable Order

(x1ey1)A ... AN (xn < ¥n)
» X{,¥1,...,%Xpn,¥n: Size 3n+2

» X{,X0,...,¥1,¥2,-..:Size3-2" —1

» There are functions s.t. number of nodes can’t be polynomial
» For instance: Multiplication of bit-vectors



Constructing BDDs: Complexity

» Quantification:

Vx. F = F[x/0] A F[x/1]
Ix.F = F[x/0] vV F[x/1]

» Furthermore: If F = true then BDD is
» Follows immediately, because representation is canonical
» What does that mean for complexity?



Constructing BDDs: Complexity

» Quantification:

Vx. F = F[x/0] A F[x/1]
Ix.F = F[x/0] vV F[x/1]

» Furthermore: If F = true then BDD is
» Follows immediately, because representation is canonical
» What does that mean for complexity?
» Can solve TQBF, the prototypical PSPACE-complete problem



Compression of Boolean Data Structures

Remember:

» Number of Boolean functions: 22"
Which representation is "compact”?

» No data structure with good average compression
In practice:

QBF > prop. logic > BDDs > Binary Decision Trees > truth tables



Normal Forms: Negation Normal Form

Negations appear in literals only:
formula = formula A formula | formula\ formula | literal
literal := atom | —atom

Transformation into NNF:
» Eliminate implication and bi-implication

Fi=FH = -F Vv F
Fre R = (F1=>F2)/\(F2:>F1)

» Eliminate (double) negation:
-—F = F —true = false —false = true
> “Push” negation inwards:

—\(F1 A Fg)
_\(F1 Vv F2)

-F VvV —Fo

Fy A —Fp } De Morgan’s Law



Negation Normal Form: Example

~(P = ~(PAQ))
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Negation Normal Form: Example

~(P = ~(PAQ))

“(-PV~=(PAQ)) = toV
=P A-=(PA Q) DeMorgan
PAPAQ -



Conjunctive Normal Form

formula = formula A formula | (clause)
clause := literal v clause | literal
literal = atom | —atom

» CNF formula: A conjunction of clauses (product of sums)
/\ \/fi,j, ij € {P,—P| P € Identifiers}
i

e.g.,
“PA(PiV-Q)A(-PVQ)AP
> Remember:
> Vol = false (we use [ to denote the empty clause)

> Alternative (more compact) notation:

(P)(PQ)(PQ)(P)



Tseitin Encoding

> If we use propositional logic rewrite rules:
(PANQ)V(RAS) = (PVRIA(PVS)A(QVR)A(QVS)

Blowup if applied repeatedly!
» Idea: Construct satisfiability-equivalent formula
» Introduce a fresh symbol for each subterm:
(PAQ)V(RAS)

%
(01 \/02) VAN (01 <:>(P/\ Q)) A (02<:>(R/\ S))

» But this is still not CNF!



Tseitin Encoding

(01 \/02) VAN (01 <=>(P/\ Q)) VAN (OQ@(R/\S))
> (0 (PAQ) =



Tseitin Encoding

(01 \/02) VAN (01 <=>(P/\ Q)) VAN (02<=> (R/\S))

> (0; < (PAQ) =
(O1:>P)/\(O1é0)/\((P/\Q)éO1) =



Tseitin Encoding

(O1VO2) A (01 < (PAQ)) A (O (RAS))
> (0= (PAQ) =
(01 = P)A(O1= Q) A((PAQ)= O) =
(PV-01)A(QV—-0O1)A(OV =PV Q)



Tseitin Encoding

(O1VO2) A (01 < (PAQ)) A (O (RAS))
> (0= (PAQ) =
(01 = P)A(O1= Q) A((PAQ)= O)
(PV-01)A(QV—-0O1)A(OV =PV Q)

» Constant blowup



Tseitin Encoding

Negation:
Ps-Q = (P=-QA(—Q=P)
= (WPV-Q)A(QVP)
Disjunction:
P& (QVR) = (Q=P)AN(R=P)AN(P=(QVR))
= (QVP)A(-RVP)AN(-PVQVR)
Conjunction:
P< (QAR) (P=QANP=RAN{(QANR)=P)

(—PVQ)A(-PVR
(-PVQ)A(-PVR

AN(=(QAR)VP)
A (-QV-RVP)

~— ~—



Tseitin Encoding

Equivalence:

< (Q< R)
(P=(Q+< R)A((Qe R)=P)
(P=((Q@=RAR=Q)A(QeR) =P
(P=(Q=R)A(P=(R=Q)N((Q< R)=P)
(ﬁP\/ﬁO\/R) (ﬁP\/ﬁR\/Q) ((Q@R)ip)
(=PV-QVR)A(=PV-RVQ)A(((QAR)V(-QA-R))=P)
( YA(=PV=RVQ)A((QAR)= P)A((-QA-R)= P)
( YA(PV-=RVQ)A(-QV-RVP)A(QV RV P)

-PV-QVR
-PV-QVR

A

A

A
A
A
A
A



Tseitin Encoding

Equivalence:

< (Q< R)
(P=(Q+ R))

(P=((Q@=R)

(P=(Q@=R))

(ﬁP\/ﬁO\/R) (ﬁP\/ﬁR\/Q) ((Q@R)ip)
(mPV-QVR)A(=PV-RVQ)A(((QANR)V (-QA-R)) = P)
(=PV-QVR)A(-PV-RVQ)A((QAR)= P)A((-QA-R)=P)
(=PVvV-QVR)A(-PV-RVQ)A(-QV-RVP)A(QVRVP)

» Blowup by constant factor of 4

(Qe R)=P)
R=aQ)Ar(Qe R)=P)
(

A
N
ANP=(R=Q)AN(Q&R) = P)
A
A
A

» Resulting formula satisfiable iff initial formula is



Expressing Bit-Vector Arithmetic in PL

At first sight, PL is not very expressive. . .

» Remember: C integers are bit-vectors d,—1...dp (d; € B,
0<i<n
> nis width of bit-vector.
» Unsigned:
dp_1|dp2| - | dh do
most significant least significant

» Signed:

sign

dp—1|dn—2| -+ | di | do

! f

most significant  least significant



Bit-Vectors: Interpretations

Interpretation function which maps d,_1 . .. dp to finite sub-domain
of Ng and Z:

n—1 j .
e g di-2 unsigned
Gt )M 2= .
(dh-1-. o) { —2n1 . dy 4+ 37 2d;-2" signed

» Accordingly, =, #, >, and > take standard meaning in Z.



Encoding Bit-Vector Operations

Equality x = y is straight-forward:

n—1

A& yi)

i=0



Encoding Bit-Vector Operations

n—1

z:x&y /\(Ziﬁ(xi/\yi))
i=0
n—1

z:x|y /\(Z,‘@(Xi\/YI))
i=0
n—1

z=x®y ... /\z,-@((XiVYi)/\(ﬁXi\/ﬁYi))
i=0



Encoding Bit-Vector Operations

Shift operations implemented by means of a cascade of parallel
multiplexers known as barrel shifter.

X0
X1
X3X2
| - 00
[ [
0 1
\ /Ly1 4-bit barrel shifter imple-
mentingz =x <Ky
| 0 i stage performs shift by
l | 2' positions if y; is true.
0 1 Yo
Zo
Z1

Z3



Encoding Bit-Vector Operations

a b Ci

iy

TTITIITT
iy | [

FA FA FA FA

o 1 | | |
s3 2 s1 S0

Co S



Encoding Bit-Vector Operations

> x < y can be expressed using of subtraction
> If x <y, then x — y yields overflow
(can be detected by checking the signals c,

» Unsigned operands, overflow if c, = true.
» Signed operands, (c, ¢ c,—1) indicates overflow



Encoding Bit-Vector Operations

» Multiplication uses shift-and-add circuit
» i.e., multiplication of 2-bit parameters x and y ([x1 xo] and
[y1 yol) is
[z2 21 z0] = ([0 %1 %0]&[y0 yo yo]) + (([0x1 x0] < 1)&[y1y1¥1]) -



Encoding Bit-Vector Operations

» Integer divisionz = £ (fory #£ 0)
y

(z-y+T=%)A(r <)

» where r denotes the remainder



Restrictions of Propositional Logic

» Sufficient to encode bit-vector operations
» What about infinite domains

» N,Z, R, ...

» data-structures like arrays, maps, lists?



First Order Logic

Syntax
formula = formula A formula | formula Vv formula |
formula = formula | formula < formula |
—formula | (formula) |
predicate (term,. .. ,term) | term = term
V variable . formula | 3 variable . formula
term = variable | constant | function (term,...term)

» variables, functions, predicates, and constants are
represented by unique identifiers

» each function and predicate has a fixed arity
> Y, d, AV, =, <, 1, and variables are logical symbols
» predicates, constants, functions are non-logical symbols




First Order Logic: Quantifiers

vx. p(f(x),x) = Ty . p(f(9(x,)), 9(x, ¥))) A q(x, f(x))
G

» The scope of Vx is F.
» The scope of dy is G.
» x and y are bound.
» The formula reads:

“For all x, if p(f(x), x) then there exists a y such that
p(f(a(x,¥)), 9(x,y)) and q(x, f(x))"



First Order Logic

Examples

» Vx. (even(x) V odd(x)) A Vx. (even(x) < —odd(x))

> XYy (x=y) = () = f(¥)

> Vz.dy. +(z,y) =1

> Vx,y,z. triangle(x, y, z) = length(x) < length(y) + length(z)
Note:

> even, odd, triangle, and < are identifiers representing
arbitrary predicates

» f, +, and length are just identifiers representing some
arbitrary functions

> 1 is just an identifier representing some arbitrary constant
» Xx <y + zis infix notation for < (x,+(y, z))



First Order Logic

Semantics

Definition (Model)

A model M of a formula F comprises

» a (non-empty) domain D, and

» an interpretation function assigning meaning to non-logical
symbols in F.



First Order Logic

Semantics

Definition (Model)

A model M of a formula F comprises

» a (non-empty) domain D, and

» an interpretation function assigning meaning to non-logical
symbols in F.

For example:
» If cis a constant, then cM € D
» If f is a function of arity n, then fM € D" — D
> If Pis a predicate of arity n, then PM € D" — B
> Note: (f(tr, ..., th))M = MM, ... tM)



First Order Logic

Semantics

M = F if and only if F is true in M

M = R(ty, ..., t;) if and only if RM (M, ... M)

M = (4 = ) if and only if (tM = ")

M = ~Fifandonlyifnot M = F
MEFAGifandonlyif M EFand M E G
MEFVvGifandonlyif M= ForM G

ME F= Gifandonlyif M = =FV G

MEF & Gifandonlyif M = (F= G)A(G= F)

vVvvyVvVYVvyyypy



First Oder Logic Semantics: Example

F: p(f(x,y)z) = p(y,9(z, x))

D=7Z={...,—-2,-1,0,1,2,...}
fM :+’gM :_apM =>
Therefore,

FM=(x+y)>z=(y>z—x)

» The variables x, y, and z are free in F



First Order Logic

Semantics

» We can’t determine the truth of a formula unless all variables
are quantified
» Un-quantified variables are free
» Formulas in which all variables are quantified are closed
» Closed formulas have no free variables
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> if and only if for every m € D, if we add a constant ¢ to our
language and extend M such that c™ = m, then M |= F(c)



First Order Logic: Quantification

Semantics

M = Vx.F(x)

> if and only if for every m € D, if we add a constant ¢ to our
language and extend M such that c™ = m, then M |= F(c)

» This trick is necessary since we can'’t refer to m directly



First Order Logic: Quantification

Semantics

M = Vx.F(x)

> if and only if for every m € D, if we add a constant ¢ to our
language and extend M such that c™ = m, then M |= F(c)

» This trick is necessary since we can'’t refer to m directly
> M = 3x. F(x)if and only if M |= =Vx. —F(x)
» Whether a closed formula F is true depends solely on D and
the denotations of the non-logical symbols in F



Closed Formula: Example

Let D = Q, the set of rational numbers, and let xM be
multiplication

Vx.dy.2xy=x

> Let M; be M augmented with cM' = v, v € Q
> Let My be M, augmented with ¢z = ¥



Closed Formula: Example

Let D = Q, the set of rational numbers, and let xM be
multiplication
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> Let M; be M augmented with cM' = v, v € Q
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Closed Formula: Example

Let D = Q, the set of rational numbers, and let xM be
multiplication

Vx.dy.2xy=x

> Let M; be M augmented with cM' = v, v € Q

> Let M, be M, augmented with a2 = £

» Then M =2xd=c¢

» Therefore M1 =3dy.2xy=c

» Therefore M |=Vx.3dy.2 x y = x (since v € Q is arbitrary)
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Satisfiability and Validity

> F is satisfiable iff there exists M s.t. M = F
» Fis valid iff for all M it holds that M = F

| Fis valid iff =F is unsatisfiable |

Example: F : (Vx.P(x)) < (—3x.=P(x))
Suppose not. Then there is M such that

M £ (VX .P(x)) < (—3x .—P(x))
Case 1:

M E=Vx.P(x) (assumption)
M —3Ix . —P(x) (assumption)

1
2
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Satisfiability and Validity

> F is satisfiable iff there exists M s.t. M = F
» Fis valid iff for all M it holds that M = F

| Fis valid iff =F is unsatisfiable |

Example: F : (Vx.P(x)) < (—3x.=P(x))
Suppose not. Then there is M such that

M £ (VX .P(x)) < (—3x .—P(x))

Case 1:

1 MEVYx.P(x) (assumption)
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Satisfiability and Validity

> F is satisfiable iff there exists M s.t. M = F
» Fis valid iff for all M it holds that M = F

| Fis valid iff =F is unsatisfiable |

Example: F : (Vx.P(x)) < (—3x.=P(x))
Suppose not. Then there is M such that

M £ (VX .P(x)) < (—3x .—P(x))

Case 1:

1 MEVYx.P(x) (assumption)
M = —3x . —P(x) (assumption)
M E 3Ix . =P(x) (2 and )
MuU{cM = v} =-P(c) (3and3forsome v e D)
Mu{cM = v} =EP(c) (1andV)

a0

4 & 5 are contradictory.
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Suppose not. Then there is M such that

M (Vx .P(x)) < (—3x .= P(x))
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Suppose not. Then there is M such that
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1 M EVx.P(x) (assumption)
2 M -3x.-P(x) (assumption)

3 Mu{cM— v} PE) (1andV,forsome v € D)



Validity: Example continued

Suppose not. Then there is M such that

M (Vx .P(x)) < (—=3x .- P(x))

Case 2:
1 M EVx.P(x)
2 ME-3x.-P(x)
3 Mu{cM— v} £ P(c)
4 M= 3Ix.—-P(x)

assumption)
assumption)
1 andV, for some v € D)

(
(
(
(2 and —)



Validity: Example continued

Suppose not. Then there is M such that
M (Vx .P(x)) < (—3x .= P(x))

Case 2:
1 M EVx.P(x) (assumption)
M E —3x.=P(x) (assumption)
MuU{cM = v} £ P(c) (1andV, for some v € D)
M = 3x . =P(x) (2and —)
MuU{cM = v} £ -P(c) (4and3)

g~ WN



Validity: Example continued

Suppose not. Then there is M such that

M (Vx .P(x)) < (—=3x .- P(x))

Case 2:

1

(26 IE ~ NV BN \V]

M = Vx . P(x)

M E —3x.=P(x)

MU {cM = v} I~ P(c)
M = 3x . =P(x)

MU {cM = v} £ -P(c)
MU{cM = v} = P(c)

(assumption)
(assumption)

(1 and V, for some v € D)
(2 and —)

(4 and J)

(5and —)



Validity: Example continued

Suppose not. Then there is M such that

M (Vx .P(x)) < (—=3x .- P(x))

Case 2:

1 M EVx.P(x)
M E —3x.=P(x)
MU {cM = v} I~ P(c)
M = 3x . =P(x)
MU {cM = v} £ -P(c)
MU{cM = v} = P(c)

(26 IE ~ NV BN \V]

3 & 6 are contradictory.

(assumption)
(assumption)

(1 and V, for some v € D)
(2 and —)

(4 and J)

(5and —)
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Invalid Formula: Example

Show that the following formula is not valid:
(Vx.P(x,x)) = (3x.Yy.P(x,y))
Find model such M such that

M E = ((Vx. P(x,x)) = (3x.Vy.P(x,y)))

M E= (Vx.P(x,x)) AN =(3Ix .Yy .P(x,y))

Choose:
D = {0,1}
PM = {(070)7(171)}
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First Order Logic: Safe Substitution

Example:
scope of Vx
——t—
(vx. P(x_, ¥y )= Q(f( y ), x)
bound  free free free
Substitution:

o {x = g(x),y = f(x), Q(f(y), x) = 3Ix. H(x, y)}

» Rename bound variable using fresh variable z:
(Vz.P(z,y)) = Q(f(y), x)

» Perform substitution:
(Vz.P(z,f(x))) = 3Ix.H(x,y)

> No free variable becomes bound during substitution!



First Order Logic: Substitution

Let o be the substitution
{F‘] —> G‘],...,Fn’_) Gn}

suchthat F; = G;for1 <i<n.

If Fo is a safe substitution, then F = Fo
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Substitution allows us to define formula schemes:

(Vx.F) < (-3x.—F)

Here, F is a place holder!
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Formula Scheme

Substitution allows us to define formula schemes:

(Vx.F) < (-3x.—F)

Here, F is a place holder!
Formula scheme with side condition:

(Vx.F) & F provided x not free in F

A formula scheme is valid
if and only if
it is valid for any FOL formula (obeying the side conditions)



First Order Logic: Inference Rules

» Inference rules provide means to reason in FOL:

premises
conclusion

» For instance, for arbitrary formulas P, Q, R:

=P P P Q PAQ PAQ P

P -—P PAQ P QNP PV Q

PvQ —-PVR P& Q Q P=Q Q=P
QVR P PsQ




First Order Logic: Derivations

» For instance:

Vx.P(x)V=VYy.Q(y)  Vy.Q(y)
Vx . P(x)

» A derivation comprises a number of inference steps, e.g.:

—-—=P -RAQ
P Q
PAQ

» We write P Q if Q can be derived from P



First Order Logic: Derivations

> We can also use derivations in premises:

PFQ PF-Q
-P

(reductio ad absurdum)

P Q
P=Q

PVvQ PFR QFR
R

(Deduction theorem)

(Case analysis)
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First Order Logic: Substitution

» We use P[t/x] to denote the replacement of all free
occurrences of x in P by term t. Then

Vx.P

_ universal instantiation
Pl )

if no free variable of t becomes bound during the substitution

» For instance:
Vx . even(x) V odd(x)

even(1) V odd(1)

> But not:
Vx.dy. x=y

dy.y+1=y




First Order Logic: Substitution

» Substitutions can also occur in the premise:

Plc/x]

= P (existential generalization)

where c is a constant and x must not occur free in P[c/x]
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First Order Logic: Axioms

» An axiomis an inference rule without a premise:

P

(We will omit the bar if it's clear that P is an axiom)
» Axioms denote tautologies in a given theory, e.g.:

Vx,y. (x+y)=(y+x)
Vx . even(x) V odd(x)
Vx.prime(x) < ((x > DA Ai,j.(x=i-)AN({H>1)A(>1)))

» Can use axioms to determine the denotation of non-logical
symbols



Axiom for Arrays

Array operations:
> select(a,i)
» store(a,i,v)

(i = j) A select(store(a, i, v),j) = v
Vi j,a,v. v
(i = j) A select(store(a, i, v), j) = select(a, )



Axioms for Peano Arithmetic

Predicates and Functions:
> N(x)denotes x € N
» “Syntactic sugar”: (Vx € N. F) short for (¥x. N(x) = F)

> S(x) denotes successor of x (i.e., x + 1)



Axioms for Peano Arithmetic

Predicates and Functions:

> N(x)denotes x € N
» “Syntactic sugar”: (Vx € N. F) short for (¥x. N(x) = F)

> S(x) denotes successor of x (i.e., x + 1)

Vx € N.0 # S(x)

Vx,y € N.(S(x) = S(y)) = (x =)
VxeN.x+0=x

Vx,y e N.(x+ S(y)) = S(x +y)
VxeN.0O-x=0

Vx,y e N.(x-S(y))=x-y+x



Peano Arithmetic: Natural Induction

» Quantification over sets of numbers impossible in FOL!
» Induction requires (countably) infinitely many axioms
Induction schema: For each formula F

YY0,-..,¥n € N.

F(Oy}/Ow.an)
A

Vx € N. (F(X, Yo, ., ¥n) = F(S(X), Yo, -, ¥n))
=Vx e N.F(X,¥%0,---,¥n)



Ordered Semi-rings

Vx,y,zeN.(x+y)+z=x+(y+2)
VX, yeN.x+y=y+x
Vx,y,zeN.(x-y)-z=x-(y-2)

VX, yeN.x-y=y-x
Vx,y,zeN.x-(y+2z)=(x-y)+(x-2)
VXeEN.X+0=xAx-0=0
VxeN.x-1=x

VX, Y, ZzeN.X<yAy<z=x<z

Vx € N.=(x < x)

Vx,y e N.(x <y)V(y <x)
Vx,y,zeN.(x<y)=(x+z<y+2)
Vx,y,zeN.(0<zAx<y)=(x-z<y-2)
Vx,yeN.(x<y)=3FzeN.x+z=y
O0<1AVXEN.(x>0)=(x>1)
VxeN.x>0

Addition associative
Addition commutative
Multiplication associative
Multiplication commutative
Distributive law

Identity for addition
Identity for multiplication
Transitivity of <

< is irreflexive

Total order



Example Revisited

Vx.(x+1)>x

» Valid in the theory of arithmetic
» Not valid in the theory of bit-vectors
» Undefined in the C++ language



Formal Specifications

» First-Order Logic allows for unambiguous specifications.
» Recall coverage:

» Can axiomatize defs(x), p-use(x), c-use(x), path(p, ¢, ¢'),
def-clear(p, x), dpu(¥¢, x), dcu(¢,x), ...
» Paths sufficient to achieve all-c-uses:

VX. VL € defs(x). V€' € deu(f,x) . 3p € Paths.
path(p, £, ¢') A def-clear(p, x)



» Logic enables unambiguous specifications
» Next time: how to reason about programs!



