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What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ We learned how to test programs.
▶ We generated test cases.



Assertion Violations

How do we know what (a[i] > pi) means?

▶ Programming Language Semantics

heap

stack

a = { 1.0, 3.1, 5.2 }

pc int i = 1;

static data: pi = 3.14

code: assert(a[i]>pi)
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Use Formal Languages to Specify Semantics

Enables us to. . .
▶ unambiguously specify meaning of language constructs
▶ formally reason about correctness of

▶ program transformations/optimisations
▶ code generation
▶ program correctness



Which Formal Languages Do You Already Know?

▶ Propositional Logic (PL, “Aussagenlogik”)
▶ First-Order Logic (FOL, “Prädikatenlogik”)

This lecture:

Syntax & Semantics of PL & FOL

(Some of the following slides borrowed with permission from Aaron Bradley)
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Syntax of Propositional Logic

formula ::= formula ∧ formula | formula ∨ formula |
formula ⇒ formula | formula ⇔ formula |
¬formula | (formula) | atom

atom ::= identifier | constant
constant ::= true | false
identifier ∈ {P,Q,R, . . .}

Formulas built recursively from syntax:
▶ formula ::= ⇒

Can also be parsed recursively:
▶ formula ::=

▶ Syntax only specifies structure
▶ Formula adheres to syntax ⇔ Formula is well-formed
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Semantics (Meaning) of Propositional Logic

Syntax does not tell us how to interpret formulas

Propositional Identifiers:
▶ P, Q, R, . . .
▶ represent “propositions”:

▶ “it is raining”
▶ “the least significant bit of x is 1”

▶ We ignore the underlying meaning of propositions
▶ Propositions take the values true or false
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Propositional Logic: Interpretations

An interpretation I assigns truth values to identifiers

I = {P 7→ true,Q 7→ false,R 7→ true, . . .}

Meaning of Boolean operations is defined via truth table:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 ⇒ F2 F1 ⇔ F2

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true



Evaluating Formulas

Evaluation of a formula using a truth table:
P Q P ∧ Q ¬Q true ∨ ¬Q (P ∧ Q) ⇒ (true ∨ ¬Q)

true false false true true true

How many Boolean operations over n propositions are there?
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Inductive Definition of Semantics

I |= F if F evaluates to true under I
I ̸|= F if F evaluates to false under I

Base case
I |= P iff I(P) = true
I ̸|= P iff I(P) = false

Inductive case

I |= ¬F iff I ̸|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 ⇒ F2 iff I ̸|= F1 or I |= F2

I |= F1 ⇔ F2 iff I |= F1 and I |= F2

or I ̸|= F1 and I ̸|= F2



Inductive Definition of Semantics

Given an interpretation I, we can evaluate a formula recursively:
▶ I = {P 7→ true,Q 7→ false}
▶ formula ::= ( P︸︷︷︸

true

∧ Q︸︷︷︸
false

) ⇒ (true ∨ ¬ Q︸︷︷︸
false

)
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Inductive Definition of Semantics
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Satisfiability and Validity

F is satisfiable iff there exists an interpretation I such that I |= F .
F is valid iff for all interpretations I it holds that I |= F .

F is valid iff ¬F is unsatisfiable.

Example:

F : P ∧ Q ⇒ P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F
false false false true true true
false true false false false true
true false false true true true
true true true false true true



Equivalence and Semantic Consequence

F1 and F2 are equivalent (F1 ≡ F2)
if and only if

{I | I |= F1} = {I | I |= F2}

F1 entails F2 (F1 |= F2)
if and only if

{I | I |= F1} ⊆ {I | I |= F2}

≡ and |= are symbols of the meta-language:
F1 ≡ F2 and F1 |= F2 are not formulas!



Equi-satisfiability

Two formulas with different propositional identifiers
▶ have incomparable interpretations
▶ can therefore not be equivalent

F1 and F2 are equi-satisfiable
if and only if

F1 is satisfiable iff F2 is satisfiable

Example: P ∧ Q and R ∧ (R ⇔ (P ∧ Q))
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Data Structures for Representing Formulas

Truth tables are just one (inefficient) way of representing Boolean
functions. Other forms are. . .
▶ Propositional Logic / (Quantified) Boolean Formulas
▶ Negation Normal Form, Conjunctive Normal Form
▶ Polynomials in GF(2)
▶ Boolean Circuits
▶ Binary Decision Trees/Diagrams (BDDs)



Functional Completeness

▶ A Boolean data structure is functionally complete if all
Boolean functions can be expressed in this data structure.

▶ All data structures mentioned above are functionally complete

Which Boolean operators result in a functionally complete logic?
▶ ∨ and ¬, or ∧ and ¬
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Canonicity of Boolean Data Structures

Data structures for F and G are identical
if and only if

F and G are identical

Examples:
▶ Truth tables
▶ (Ordered) Binary Decision Diagrams
▶ Conjunctive Normal Form (with maxterms)
▶ . . .
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Binary Decision Diagrams (Bryant 86)

▶ Store formulas as directed acyclic graphs
▶ Nodes represent variables
▶ Edges represent assignments

▶ Assignments can be derived in O(#variables)
▶ Representation is canonical

▶ if order of variables fixed for all paths in graph



Binary Decision Tree

▶ Encode decisions and outcome in tree
▶ Satisfying assignment can be found efficiently

▶ Wasteful, lot of redundancy
▶ Not much better than truth table

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 0 1 1

0 1

((x1 ∧ x2) ∨ (¬x1 ∧ x3))



Binary Decision Tree: Reductions

▶ Merge leaf nodes
▶ Merge isomorphic subtrees
▶ Remove redundant nodes (introduce don’t cares)

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 0 1 1

0 1

▶ Repeat reductions as long as possible
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Constructing Binary Decision Diagrams

▶ Construction follows structure of formula
▶ B1 and B2 represent F1 and F2

then B1 ⋆ B2 represents F1 ⋆ F2 (where ⋆ ∈ {∧,∨, . . .})
▶ Complexity of B1 ⋆ B2 bounded by |B1| · |B2|



Constructing Binary Decision Diagrams: Restrict

F |x=0 ≡ F [x/0]

x1

x2

x3

0 1

0

1

((x1 ∧ x2) ∨ (¬x1 ∧ x3))

x2=0→

x1

x3

0 1

0

1

(¬x1 ∧ x3)



Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F ≡ (¬x ∧ F [x/0]) ∨ (x ∧ F [x/1])

x1 x1 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?

B2[x1/0]

B1[x1/1]
?

B2[x1/1]
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Constructing BDDs

Combining two BDDs B1 ⋆ B2

▶ Requirement: Same variable order!
▶ Start from root nodes v1 and v2

▶ Case 1: var(v1) = var(v2) = x1

x1 x1 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?

B2[x1/0]

B1[x1/1]
?

B2[x1/1]



Constructing BDDs

Combining two BDDs B1 ⋆ B2

▶ Case 2: var(v1) ̸= var(v2)
▶ var(v1) = x1, var(v2) = x2
▶ x1 precedes x2 in variable order
▶ Therefore, x1 does not occur in B2!

x1 x2 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?
B2

B1[x1/1]
?
B2



Constructing BDDs

Combining two BDDs B1 ⋆ B2

▶ Case 3: v1 and v2 are terminal nodes 1 or 0

B1 ⋆ B2 ≡ val(v1) ⋆ val(v1)

0 ⋆ 1 → 0 ⋆ 1



Constructing BDDs: Example

x1

x2x2

0 1

0 1

B1 : x1 ⇔ x2

∨

x2

0 1

1 0

B2 : ¬x2



Constructing BDDs: Example

x1

B1 ? B2

B1[x1/0]
∨
B2

B1[x1/1]
∨
B2



Constructing BDDs: Example

x1

x2x2

0 1

0 1

B1

→

x2

0 1

1 0

B1|x1=0



Constructing BDDs: Example

x2

0 1

1 0

B1|x1=0

∨

x2

0 1

1 0

B2

=

x2

0 ∨ 0 1 ∨ 1

1 0

B1|x1=0 ∨ B2
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Constructing BDDs: Example

x2

0 1

0 1

B1|x1=1

∨

x2

0 1

1 0

B2

= 0 ∨ 1

B1|x1=1 ∨ B2



Constructing BDDs: Example

x1

x2

0 1

1

0

x1 ∨ (¬x1 ∨ ¬x2)



Constructing BDDs: Variable Order

(x1 ⇔ y1) ∧ . . . ∧ (xn ⇔ yn)

▶ x1, y1, . . . , xn, yn: size 3n + 2
▶ x1, x2, . . . , y1, y2, . . . : size 3 · 2n − 1

▶ There are functions s.t. number of nodes can’t be polynomial
▶ For instance: Multiplication of bit-vectors



Constructing BDDs: Complexity

▶ Quantification:

∀x .F ≡ F [x/0] ∧ F [x/1]

∃x .F ≡ F [x/0] ∨ F [x/1]

▶ Furthermore: If F ≡ true then BDD is 1
▶ Follows immediately, because representation is canonical

▶ What does that mean for complexity?

▶ Can solve TQBF, the prototypical PSPACE-complete problem
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Compression of Boolean Data Structures

Remember:
▶ Number of Boolean functions: 22n

Which representation is ”compact”?
▶ No data structure with good average compression

In practice:

QBF > prop. logic > BDDs > Binary Decision Trees > truth tables



Normal Forms: Negation Normal Form

Negations appear in literals only:
formula ::= formula ∧ formula | formula ∨ formula | literal

literal ::= atom | ¬atom
Transformation into NNF:
▶ Eliminate implication and bi-implication

F1 ⇒ F2 ≡ ¬F1 ∨ F2

F1 ⇔ F2 ≡ (F1 ⇒ F2) ∧ (F2 ⇒ F1)

▶ Eliminate (double) negation:

¬¬F ≡ F ¬true ≡ false ¬false ≡ true

▶ “Push” negation inwards:

¬(F1 ∧ F2) ≡ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ≡ ¬F1 ∧ ¬F2

}
De Morgan’s Law



Negation Normal Form: Example

¬(P ⇒ ¬(P ∧ Q))

¬(¬P ∨ ¬(P ∧ Q)) ⇒ to ∨
¬¬P ∧ ¬¬(P ∧ Q) De Morgan
P ∧ P ∧ Q ¬¬
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Conjunctive Normal Form

formula ::= formula ∧ formula | (clause)
clause ::= literal ∨ clause | literal
literal ::= atom | ¬atom

▶ CNF formula: A conjunction of clauses (product of sums)∧
i

∨
j

ℓi,j , ℓi,j ∈ {P,¬P |P ∈ Identifiers}

e.g.,
¬P ∧ (P1 ∨ ¬Q) ∧ (¬P ∨ Q) ∧ P

▶ Remember:
▶

∨
ℓ∈∅ ℓ ≡ false (we use □ to denote the empty clause)

▶ Alternative (more compact) notation:

(P) (P Q) (P Q) (P)



Tseitin Encoding

▶ If we use propositional logic rewrite rules:

(P ∧Q)∨ (R∧S) ≡ (P ∨R)∧ (P ∨S)∧ (Q∨R)∧ (Q∨S)

Blowup if applied repeatedly!
▶ Idea: Construct satisfiability-equivalent formula
▶ Introduce a fresh symbol for each subterm:

(P ∧ Q) ∨ (R ∧ S)
−→

(O1 ∨ O2) ∧ (O1 ⇔ (P ∧ Q)) ∧ (O2 ⇔ (R ∧ S))

▶ But this is still not CNF!



Tseitin Encoding

(O1 ∨ O2) ∧ (O1 ⇔ (P ∧ Q)) ∧ (O2 ⇔ (R ∧ S))

▶ (O1 ⇔ (P ∧ Q)) ≡

(O1 ⇒ P) ∧ (O1 ⇒ Q) ∧ ((P ∧ Q) ⇒ O1) ≡

(P ∨ ¬O1) ∧ (Q ∨ ¬O1) ∧ (O ∨ ¬P ∨ ¬Q)

▶ Constant blowup
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Tseitin Encoding

Negation:
P ⇔ ¬Q ≡ (P ⇒ ¬Q) ∧ (¬Q ⇒ P)

≡ (¬P ∨ ¬Q) ∧ (Q ∨ P)

Disjunction:
P ⇔ (Q ∨ R) ≡ (Q ⇒ P) ∧ (R ⇒ P) ∧ (P ⇒ (Q ∨ R))

≡ (¬Q ∨ P) ∧ (¬R ∨ P) ∧ (¬P ∨ Q ∨ R)

Conjunction:
P ⇔ (Q ∧ R) ≡ (P ⇒ Q) ∧ (P ⇒ R) ∧ ((Q ∧ R) ⇒ P)

≡ (¬P ∨ Q) ∧ (¬P ∨ R) ∧ (¬(Q ∧ R) ∨ P)
≡ (¬P ∨ Q) ∧ (¬P ∨ R) ∧ (¬Q ∨ ¬R ∨ P)



Tseitin Encoding

Equivalence:
P ⇔ (Q ⇔ R)

≡ (P ⇒ (Q ⇔ R)) ∧ ((Q ⇔ R) ⇒ P)
≡ (P ⇒ ((Q ⇒ R) ∧ (R ⇒ Q)) ∧ ((Q ⇔ R) ⇒ P)
≡ (P ⇒ (Q ⇒ R)) ∧ (P ⇒ (R ⇒ Q)) ∧ ((Q ⇔ R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ ((Q ⇔ R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ (((Q ∧ R) ∨ (¬Q ∧ ¬R)) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ ((Q ∧ R) ⇒ P) ∧ ((¬Q ∧ ¬R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ (¬Q ∨ ¬R ∨ P) ∧ (Q ∨ R ∨ P)

▶ Blowup by constant factor of 4
▶ Resulting formula satisfiable iff initial formula is



Tseitin Encoding

Equivalence:
P ⇔ (Q ⇔ R)

≡ (P ⇒ (Q ⇔ R)) ∧ ((Q ⇔ R) ⇒ P)
≡ (P ⇒ ((Q ⇒ R) ∧ (R ⇒ Q)) ∧ ((Q ⇔ R) ⇒ P)
≡ (P ⇒ (Q ⇒ R)) ∧ (P ⇒ (R ⇒ Q)) ∧ ((Q ⇔ R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ ((Q ⇔ R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ (((Q ∧ R) ∨ (¬Q ∧ ¬R)) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ ((Q ∧ R) ⇒ P) ∧ ((¬Q ∧ ¬R) ⇒ P)
≡ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R ∨ Q) ∧ (¬Q ∨ ¬R ∨ P) ∧ (Q ∨ R ∨ P)

▶ Blowup by constant factor of 4
▶ Resulting formula satisfiable iff initial formula is



Expressing Bit-Vector Arithmetic in PL

At first sight, PL is not very expressive. . .
▶ Remember: C integers are bit-vectors dn−1 . . . d0 (di ∈ B,

0 ≤ i < n)
▶ n is width of bit-vector.
▶ Unsigned:

dn−1 dn−2 . . . d1 d0

least significantmost significant

▶ Signed:

dn−1 dn−2 . . . d1 d0

least significantmost significant

sign



Bit-Vectors: Interpretations

Interpretation function which maps dn−1 . . . d0 to finite sub-domain
of N0 and Z:

(dn−1 . . . d0)
M def

=

{ ∑n−1
i=0 di · 2i unsigned

−2n−1 · dn−1 +
∑n−2

i=0 di · 2i signed

▶ Accordingly, =, ̸=, ≥, and > take standard meaning in Z.



Encoding Bit-Vector Operations

Equality x = y is straight-forward:

n−1∧
i=0

(xi ⇔ yi)



Encoding Bit-Vector Operations

z = x & y . . .

n−1∧
i=0

(zi ⇔ (xi ∧ yi))

z = x | y . . .

n−1∧
i=0

(zi ⇔ (xi ∨ yi))

z = x⊕ y . . .

n−1∧
i=0

zi ⇔ ((xi ∨ yi) ∧ (¬xi ∨ ¬yi))



Encoding Bit-Vector Operations

Shift operations implemented by means of a cascade of parallel
multiplexers known as barrel shifter.

0 0

x3
x2
x1
x0

0 1 y1

0 1

0

z3
z2
z1
z0

y0

4-bit barrel shifter imple-
menting z = x ≪ y

i th stage performs shift by
2i positions if yi is true.



Encoding Bit-Vector Operations

s = a ± b

FA

a3 b3

o s3

FA

a2 b2

s2

FA

a1 b1

s1

FA

a0 b0

s0

m

ciba

co s



Encoding Bit-Vector Operations

▶ x < y can be expressed using of subtraction
▶ If x < y, then x− y yields overflow

(can be detected by checking the signals co
▶ Unsigned operands, overflow if co = true.
▶ Signed operands, (co ⊕ co−1) indicates overflow



Encoding Bit-Vector Operations

▶ Multiplication uses shift-and-add circuit
▶ i.e., multiplication of 2-bit parameters x and y ([x1 x0] and

[y1 y0]) is

[z2 z1 z0] = ([0 x1 x0]&[y0 y0 y0]) + (([0 x1 x0] ≪ 1)&[y1 y1 y1]) .



Encoding Bit-Vector Operations

▶ Integer division z = x
y

(for y ̸= 0)

(z · y+ r = x) ∧ (r < y)

▶ where r denotes the remainder



Restrictions of Propositional Logic

▶ Sufficient to encode bit-vector operations
▶ What about infinite domains

▶ N, Z, R, . . .
▶ data-structures like arrays, maps, lists?



First Order Logic

Syntax

formula ::= formula ∧ formula | formula ∨ formula |
formula ⇒ formula | formula ⇔ formula |
¬formula | (formula) |
predicate (term,. . . ,term) | term = term
∀ variable . formula | ∃ variable . formula

term ::= variable | constant | function (term,. . . term)

▶ variables, functions, predicates, and constants are
represented by unique identifiers

▶ each function and predicate has a fixed arity
▶ ∀, ∃, ∧, ∨, ⇒, ⇔, ¬, and variables are logical symbols
▶ predicates, constants, functions are non-logical symbols



First Order Logic: Quantifiers

∀x . p(f (x), x) ⇒ (∃y . p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

) ∧ q(x , f (x))

︸ ︷︷ ︸
F

▶ The scope of ∀x is F .
▶ The scope of ∃y is G.
▶ x and y are bound.
▶ The formula reads:

“For all x , if p(f (x), x) then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”



First Order Logic

Examples

▶ ∀x . (even(x) ∨ odd(x)) ∧ ∀x . (even(x) ⇔ ¬ odd(x))
▶ ∀x . ∀y . (x = y) ⇒ (f (x) = f (y))
▶ ∀z .∃y . + (z, y) = 1
▶ ∀x , y , z . triangle(x , y , z) ⇒ length(x) < length(y)+ length(z)

Note:
▶ even, odd, triangle, and < are identifiers representing

arbitrary predicates
▶ f , +, and length are just identifiers representing some

arbitrary functions
▶ 1 is just an identifier representing some arbitrary constant
▶ x < y + z is infix notation for < (x ,+(y , z))



First Order Logic

Semantics

Definition (Model)

A model M of a formula F comprises
▶ a (non-empty) domain D, and
▶ an interpretation function assigning meaning to non-logical

symbols in F .

For example:
▶ If c is a constant, then cM ∈ D
▶ If f is a function of arity n, then fM ∈ Dn → D
▶ If P is a predicate of arity n, then PM ∈ Dn → B
▶ Note: (f (t1, . . . , tn))M = fM(tM1 , . . . , tMn )
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First Order Logic

Semantics

M |= F if and only if F is true in M

▶ M |= R(t1, . . . , tn) if and only if RM(tM1 , . . . tMn )

▶ M |= (t1 = t2) if and only if (tM1 = tM2 )

▶ M |= ¬F if and only if not M |= F
▶ M |= F ∧ G if and only if M |= F and M |= G
▶ M |= F ∨ G if and only if M |= F or M |= G
▶ M |= F ⇒ G if and only if M |= ¬F ∨ G
▶ M |= F ⇔ G if and only if M |= (F ⇒ G) ∧ (G ⇒ F )



First Oder Logic Semantics: Example

F : p(f (x , y)z) ⇒ p(y , g(z, x))

D = Z = {. . . ,−2,−1, 0, 1, 2, . . .}
fM = +, gM = −, pM = >

Therefore,
FM = (x + y) > z ⇒ (y > z − x)

▶ The variables x , y , and z are free in F



First Order Logic

Semantics

▶ We can’t determine the truth of a formula unless all variables
are quantified

▶ Un-quantified variables are free
▶ Formulas in which all variables are quantified are closed
▶ Closed formulas have no free variables



First Order Logic: Quantification

Semantics

M |= ∀x .F (x)

▶ if and only if for every m ∈ D, if we add a constant c to our
language and extend M such that cM = m, then M |= F (c)

▶ This trick is necessary since we can’t refer to m directly

▶ M |= ∃x .F (x) if and only if M |= ¬∀x .¬F (x)
▶ Whether a closed formula F is true depends solely on D and

the denotations of the non-logical symbols in F
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Closed Formula: Example

Let D = Q, the set of rational numbers, and let ×M be
multiplication

∀x . ∃y . 2 × y = x

▶ Let M1 be M augmented with cM1 = v , v ∈ Q
▶ Let M2 be M1 augmented with dM2 = v

2

▶ Then M2 |= 2 × d = c
▶ Therefore M1 |= ∃y . 2 × y = c
▶ Therefore M |= ∀x . ∃y . 2 × y = x (since v ∈ Q is arbitrary)
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Satisfiability and Validity

▶ F is satisfiable iff there exists M s.t. M |= F
▶ F is valid iff for all M it holds that M |= F

F is valid iff ¬F is unsatisfiable

Example: F : (∀x .P(x)) ⇔ (¬∃x .¬P(x))
Suppose not. Then there is M such that

M ̸|= (∀x .P(x)) ⇔ (¬∃x .¬P(x))

Case 1:
1 M |= ∀x .P(x) (assumption)
2 M ̸|= ¬∃x .¬P(x) (assumption)
3 M |= ∃x .¬P(x) (2 and ¬)
4 M∪ {cM 7→ v} |= ¬P(c) (3 and ∃ for some v ∈ D)
5 M∪ {cM 7→ v} |= P(c) (1 and ∀)

4 & 5 are contradictory.
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Validity: Example continued

Suppose not. Then there is M such that

M ̸|= (∀x .P(x)) ⇔ (¬∃x .¬P(x))

Case 2:

1 M ̸|= ∀x .P(x) (assumption)
2 M |= ¬∃x .¬P(x) (assumption)
3 M∪ {cM 7→ v} ̸|= P(c) (1 and ∀, for some v ∈ D)
4 M ̸|= ∃x .¬P(x) (2 and ¬)
5 M∪ {cM 7→ v} ̸|= ¬P(c) (4 and ∃)
6 M∪ {cM 7→ v} |= P(c) (5 and ¬)

3 & 6 are contradictory.
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Invalid Formula: Example

Show that the following formula is not valid:

(∀x .P(x , x)) ⇒ (∃x . ∀y .P(x , y))

Find model such M such that

M |= ¬ ((∀x .P(x , x)) ⇒ (∃x . ∀y .P(x , y)))

i.e.,
M |= (∀x .P(x , x)) ∧ ¬(∃x .∀y .P(x , y))

Choose:
D = {0, 1}
PM = {(0, 0), (1, 1)}
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First Order Logic: Safe Substitution

Example:

(∀x .

scope of ∀x︷ ︸︸ ︷
P( x︸︷︷︸

bound

, y︸︷︷︸
free

)) ⇒ Q(f ( y︸︷︷︸
free

), x︸︷︷︸
free

)

Substitution:

σ : {x 7→ g(x), y 7→ f (x),Q(f (y), x) 7→ ∃x .H(x , y)}

▶ Rename bound variable using fresh variable z:

(∀z .P(z, y)) ⇒ Q(f (y), x)

▶ Perform substitution:

(∀z .P(z, f (x))) ⇒ ∃x .H(x , y)

▶ No free variable becomes bound during substitution!
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First Order Logic: Substitution

Let σ be the substitution

{F1 7→ G1, . . . ,Fn 7→ Gn}

such that Fi ≡ Gi for 1 ≤ i ≤ n.

If Fσ is a safe substitution, then F ≡ Fσ



Formula Scheme

Substitution allows us to define formula schemes:

(∀x .F ) ⇔ (¬∃x .¬F )

Here, F is a place holder!

Formula scheme with side condition:

(∀x .F ) ⇔ F provided x not free in F

A formula scheme is valid
if and only if

it is valid for any FOL formula (obeying the side conditions)



Formula Scheme

Substitution allows us to define formula schemes:

(∀x .F ) ⇔ (¬∃x .¬F )

Here, F is a place holder!
Formula scheme with side condition:

(∀x .F ) ⇔ F provided x not free in F

A formula scheme is valid
if and only if

it is valid for any FOL formula (obeying the side conditions)



Formula Scheme

Substitution allows us to define formula schemes:

(∀x .F ) ⇔ (¬∃x .¬F )

Here, F is a place holder!
Formula scheme with side condition:

(∀x .F ) ⇔ F provided x not free in F
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First Order Logic: Inference Rules

▶ Inference rules provide means to reason in FOL:

premises
conclusion

▶ For instance, for arbitrary formulas P, Q, R:

¬¬P
P

P
¬¬P

P Q
P ∧ Q

P ∧ Q
P

P ∧ Q
Q ∧ P

P
P ∨ Q

P ∨ Q ¬P ∨ R
Q ∨ R

P ⇔ Q Q
P

P ⇒ Q Q ⇒ P
P ⇔ Q



First Order Logic: Derivations

▶ For instance:

∀x .P(x) ∨ ¬∀y .Q(y) ∀y .Q(y)
∀x .P(x)

▶ A derivation comprises a number of inference steps, e.g.:

¬¬P
P

¬R ∧ Q
Q

P ∧ Q

▶ We write P ⊢ Q if Q can be derived from P



First Order Logic: Derivations

▶ We can also use derivations in premises:

P ⊢ Q P ⊢ ¬Q
¬P

(reductio ad absurdum)

P ⊢ Q
P ⇒ Q

(Deduction theorem)

P ∨ Q P ⊢ R Q ⊢ R
R

(Case analysis)



First Order Logic: Substitution

▶ We use P[t/x ] to denote the replacement of all free
occurrences of x in P by term t . Then

∀x .P
P[t/x ]

(universal instantiation)

if no free variable of t becomes bound during the substitution

▶ For instance:
∀x . even(x) ∨ odd(x)
even(1) ∨ odd(1)

▶ But not:
∀x .∃y . x = y
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First Order Logic: Substitution

▶ We use P[t/x ] to denote the replacement of all free
occurrences of x in P by term t . Then

∀x .P
P[t/x ]

(universal instantiation)

if no free variable of t becomes bound during the substitution
▶ For instance:

∀x . even(x) ∨ odd(x)
even(1) ∨ odd(1)

▶ But not:
∀x . ∃y . x = y
∃y . y + 1 = y



First Order Logic: Substitution

▶ Substitutions can also occur in the premise:

P[c/x ]
∃x .P

(existential generalization)

where c is a constant and x must not occur free in P[c/x ]



First Order Logic: Axioms

▶ An axiom is an inference rule without a premise:

P

(We will omit the bar if it’s clear that P is an axiom)

▶ Axioms denote tautologies in a given theory, e.g.:

∀x , y . (x + y) = (y + x)

∀x . even(x) ∨ odd(x)

∀x . prime(x) ⇔ ((x > 1)∧ ̸ ∃i, j .(x = i · j) ∧ (i > 1) ∧ (j > 1)))

▶ Can use axioms to determine the denotation of non-logical
symbols
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Axiom for Arrays

Array operations:
▶ select(a,i)
▶ store(a,i,v)

∀i, j, a, v .

 (i = j) ∧ select(store(a, i, v), j) = v
∨

¬(i = j) ∧ select(store(a, i, v), j) = select(a, j)





Axioms for Peano Arithmetic

Predicates and Functions:
▶ N(x) denotes x ∈ N

▶ “Syntactic sugar”: (∀x ∈ N .F ) short for (∀x .N(x) ⇒ F )

▶ S(x) denotes successor of x (i.e., x + 1)

1. ∀x ∈ N . 0 ̸= S(x)

2. ∀x , y ∈ N . (S(x) = S(y)) ⇒ (x = y)

3. ∀x ∈ N . x + 0 = x

4. ∀x , y ∈ N . (x + S(y)) = S(x + y)

5. ∀x ∈ N . 0 · x = 0

6. ∀x , y ∈ N . (x · S(y)) = x · y + x
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Peano Arithmetic: Natural Induction

▶ Quantification over sets of numbers impossible in FOL!
▶ Induction requires (countably) infinitely many axioms

Induction schema: For each formula F

∀y0, . . . , yn ∈ N . F (0, y0, . . . , yn)
∧

∀x ∈ N . (F (x , y0, . . . , yn) ⇒ F (S(x), y0, . . . , yn))


⇒ ∀x ∈ N .F (x , y0, . . . , yn)



Ordered Semi-rings

∀x , y , z ∈ N . (x + y) + z = x + (y + z) Addition associative
∀x , y ∈ N . x + y = y + x Addition commutative
∀x , y , z ∈ N . (x · y) · z = x · (y · z) Multiplication associative
∀x , y ∈ N . x · y = y · x Multiplication commutative
∀x , y , z ∈ N . x · (y + z) = (x · y) + (x · z) Distributive law
∀x ∈ N . x + 0 = x ∧ x · 0 = 0 Identity for addition
∀x ∈ N . x · 1 = x Identity for multiplication
∀x , y , z ∈ N . x < y ∧ y < z ⇒ x < z Transitivity of <
∀x ∈ N .¬(x < x) < is irreflexive
∀x , y ∈ N . (x < y) ∨ (y < x) Total order
∀x , y , z ∈ N . (x < y) ⇒ (x + z < y + z)
∀x , y , z ∈ N . (0 < z ∧ x < y) ⇒ (x · z < y · z)
∀x , y ∈ N . (x < y) ⇒ ∃z ∈ N . x + z = y
0 < 1 ∧ ∀x ∈ N . (x > 0) ⇒ (x ≥ 1)
∀x ∈ N . x ≥ 0



Example Revisited

∀x . (x + 1) > x

▶ Valid in the theory of arithmetic
▶ Not valid in the theory of bit-vectors
▶ Undefined in the C++ language



Formal Specifications

▶ First-Order Logic allows for unambiguous specifications.
▶ Recall coverage:

▶ Can axiomatize defs(x), p-use(x), c-use(x), path(p, ℓ, ℓ′),
def-clear(p, x), dpu(ℓ, x), dcu(ℓ, x), . . .

▶ Paths sufficient to achieve all-c-uses:

∀x .∀ℓ ∈ defs(x) .∀ℓ′ ∈ dcu(ℓ, x) .∃p ∈ Paths .

path(p, ℓ, ℓ′) ∧ def-clear(p, x)



Summary

▶ Logic enables unambiguous specifications
▶ Next time: how to reason about programs!


