
Exercise 1: Equivalence Classes & Boundary Values

1 public int discountPercent(int flowers , boolean membershipCard);

a) What are the partitions for each parameter? How many partitions are there in total?

b) What partitions can be combined?

c) What are the boundary values? Which are the on and off points?

flowers (int):
 - <0: UB (Assumption: InvalidOrderException)
 - =0: InvalidOrderException
 - 1-10: discountPercent += 0
 - >10: discountPercent += 10

membershipCard (bool):
 - false: discountPercent += 0
 - true: discountPercent += 5

Partition count: 6

 - flowers <= 0; membershipCard does not matter; InvalidOrderException
 - 1 <= flowers <= 10; membershipCard==false => return 0
 - 1 <= flowers <= 10; membershipCard==true => return 5
 - flowers > 10; membershipCard==false => return 10
 - flowers > 10; membershipCard==true => return 15

flowers (int):
 - 0
 - 10

membershipCard (bool):
 - true
 - false

d) Construct

test

cases

for

function

discountPercent

according

to

your

analysis.

Give

inputs

and

expected outputs.
 Input |
---------+----------------| Output
 flowers | membershipCard |
---------+----------------+-----------------------
 -1 | false | InvalidOrderException
 0 | true | InvalidOrderException
 1 | false | 0
 5 | true | 5
 10 | false | 0
 11 | true | 15
 12 | false | 10

A

local

flower

shop

offers

discounts

to

its

most

valuable

customers.

Function

discountPercent

calculates

the percentage

of

discount

that

should

be

applied

to

a

purchase.

Purchases

of

more

than

10

flowers

are

given

10%

discount.

Customers

with

membership

cards

are

given

5% discount.

(The

discounts

are

cumulative.)

Function

discountPercent

throws

an

InvalidOrderException

if

the

number

of

flowers

is

zero.

Exercise 2: Specification-Based & Structural Testing

a) Which of these software testing activities correspond to specification-based testing, which correspond to
structural testing, and which correspond to neither?

(a) Asking a colleague to check if the tests match the documentation.

(b) Measuring which statements are executed by each test case.

(c) Doing test-driven development.

(d) Testing with random data to find crashes.

(e) Constructing test cases to cover all branches.

b) Which of the following statements are correct?

(a) MC/DC is a stronger property than branch coverage.

(b) Programs that have 100% path coverage do not contain any kind of bugs.

(c) Boundary values are extracted from the source code.

(d) Loop coverage is a stronger property than branch coverage.

(e) A test suite constructed from boundary values has 100% branch coverage.

Specification-based

Structural

Neither

Structural

Structural testing uses the structure of the source code to guide testing
Specification-based testing uses the program requirements as testing input

Neither

True

False, no testing method can guarantee the program is bug free

False, they are based on the inputs and their domain

False, loop coverage is in fact often combined with branch coverage

False, since we "pragmatically decide" which partitions to combine we could
miss a branch

Exercise 3: Basic-Block & Branch Coverage

1 public int compute(int[] x) {

2 if (x == null) {

3 return 0;

4 }

5 int sum = 0;

6 for (int i = 0; i < x.length; i++) {

7 if (x[i] % 2 == 0) {

8 sum += x[i];

9 }

10 }

11 return sum;

12 }

a) Draw the control flow graph. Count the basic blocks and branches.

b) Define test cases that achieve 100% basic-block coverage, but not 100% branch coverage.

c) Define test cases that achieve 100% branch coverage.

Entry

!b1

b1 = (x == null)

int sum = 0

int i = 0

!b2

b2

b2 =

(i < x.length)

return 0

b1

return sum

exit

b3

!b3

b3 =

(x[i] % 2 == 0)
sum += x[i]

i++

Basic blocks: 10
Branches: 6

x = null; x = {2}

x = null; x = {2, 3}

Exercise 5: Condition + Branch Coverage

1 public String triangle (int a , int b , int c) {

2 if (a +b < c || a +c < b || b +c < a) {

3 return " invalid " ;

4 }

5 if (a * a + b * b == c * c || a * a + c * c == b * b || b * b + c * c == a * a) {

6 return " right ␣ angled " ;

7 }

8 return " other " ;

9 }

a) Count the number of condition values + branches.

Condition values: 12
Branches: 4

b) How much branch coverage does the test (a=1, b=1, c=1) reach?

Branch coverage: 2/4 = 50%

c) How much C+B coverage does the test (a=1, b=1, c=1) reach?

2+6
C+B coverage: ---- = 8/16 = 50%

4+12

d) Construct test cases that reach 100% C+B coverage.

Coverage is 100% when each individual condition evaluates to
true and false at least once and each corresponding branch
statement also evaluates to true and false at least once

(a=1, b=1, c=1); (a=1, b=2, c=3)
(a=1, b=-1, c=1); (a=0, b=1, c=-1)

Exercise 6: MC/DC

1 public int compute(int a, int b) {

2 if ((a * b == 20 || a + b == 12) && a < 10) {

3 return a;

4 } else {

5 return b;

6 }

7 }

a) Construct test cases that reach 100% MC/DC. List for each test case which conditions are true and which
are false.

b) List the independence pair for each condition.

A = a < 10 B = a * b == 20 C = a + b == 12

Condition: (A && (B || C))

 # | A | B | C | Res
---+---+---+---+-----
 1 | F | F | F | F
 2 | F | F | T | F
 3 | F | T | F | F
 4 | F | T | T | F
 5 | T | F | F | F
 6 | T | F | T | T
 7 | T | T | F | T
 8 | T | T | T | T

IndependencePairs = {{2,6}, {3,7}, {4,8}} ∪ {{5,7}} ∪ {{5,6}}
Tests = {3, 5, 6, 7}

3: (a=20, b=1)
5: (a=1, b=1)
6: (a=3, b=9)
7: (a=5, b=4)

Exercise 7: DU-Pairs Coverage

1 public int range(int a, int b, int c) {

2 int max = a;

3 int min = a;

4 if (a < b) {

5 max = b;

6 } else {

7 min = b;

8 }

9 if (max < c) {

10 max = c;

11 }

12 if (c < min) {

13 min = c;

14 }

15 return max - min;

16 }

a) List all DU pairs for variables max and min.

b) Construct test cases that reach 100% DU-pairs coverage. For each test, list all DU pairs it covers.

DUpairs_max = {{2,9}, {2,15}, {5,9}, {5,15}, {10,15}}
DUpairs_min = {{3,12}, {3,15}, {7,12}, {7,15}, {13,15}}

{{2,9}, {2,15}, {7,12}, {7,15}}: (a=0, b=0, c=0)
{{5,9}, {5,15}, {3,12}, {3,15}}: (a=0, b=1, c=0)
{{10,15}}: (a=0, b=0, c=1)
{{13,15}}: (a=0, b=0, c=-1)

Exercise 8: Measuring DU-Pairs Coverage

1 public void countFlips(boolean [] coinFlips , boolean countHeads) {

2 int heads = 0;

3 int tails = 0;

4 int result = 0;

5 for (boolean isHeads: coinFlips) {

6 if (isHeads) {

7 heads = heads + 1

8 } else {

9 tails = tails + 1;

10 }

11 }

12 if (countHeads) {

13 result = heads;

14 } else {

15 result = tails;

16 }

17 return result;

18 }

a) Draw

the

control

flow

graph

for

function

countFlips

and

apply

the

algorithm
for

computing

reaching

definitions for

variables

heads,

tails

and

result.

b) List

the

DU

pairs

for

variables

heads,

tails

and

result.

c) Instrument

the

code

as

shown

in

the

lecture

to

measure

DU-pairs

coverage.

What

is

the

state

of

maps
defCover

and

useCover

after

running

the

test

case

(coinFlips=[true,

true],

countHeads

=

false)?
You

may

assume

the

maps

start

freshly

initialized.

entry

int heads = 0int tails = 0int result = 0

!b1b1 b1 = (i <

coinFlips.length)

!b3

b3 = countHeads

exit

!b2b2

b2 =

(coinFlips[i])

tails++heads++

int i = 0

i++

result = heads result = tails

b3

return result

 n | Reach(n) | ReachOut(n)
----+---+---

DUpairs(heads) = {(2,7), (7,7), (2,13), (7,13)}
DUpairs(tails) = {(3,9), (9,9), (3,15), (9,15)}
DUpairs(result) = {(4,17), (13,17), (15,17)}

defCover = {"heads": 7, "tails": 3, "result": 15}
useCover = {"heads": {"2": {"7": 1}, "7": {"7": 1}}, "tails": {"3": {"15": 1}}, "result": {"15": {"17": 1}}}

2 | - | heads₂
3 | heads₂

| heads₂, tails₃
4 | heads₂, tails₃

| heads₂, tails₃, result₄
7 | heads₂, heads₇, tails₃, tails₉, result₄ | heads₇, tails₃, result₄
9 | heads₂, heads₇, tails₃, tails₉, result₄ | heads₂, tails₉, result₄

12 | heads₂, heads₇, tails₃, tails₉, result₄

| heads₂, heads₇, tails₃, tails₉, result₄
13 | heads₂, heads₇, tails₃, tails₉, result₄

| heads₂, heads₇, tails₃, tails₉, result₁₃
15 | heads₂, heads₇, tails₃, tails₉, result₄

| heads₂, heads₇, tails₃, tails₉, result₁₅
17 | heads₂, heads₇, tails₃, tails₉, result₄, result₁₃, result₁₅

| heads₂, heads₇, tails₃, tails₉, result₄, result₁₃, result₁₅

Exercise 10: Test Doubles

Classify the following objects into one of the five kinds of test doubles.

a) An external API server that returns pre-defined responses and verifies that specific requests were made
during testing.

b) A database connection wrapper that records every query made to a particular table.

c) A database connection that returns pre-defined data for specific queries.

d) A logger that does not perform any logging and is only used to fulfill a method requirement.

e) A file system that emulates the behavior of a real file system without actually writing to disk.

f) An HTTP server that returns pre-defined responses to specific requests.

g) An email service that captures and stores outgoing emails and triggers pre-defined incoming email events.

h) A database connection that ignores all operations and is not used during testing.

i) A logger that records information about logged messages during testing and checks for the existence of
certain string patterns.

j) A data prediction unit that, in contrast to its production implementation, uses a simplified algorithm to
decrease the runtime of the tests.

Mock

Spie

Stub

Dummy

Fake

Stub

Spie

Dummy

Spie

Fake

