
Exercise 2: Alloy 1

Once upon a time, in a small town known for its love of tennis, two rival tennis clubs, the Forehand Flyers and
the Backhand Blazers, found themselves facing a unique challenge. Both clubs wanted to model their structure,
improve operations, and provide better services to their members. To achieve their goals, they hired you, a well
known Alloy expert, to handle following tasks for them.

a) Provide a signature for the following entities:

• player (Player);

• tennis club (TennisClub), containing a set of members and a head, all of whom are players.

b) Complete fact headIsMember to ensure that the head of each tennis club is a member.

c) A tennis club is considered to be successful if it has at least 3 members. Define a predicate successful

reflecting this condition.

d) Two tennis clubs are rivals if they are both successful and have no members in common. Define a predicate
rivals reflecting this condition.

1 /* TODO: a) */

2

3 fact headIsMember { /* TODO: b) */ }

4

5 pred successful[f:TennisClub] { /* TODO: c) */ }

6

7 pred rivals[f1: TennisClub , f2: TennisClub] { /* TODO: d) */ }

// a)
sig Player {}

sig TennisClub {
head : one Player,
members : set Player

}

// b)
fact headIsMember { all tc : TennisClub | tc.head in tc.members }

// c)
pred successful[f :TennisClub] { #f.members ≥ 3 }

// d)
pred rivals [f1 : TennisClub , f2 : TennisClub] {

successful(f1) &
sucessful(f2) &
(all p : Player | !{p in f1.members ∧ p in f2.members})

}

Exercise 3: Alloy 2

The following Alloy model describes birthday parties where guests bring gifts. A gift has a value related to its
price, ranging from 1 to 3.

1 sig Guest {

2 gift: Int // value of gift

3 }

4 fact giftValue { all g: Guest | 1 <= g.gift and g.gift <= 3 }

5

6 pred everybodyBringsGifts { #(Guest) = #(Guest.gift) }

7 run everybodyBringsGifts for 4 but exactly 4 Guest

a) This Alloy specification contains an error. Specifically, the predicate everybodyBringsGifts is inconsis-
tent for 4 guests.

• Explain why the predicate is inconsistent.

• Fix the Alloy model, without altering the predicate or the run statement, such that every guest
brings a gift of their own. You can add and change signatures as well as change fact giftValue.

b) In the following task, you are given a Party signature. A host considers the party to be a success, iff at
least 3 invited guests bring gifts each valued at least 2. Define a predicate partyIsSuccess capturing the
mentioned property.

1 sig Party {

2 guests: set Guest ,

3 }

4

5 pred partyIsSuccess[p: Party] { /* TODO: b) */ }

// a)
// The cardinality #a counts how many members are in a set
// The predicate is inconsistent, because if we have 4 guests
// #(Guest)=4, so in order to satisfy the fact the cardinality
// of #(Guest.gift), which is Int also needs to be 4.
// But because it can only take values beween 1 and 3, the set
// has at most 3 members, which means the cardinality
// can maximally be 3.

sig Guest {
gift : lone Int // value of gift

}

fact giftValue { all g : Guest | 1 ≤ g.gift }

pred everybodyBringsGifts { #(Guest) = #(Guest.gift) }
//run everybodyBringsGifts for 4 but exactly 4 Guest

// b)
sig Party {

guests : set Guest
}

pred partyIsSuccess[p : Party] { #{g : p.guests | g.gift ≥ 2} ≥ 3 }
run partyIsSuccess

Exercise 4: Design by Contract 1

Consider the following Java function: 1 /* Preconditions:
2 * arr is not empty (has at least one element)
3 *
4 * Postconditions:
5 * Every element of arr is >= arr[0]
6 */
7 public int compute (int[] arr) {
8 // Refactoring to throw IllegalArgumentException if

↪→ preconditions are not met
9 if (arr.length < 1) {

10 throw new IllegalArgumentException("Preconditions not
↪→ met");

11 }
12 int min = arr[0];
13 for (int i = 1; i < arr.length; i++) {
14 if (arr[i] < min) {
15 arr[i] = min ;
16 }
17 }
18 return min;
19 }

1

public

int

compute

(

int

[]

arr

)

{

2

int

min

=

arr

[0];

3

for

(

int

i

=

1;

i

<

arr

.

length

;

i

++)

{

4

if

(

arr

[i]

<

min

)

{

5

arr

[i]

=

min

;

6

}

7

}

8

return

min

;

9

}

a) Function

compute

makes

assumptions

about

its

input.

List

preconditions

for

input

array

arr

such that a call

to

compute

is

guaranteed

to

run

without

throwing

an

exception.

b) Refactor

the

function

to

throw

an

IllegalArgumentException

if

the

preconditions

are

not

met.

c) What

are

its

postconditions

(assuming

the

preconditions

are

met)?

Exercise 5: Design by Contract 2

The interface VendingMachine models vending machines.

1 interface VendingMachine {

2 Object purchase(int payment);

3 }

The method purchase has the following contract:

• Precondition: payment of at least 10.

• Postcondition: non-null purchased item.

Which of these interface implementations are allowed by the contract? If not, which part of the contract is
violated?

a) Pay-as-you-like machine: You get an item regardless of the inserted payment amount.

b) Luxury vending machine: It only accepts payments larger than 20.

c) Donation machine: You can donate money, you don’t get an item in return. purchase always returns null.

d) Gift dispenser: You only get an item if the payment amount is exactly 0.

e) Slot machine: You can gamble as much money as you want and have the chance of winning an item in
return.

f) Soda machine: You get a can of soda for each unit of payment.

Allowed

Not allowed, the precondition is stricter than the contract precondition

Not allowed, the non-null purchased item postcondition is violated

Not allowed, the non-null purchased item postcondition is violated

Not allowed, the non-null purchased item postcondition is violated

Allowed

Exercise 6: Systematic Testing

You recently started working in one of those notorious dynamic and young tech-startups. Right on your first
day, you notice that the current team does NOT carry out ANY tests! After processing your first shock, you
go straight to work. Many of the encountered errors could have been avoided or detected earlier. Your plan is
to map recently reported bugs (see the list below) to appropriate test strategies, i.e., unit, integration, system,
and manual testing.

For each bug listed, find the best strategy from the testing pyramid:

• Bug #100: Deadlock between backend services after new milestone release (Milestone v3.2)

Bug #101: Email validation function accepts an empty string as valid email•

Bug #102: Uncaught NullPointerException somewhere in the WebSiteBuilder class

Bug #103: In-app purchases trigger a race condition in the backend services

•

Bug #104: Incompatible formatted strings are passed between DataProcessor and DatabaseHandler

Bug #105: The HTTPProtocolParser output triggers an IncompatibleFormatException in
HTTPProtocolDataExtractor

Bug #106: The save-button on a buyer’s profile information is barely visible for a human

•

Bug #107: Some calls to the calculatemethod inside the CostCalculator class return undesired negative
results

•

•

•

•

Unit Testing

Unit Testing

Unit Testing

Integration Testing

Manual Testing

Integration Testing

System Testing

System Testing

Exercise 7: Verification vs Validation

Lisa had recently joined a renowned software development company, eager to contribute her skills and learn
from experienced professionals. One day, during a team meeting, Lisa noticed that the terms software validation
and verification were being used interchangeably. Curiosity sparked within her. Knowing that you have been
learning about this in your software engineering course, she asks you to help her classify the following tasks to
be either software validation or verification.

a) Conducting user surveys or interviews to gather feedback on the software’s usability, functionality, and
overall satisfaction.

b) Testing the software on different platforms, browsers, or devices to ensure it works correctly in various
environments.

c) Running unit tests to check the functionality of individual components or modules.

d) Running beta testing with real users in real-world environments to gather feedback.

e) Performing security testing to identify vulnerabilities and ensure the software is secure.

f) Monitoring and analyzing user feedback to identify any issues or areas for improvement.

g) Using formal verification techniques to mathematically prove the correctness of the software.

h) Reviewing of user stories and use cases.

i) Reviewing code segments and their test cases.

j) Develop automated test scripts to streamline the testing process and improve efficiency.

Validation

Verification

Validation

Verification

Verification

Validation

Verification

Validation

Verification

Verification

Exercise 8: Dependency Injection

Consider function announceTodaysDonutDiscount of class DiscountService.

1 class DiscountService {

2 public void announceTodaysDonutDiscount () {

3 DiscountCalendar cal = new DiscountCalendar ();

4 ClientDao dao = new ClientDao ();

5 DiscountSender sender = new MailSender ();

6

7 for (Client client: dao.load ()) {

8 if (cal.isFreeDonutDay ()) {

9 sender.sendDiscount(client , 100);

10 } else {

11 sender.sendDiscount(client , 0);

12 }

13 }

14 }

15 }

Improve the testability of this function by applying dependency injection.

1 class DiscountService {
2 private DiscountCalendar _cal;
3 private ClientDao _dao;
4 private DiscountSender _sender;
5

6 public DiscountService(DiscountCalendar cal, ClientDao dao,
DiscountSender mailSender) {

7 this._cal = cal;
8 this._dao = dao;
9 this._sender = mailSender;

10 }
11

12 public void announceTodaysDonutDiscount() {
13 for (Client client : this._dao.load()) {
14 if (this._cal.isFreeDonutDay()) {
15 this._sender.sendDiscount (client, 100);
16 } else {
17 this._sender.sendDiscount(client, 0);
18 }
19 }
20 }
21 }

Exercise 9: Testability

a) Label the following methods as domain or infrastructure code:

1 private int getDiscount(Customer customer) {

2 int discount = 0;

3 if(customer.hasDiscount ()) {

4 discount += customer.getDiscount ();

5 }

6 if(isSale ()) {

7 discount += 20;

8 }

9 return discount;

10 }

□ domain □ infrastructure

1 private void sendNewsletter(Customer customer , String msg) {

2 EmailClient client = new EmailClient("mail.company.com");

3 client.send(customer.getEmail(), msg);

4 }

□ domain □ infrastructure

1 private ArrayList <Product > getSimilarProducts

2 (Product product , DatabaseConnection connection) {

3 String query = "SELECT␣*␣FROM␣Products␣WHERE␣Label=$label;";
4 return client.query(query , product.label);

5 }

□ domain □ infrastructure

b) For the following statements, check the appropriate boxes:

• Optimizing an algorithm improves testability because of the faster runtime.

□ true □ false

• Separating infrastructure and domain code improves testability.

□ true □ false

• If code size increases due to separating software into testable units the testability decreases.

□ true □ false

• Proper testing strategies reveal all bugs in a system.

□ true □ false

• Being able to fake dependencies increases testability.

□ true □ false

• Instantiating dependencies inside the constructor instead of class methods increases testability.

□ true □ false

X

X

X

X

X

X

X

X

X

Developers can choose the pace at which they develop code.

Task 10: Test Driven Development

Which of the following are good reasons for applying test-driven development (TDD)?

• When using TDD, software is tested exhaustively.

•

•

•

• You can tell the management that you follow best practices.

• Code developed with TDD does not require additional documentation.

•

•

Code developed with TDD is designed to be testable.

The tests provide feedback about the design of the code they test.

When using TDD, you think about the requirements earlier and more carefully.

Many software defects are detected early.

