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The language While

EcArith=x|n|E+E|E*E]| ..

Bec Bool::=true | false |E=E|E<E
|IBAB|—B

CcCom:=x:=E|1fBthenCelseC|C;C
| skip | whileBdoC

X is taken from some set of variables Var



Provably Correct Implementation

The formal specification of the semantics of a
programming language allows to argue about the
correctness of a compiler:

 We define an abstract machine (e.g. a stack-based
intermediate language such as Java bytecode).

 We define small-step semantics for this machine.

 We define a translation of While into assembly code
for the abstract machine.

 We prove that code translation and execution on the
abstract machine are semantics preserving for every
command of While.



The Abstract Machine (AM)

inst € Inst ::= PUSH-n | ADD | MULT |

TRUE | FALSE | EQ | LE | AND| NEG
FETCH-x | STORE-x | NOOP
BRANCH(c,c)| LOOP(c,c)

c € Code ::= € | inst:c



AM Configurations

AM has configurations (c,e,s):

e cisthe code (sequence of instructions) to be
executed,

e e s the evaluation stack,
* sis the storage.

We have e € Stack = (Z U T)*,
where T = {true, false}.

For simplicity we assume s € State.

Thus (c,e,s) € Code x Stack x State.



Small-step Semantics of AM

Judgements:
(c,e,s) > (c,es’)

Meaning:
One step of execution transforms a configuration
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(c,e,s) into (c’e’,s’).

Terminal configurations:

A configuration is terminal, if its code component is
the empty sequence: (e,e,s)




Small-step Semantics of AM
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EQ:c,z,:2,:e,5)
LE:c,z,:2,:€,5)
AND:c,t,:t,:e,s)
NEG:c,t:e,s)
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(&, [n]:e)s)

(c,(z1+ 2,):8,8),if 21,2, € Z
(c,(z,* 2,):e,5),if 21,2, € Z
(c,true:e,s)

(c,false:e,s)

(c, (z4=2,):8,s), ifz4,2, € Z
(¢, (2,<2,):8,8), if 21,2, € Z
(c,(tyAto):e,s), ift,t, €T
(c,(—t):es), ifteT



Small-step Semantics of AM

(FETCH-x:c,e,s) >
(STORE-x:c,z:e,s) >
(NOOP:c,e,s) >

o c,:ces), ift=true
(BRANCH(c,,c,):ct:e,s) D{ cice.s), ift=false
(LOOP(c4,c5):c,e,s) > (c;:BRANCH(c,:LOOP(c,,c,),

NOOP:c),e,s)



Example

We assume s(x) = 3.

(PUSH-1:FETCH-x:ADD:STORE-x,¢,s)
> (FETCH-x:ADD:STORE-x,1,s)

~ (ADD:STORE-x,3:1,s)
> (STORE-x,4,s)

> (€,€,5[x > 4])




Non-termination

(LOOP(TRUE,NOOP),¢,s)

> (TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),
NOOP), ¢,s)

> (BRANCH(NOOP:LOOP(TRUE,NOQOP),
NOOP),true,s)

> (NOOP:LOOP(TRUE,NOOP),true,s)
> (LOOP(TRUE,NOOP),true,s)
> ...




Properties of AM

Lemma:

If (c,:c,e,5) =K (€,e’,s") s’ then there exists a
configuration (¢,e”,s””) and natural numbers k; and k,
2 _7)

such that (c,,e,s) —* (¢,e”,s”) and (c,,e",s"”) —* (¢,e’s’)
where k, + k, = k.

Lemma:
If (c,e,s) > (c’,e’s’) then (c,:c,,e; :e,,s) >k (c":c,e":e,s’)

Determinacy:
If (c,e,s) >* =, and (c,e,s) —* y, then~y, =+,




Stuck Configurations

AM has stuck configurations:
e (ADD,true:10,s)

* (NEG,5,s)

These configurations arise because of type
errors! (We could add error states to the
abstract machine configurations...)



The Meaning of Commands

[-] ani: Code — States— States

Ic]| s transforms an initial state s into a final
(aka terminal) state

Definition:

S if <C,€,S> ¥ (e,e,5r>
[clam(s) = 1 otherwise

Determinacy ensures this is proper definition.
1 stands for ‘undefined’.



Translation of While to AM

We define three (total) functions that translate
While commands into AM code:

CA[ ]: Arith — Code
CB| |: Bool — Code
CC[ |: Com — Code

We will define these function in a compositional
manner (i.e. by structural induction).



Translation of Arithmetic Expressions

CA[n] = PUSH-n
CA[X] = FETCH-x
CA[E, +E,] = CA[E,]:CA[E,]:ADD
CA[E, *E,] = CA[E,]:CA[E,:MULT

Translation of Boolean expressions is defined
similarly.



CC|
CC[skip]
CC|
CC|

Translation of Commands

X := EJ

(_:1FC2]]
iTBthenC,else()] =

CClwhile B do (]

CAJE]:STORE-x
NOOP

cclc . J:cclc,]
CB[B]:

BRANCH(CC|C,],CC[C,])

LOOP(CB[B],cc|c])

Note that the definition is compositional.

This guarantees the termination of the
translation!



Example

CCly =1, while—(x=1)do(y:=y *x; x:=x—-1)] =

CClly :=1]:CCJwhile = (x=1)do (y:=y *x; x:=x—1)] =

CA[1]:STORE-y:LOOP(CB[—(x=1)],CC]y :==y * x; x :=x—1]) =

PUSH-1:STORE-y:LOOP(CB([(x=1)]:NEG,CC]y :=y * x|
CClx:=x—-1])=...=

PUSH-1:STORE-y:LOOP(FETCH-x:PUSH-1:EQ:NEG,FETCH-x:

FETCH-y:MULT:STORE-y:FETCH-x:PUSH-1:SUB:STORE-y)



Correctness of Arithmetic Expressions

We show that first translating an arithmetic
expression into code for AM and then executing
gives the same result as the semantics of While.

Lemma

For all arithmetic expressions E we have

(CA[E]€,5) >* (e [E] 5.5)-

Furthermore, all intermediate configurations of this
computation have non-empty evaluation stacks.



(CA[E],€e,5) >* (¢]E]s,s)

Proof By structural induction on the expression E.

Base Case: E is a numeral n. We have CA[E] =
PUSH-n and we get (PUSH-n,¢,s) > (€,[n] s,s).

This solves the case.

Base Case: E is a variable x. We have CA[x] =
FETCH-x and we get (FETCH-x,¢,s) > (€,5(x),s).

This solves the case.




(CA[E],€e,5) >* (¢]E]s,s)

Induction Case:
Suppose E is of the form (E, + E,). (case E; * E, for is analogous)

We have CA[E, +E,] = CA[E,]:CAJE,]:ADD.

From the induction hypothesis we get

(CA[E,],6,5) >* (¢,[E,] s,5) and (CA[E,],e,5) >* (¢,[E,] s,s).

In both cases the intermediate configurations have non-empty

evaluation stacks.
From lemma on slide 11 we get (CA[E,] :CA[E,]:ADD,¢,s) >*
(CA[E,]:ADD, [E,] s,s) >* (ADD,([E,] s):([E,] s),s)-
Furthermore we have (ADD,([E,] s):([E,] s),s) >

(€([Eq] s + [ES] s).s).
Since [E,] s + [E,] s = [E; + E,] s we get the desired result.




An Equivalence Result

Theorem
For all commands C we have [C]; = [CC[C]] am-

Proof
We split the proof into the two lemmas for the cases
(CC[C],€e,5) > (e,e,5) implies (C,s) s’ and e=e

and
(C,s) U s implies (CC[C],¢,5) >* (€,6,5").



(C,s) U's” implies (CC[C],e,8) >* (€65

’

The proof proceeds by rule induction on (C,s) U s".

Case B-ASS:

We assume (x := E,s) U s[x > [E] s].

We have CC[x := E] = CA[E]:STORE-x.

The previous lemma gives us (CA[E],e,s) >* (¢, [E] s,s).

According to the lemma on slide 11 we have
(CA[E]:STORE-x,¢,s) >* (STORE-x, [E] s,s)

> (€€, s[x > [E] s]).

Case B-SKIP: Straightforward.



(C,s) U's” implies (CC[C],e,5) >>* (€,6,5")

Case B-SEQ:

We have CC[C, ; C,] = CC[C,]:CC[C,].

We assume (C, ; C,,s) U s’ has been derived from
(C,,s) Us”and (C,,s") Us.

The induction hy oothe5|s can be applied to both
premises (C,,s) U s” and (C,,s”) U s’

This gives us (CC[C,],e s) B>* (€,€;s”) and
(CC[GC,]e,8") >* (€6,).

Accordin the lemma on slide 11 we have
(CC[C,]: ng C,l,e5s) >* ( ﬁ C,l,e,5") >* (€,65).
Thus (CC[C],¢,5) >* (€,€,5).




(C,s) U's” implies (CC[C],e,5) >>* (€,6,5")

Case B-IF.T:

We assume (i B then C, else C,,s) U s’ has been derived
from (C,,s) U s and [B] s = true.

From the induction hypothesis we get (CC[C,],€,5) >* (€,€,5").
We have CC[1T B then C, else C,] =

CB[B]: BRANCH(CC[C,].CC]C,])-
We get (CB[B]:BRANCH(CC[C,],CC[C,]) ,&,5") >*
(BRANCH(CC[C,],CC[C,]) ,[B] s,s") using a lemma for Boolean
expressions (similar to the lemma for arithmetic expresions on
slide 18) and the lemma from slide 11.

Finally we have (BRANCH(CC[C,],CC[GC,])) ,[B] s,s") >
(CC[C,],€,5) from the small-step semantics of AM.

Case B-IF.F: Analogous.



(C,s) U's” implies (CC[C],e,5) >>* (€,6,5")

Case B-WHILE.T:

We assume (While Bdo C,s U s’ has been derived from (C,s) Us”
(whileBdoCs”) U’ and B] s = true.

From the |nduct|on hypothesis t Us” we get
(CC [[Cﬂ €,5) D>* (€€ SYS’ and CCﬁV\g }e Bdo Cl,e,s”) >* (¢¢€,5").

We have CC[while B do C] =LOOP(CB[B],CC[C]).
We get (LOOP(CB[B],CC[C],¢,s) >
(CB[B]:BRANCH(CC][C]:LOOP(CBI[B],CC[C]), NOOP), €,s) >*
(BRANCH(CC[C]:LOOP(CB|B],CC][C]), NOOP),CB[B] s,s) >
(CC[C]:LOOP(CB[B],CC][C]),e,s) >* (LOOP(CB[B],CC[C]),€,s”).

In the second step we have used a for Boolean expressions (similar to

the lemma for arithmetic expresions on slide 18). In the last step we
have used the lemma from slide 11.

Case B-WHILE.F: Straightforward.



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=€

The proof proceeds by induction on the length of
the derivation sequence (CC[C|,¢,s) >* (¢,e,5"),

that is by induction on k.

Induction hypothesis: We assume the lemma holds

for all 0 < k< k. We proceed b}/ case distinction on
the first step of (CC[C],¢,s) >*1 (¢,e,5).

S-SKIP: Straightforward.



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=€

Case x := E:
We assume (CA[E[:STORE-x,¢,s) > (¢,e,s).

According to the lemma on slide 11 there must be a

configuration (¢,e”,s”’) and natural numbers k, and k, such
that 5 CA[E],e, s %kl (€,”,s"") and

(STORE-x,e”,s”) —*(¢,e,s") where k; +k, = k+1.

Due to the lemma on slide 18 and due to the determinacy
of AM we have e = [E] sand s” =ss.

By the semantics of STORE-x we get
s’ =s[x [E] s]and e = .
From B-ASS we get (x := E,s) U s[x— [E] s].



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=¢

Case C,; C,:
We assume CC[C,]:CC[C,] ¥ (e,e,s).

According to the lemma on slide 11 there must be

a configuration (¢,e”’'s ”ﬁ and natural numbers k,

and k, such that' (CC[C.],¢,5) ¥ (¢,e”,s”) and

(CC[[CZ]] e”,s”") >k (e,e,s") where k; +k, = k+1.
Because of k, < k the induction hypothesis can be
applied and we get (C,,s) U s” and e”’=¢

Now we can apply the induction hypothesis again
because of k, < k and we get (C,,s”") U s’ and e=e.

From B-SEQ we get (C, ; C,,s) Us".



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=¢

Case iITBthenC,elsecC,:
We assume (CB[B]:BRANCH(CC[C,],CC[G,]),€,5) K1 (e,e,5").

According to the lemma on slide 11 there must be a ¢ nfiguratic&n
e,e”,s”’) and natural numbers k, and k, such that <CBﬁB]],€,S> >

e.e”s") and (BRANCH(CC[C,],CCIG,]),e”s") > (e,e,5') where k, +k,
= k+1.

Due to a lemma similar to the one on slide 18 and due to the
determinacy of AM we have e’ = [B] sand s” =s.

From now on we assume [B] s = true.
Thus (BRANCH(CC[C,],CC[C,]), [B] s,s) > (CC[C,],¢,5) >*21 (¢,e,s’) by
determinacy of AM .

Because of k,-1 < k the induction hypothesis can be applied and we
get (C,,s) U s” and e’=e.
From B-IF.Twe get (ifBthenC,elseC,s) Us"

The case [B] s = false is analogous.



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=¢

Case while Bdo C:
We assume (LOOP(CB[B],CC[C]),e,s) > 1 (e,e,s").

Using the semantics of AM we have
LOOP(CB[B],CC[C]),e,s) >

CB|[B]:BRANCH( CC[[C]] LOOP(CB[B],CC[C]), NOOP),e,s) >
(€,8,5").

According to the lemma on slide 11 there must be a
configuration (¢,e”,s”) and natural numbers k, and k, such
that ECB[[Bﬁes> Dkl (€,”,s"”) and

(BRANCH(CC[C]: LOOP(CB[[B]] CC[C])), NOOP),e”,s") >k
(¢,e,5") where k, +k, = k+1.

Due to a lemma similar to the one on slide 18 and due to the
determinacy of AM we have e” = [B] sand s” =s.



(CC[C],e,5) > (e,e,5) implies (C,s) U s’ and e=¢

Case [B] s = true:

Thus <ﬂBRANCH(CC[[C]]:LOOP(CB[BZL,CC[[C:), NOOP),[B] s ,s)

(CC[C]:LOOP(CB[B],CC[C]).e,5) D>*1(e,e,s).

Because CC[C]:LOOP(CB[B],CC[C]) =CC|C;while Bdo(C]

and k,-1 < k we can apply the induction hypothesis and get
(C;whileBdoC,s) Us and e=e.

From B-SEQ we get (C,s) U s” and (while Bdo C,s”) U s for

some state s”’.

From B-WHILE.T we get (Whille Bdo C,s) U s..

Case [B] s = false:

We have (BRANCH(CC[C]:LOOP(CB[B],CC]C]), NOOP),[B] s
,s) > (NOOP,¢,s) >*21 (¢,e,s") and thus e=e and s=s'.

From B-WHILE.F we get (whileBdo Cs) U s,



Comment on the Proof

* Proof is very similar to the equivalence proof
for the small-step and big-step semantics of
While.

* Clearly we also have [C]. = [CC|C] ],y because

of this equivalence!

Question: We defined small-step semantics for
AM, so why didn’t we prove [C] = [CC[C]]m??

32



Alternative Proof Technique

We define a bisimulation relation = between

the configurations of the small-steps semantics
of AM and While:

(C,s) = (CC[C],e,s) for all commands C
S = (€,€,5)

The idea is that only certain configuration in AM
correspond to configurations of While.



Easy Direction

We could try to show that if

Ys = Yam and s — s
then exists a configuration ~,,, such that

Yam B>=F Yam AN Y5 = Yam -

This guarantees that if (C,s) —* s’ then
(CC[C],€,5) >* (€,6,5").



Difficult Direction

Assume that 7. = ~v,,,' and

7AM1 > VAM2 > .. DB W’AMkr

where k> 1 and only v,,,* and 7,,, have empty
evaluation stacks, i.e., they are of the form (c,¢,s’).

We could try to show that there exists a
configuration ' such that

Vs =+ Vs and ' = yam

This guarantees that if (CC[C],¢,s) >* (€€,s") then
(C,s) —* 5.



Difficulties

Difficult direction: relies on the fact, that if AM moves from
some configuration with an empty stack to another
configuration with an empty stack, this can be imitated by
one step of the small-step semantics of While. (Consider for
example our assumption that expressions are evaluated in
one step).

The proof relies on the two semantics proceeding in lock-
step: we need to find configurations in the two derivation
sequences that correspond to one another. Often this is not
possible and one has to raise the level of abstraction for
one of the semantics. This is exactly what happens when
the small-step semantics is replaced by the big-step
semantics (we do not care about the individual
computation steps but only about the result).



Difficulties: Example

The difficult direction goes through when we
use the rule:

S-WHILE

(whileBdoC,s) —
(1TfBthenCwhileBdoCelse skip,s)

Does it complicate the proof if we use the
alternative rules???

S-WHILE.F [B] s = false
(whileBdoCs) —s

S-WHILE.T - - [B] s = true
(whileBdoCs) — (CwhileBdoCs)
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