Der Fragepool für die VO Prüfung ADM Inf. Zur VO Pruefung kommt eine Auswahl aus den folgenden Fragen. (Nicht jede der folgenden Punkte wird in jeder Test-Gruppe vorkommen.) Irrtümer etc vorbehalten.

1 Aussagenlogik

Welche der folgenden Aussagen sind allgemein gültig (d.h. für beliebige mathematische Aussagen φ , ψ)

Zur Erinnerung: $\varphi \to \psi$ heißt "wenn dann" bzw "impliziert"; \leftrightarrow heißt "gdw" oder "äquivalent", \wedge heißt "und", \vee "oder" und \neg "nicht".

- 1. Wenn φ gilt und $\varphi \to \psi$, dann gilt ψ .
- 2. $((\varphi \land (\varphi \to \psi)) \to \psi$.
- 3. Wenn φ gilt, dann: $\varphi \to \psi$ gdw ψ .
- 4. $\varphi \to ((\varphi \to \psi) \leftrightarrow \psi)$.
- 5. Wenn ψ gilt, dann: $\varphi \to \psi$ gdw ψ .
- 6. $\psi \to ((\varphi \to \psi) \leftrightarrow \psi)$.
- 7. Wenn φ gilt, dann: $\varphi \to \psi$ gdw φ .
- 8. $\varphi \to ((\varphi \to \psi) \leftrightarrow \varphi)$.
- 9. Wenn ψ nicht gilt, dann ist $\varphi \to \psi$ äquivalent zu $\neg \psi$.
- 10. $\neg \psi \rightarrow ((\varphi \rightarrow \psi) \leftrightarrow \neg \psi)$.
- 11. Wenn ψ nicht gilt, dann ist $\varphi \to \psi$ äquivalent zu $\neg \varphi$.
- 12. $\neg \psi \rightarrow ((\varphi \rightarrow \psi) \leftrightarrow \neg \varphi)$.
- 13. $\varphi \to \neg \varphi$
- 14. $\varphi \to \neg \varphi$ ist äquivalent zu φ
- 15. $(\varphi \to \neg \varphi) \leftrightarrow \varphi$
- 16. $\varphi \to \neg \varphi$ ist äquivalent zu $\neg \varphi$
- 17. $(\varphi \to \neg \varphi) \leftrightarrow \neg \varphi$
- 18. $\varphi \to \psi$ impliziert $\neg \varphi \to \neg \psi$.

- 19. $(\varphi \to \psi) \to (\neg \varphi \to \neg \psi)$.
- 20. $\varphi \to \psi$ impliziert $\neg \psi \to \neg \varphi$.
- 21. $(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$.
- 22. $\varphi \leftrightarrow \psi$ gdw $\neg \varphi \leftrightarrow \neg \psi$.
- 23. $(\varphi \to \psi) \leftrightarrow (\neg \varphi \leftrightarrow \neg \psi)$.
- 24. $\varphi \to \psi$ gdw $\neg \varphi \to \neg \psi$.
- 25. $(\varphi \to \psi) \leftrightarrow (\neg \varphi \to \neg \psi)$.
- 26. $\varphi \to \psi$ gdw $\neg \psi \to \neg \varphi$.
- 27. $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$.
- 28. $\varphi \leftrightarrow \psi$ gdw $\neg \varphi \leftrightarrow \neg \psi$.
- 29. $(\varphi \to \psi) \leftrightarrow (\neg \varphi \leftrightarrow \neg \psi)$.
- 30. $(\varphi \land \neg \varphi) \leftrightarrow \varphi$
- 31. $(\varphi \land \neg \varphi) \rightarrow \varphi$
- 32. $(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$
- 33. $(\varphi \leftrightarrow \psi) \rightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$
- 34. $(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi))$
- 35. $(\varphi \leftrightarrow \psi) \rightarrow ((\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi))$
- 36. etc

2 Prädikatenlogik

Welche der folgenden Aussagen sind allgemein gültig, d.h. für beliebige mathematische Aussagen φ , ψ , und für eine beliebige (möglicherweise leere) Menge A.

Zur Erinnerung: $\varphi \to \psi$ heißt "wenn dann" bzw "impliziert"; \leftrightarrow heißt "gdw" oder "äquivalent", \wedge heißt "und", \vee "oder" und \neg "nicht", \exists heißt 'es gibt" und \forall heißt 'für alle".

- 1. $\exists x \in A \varphi(x)$ impliziert $\forall x \in A \varphi(x)$
- 2. $\forall x \in A \varphi(x)$ impliziert $\exists x \in A \varphi(x)$
- 3. $A \neq \emptyset$ und $\exists x \in A \varphi(x)$ impliziert $\forall x \in A \varphi(x)$
- 4. $A \neq \emptyset$ und $\forall x \in A \varphi(x)$ impliziert $\exists x \in A \varphi(x)$
- 5. $\neg(\forall x \in A)\varphi(x)$ implicient $(\exists x \notin A)\varphi(x)$.
- 6. $\neg(\forall x \in A)\varphi(x)$ impliziert $(\exists x \in A)\neg\varphi(x)$.
- 7. $\neg(\forall x \in A)\varphi(x)$ impliziert $(\forall x \notin A)\neg\varphi(x)$.
- 8. etc

Und dieselben Fragen nochmals für "gdw" statt "impliziert".

3 Mengenschreibweise

Welche der folgenden Aussagen gilt: Dabei bezeichnen $\{a,b,\dots\}$ eine Menge, und (a,b,\dots) eine Folge.

- 1. (2,3) = (3,2)
- $3. \{2,3,3\} = \{2,3\}$
- 5. etc.

- $2. \{2,3\} = \{3,2\}$
- 4. (2,3,3) = (2,3)

4 De Morgan Regeln

Seien A, B Teilmengen einer Menge X. Welche der folgenden Aussagen gilt allgemein (d.h., für alle solche Mengen):

- 1. $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- 2. $X \setminus (A \cup B) = (X \setminus A) \cup (X \setminus B)$
- 3. $X \setminus (A \cup B) = A \cap B$
- 4. $X \setminus ((X \setminus A) \cup (X \setminus B)) = A \cap B$
- 5. $X \setminus ((X \setminus A) \cup (X \setminus B)) = (X \setminus A) \cup (X \setminus B)$
- 6. $(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$
- 7. $(X \setminus A) \cup (X \setminus B) = X \setminus ((X \setminus A) \cup (X \setminus B))$

5 Komplexe Zahlen: Kartesisch und polar

Schreibe die folgenden Zahlen in Polarschreibweise $re^{i\phi}$:

1.
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

2.
$$\frac{2}{\sqrt{2}} - \frac{2}{\sqrt{2}}i$$

Schreibe die folgenden Zahlen 'kartesisch", d.h. berechne Real- und Imaginärteil:

1.
$$2e^{\frac{\pi}{4}i}$$

2
$$3e^{\frac{3\pi}{2}i}$$

6 Komplexe Zahlen: Grundrechnungsarten

Berechne

1.
$$\frac{13+0i}{2+3i}$$

3.
$$\frac{14-8i}{2-4i}$$

5.
$$(-3+2i)\cdot(-4+2i)$$

2.
$$(3+2i)\cdot(-3-3i)$$

4.
$$\frac{0+13i}{3+2i}$$

7 Komplexe Zahlen: Einheitswurzeln

Für n = 1, 2, 3, 4, 5, 6, 7, 8:

Schreibe alle n-ten Einheitswurzeln in Polar-Schreibweise $e^{i\phi}$. Betrachte alle Einheitswurzeln mit nichtnegativem Imaginärteil. Was ist ihr Produkt? Dasselbe für nichtnegativen Realteil.

Für n=1,2,4,8. Schreibe alle n-ten Einheitswurzeln in kartesischer Schreibweise a+ib. Betrachte alle Einheitswurzeln mit nichtnegativem Imaginärteil. Was ist ihre Summe? Dasselbe für nichtnegativen Realteil.

8 Injektiv, Bijektiv, surjektiv

Welche der Folgenden Funktionen ist injektiv, surjektiv oder bijektiv.

(D.h.: Wenn zB gefragt ist: Ist $F: A \times A \to A \ (x,y) \mapsto x$ injektiv, für A Menge, dann ist gemeint: Ist es wahr dass f für beliebige A injektiv ist?)

- 1. $f: A \to A \times A \ a \mapsto (a, a)$ für eine Menge A.
- 2. $f: A \to A \times B$ $a \mapsto (a, b_0)$ für A, B Mengen und ein fixes $b_0 \in B$.
- 3. $f: A \to A \ x \mapsto x$ für eine Menge A.
- 4. $f: A \times B \to A$ $(a, b) \mapsto a$ für A, B Mengen.
- 5. $f: A \times B \to B \ (a,b) \mapsto b \ \text{für } A, B \ \text{Mengen}.$
- 6. $f:G\to G$ $a\mapsto a\circ b_0$ für eine Gruppe G und fixes $b_0\in G$

- 7. $f: R \to R$ $a \mapsto a \cdot b_0$ für einen Ring R und fixes $b_0 \in R$.
- 8. $f: R \to R$ $a \mapsto a + b_0$ für einen Ring R und fixes $b_0 \in R$.
- 9. $f: K \to K$ $a \mapsto a \cdot b_0$ für einen Körper K und fixes $b_0 \neq 0$ in K.
- 10. $f: V \to V \ v \mapsto \lambda v$ für einen Vektorraum V über K und $\lambda \neq 0$ in K.
- 11. $f: V \to V \ v \mapsto v + w_0$ für einen Vektorraum V und fixes $w_0 \in V$.
- 12. $f: \mathbb{R} \to \mathbb{R} \ x \mapsto x^2$
- 13. $f: \mathbb{C} \to \mathbb{C} \ x \mapsto x^2$
- 14. $f: \mathbb{C} \to \mathbb{C} \ x \mapsto 23x^{33} 18x^7 + 12i$

(Hinweis: Für surjektiv: Schreibe f(x) = z als f(x) - z = 0 und verwende den Fundamentalsatz der Algebra. Für injektiv: Betrachte für $z \neq 0$ das Polynom g(x) := f(x+z) - f(x). Zeige $\deg(g) = \deg(f) - 1$ und verwende ebenfalls den Fundamentalsatz.)

- 15. $f: \mathbb{N} \to \mathbb{N} \ x \mapsto x+1$
- 16. $f: \mathbb{N} \to \mathbb{N}$ $x \mapsto x 1$ wenn x > 1, und f(0) = 0
- 17. $f: \mathbb{Z} \to \mathbb{Z} \ x \mapsto x+1$
- 18. $f: \mathbb{Z} \to \mathbb{Z} \ x \mapsto x-1$

9 Nullstellen von Polynomen und Fundamentalsatz der Algebra

Welche der folgenden Aussagen ist richtig:

- 1. Jedes komplexe Polynom $f(X) \in \mathbb{C}[X]$ von Grad ≥ 1 hat eine komplexe Nullstelle.
- 2. Jedes reelle Polynom $f(X) \in \mathbb{R}[X]$ von Grad ≥ 1 hat eine reelle Nullstelle.
- 3. Jedes reelle Polynom $f(X) \in \mathbb{R}[X]$ von Grad ≥ 3 hat eine reelle Nullstelle.
- 4. Jedes reelle Polynom $f(X) \in \mathbb{R}[X]$ von Grad 3 hat eine reelle Nullstelle.
- 5. Jedes reelle Polynom $f(X) \in \mathbb{R}[X]$ von Grad 5 hat eine reelle Nullstelle.
- 6. Jedes Polynom $f(X) \in \mathbb{Z}[X]$ (mit ganzzahligen Koeffizienten) von Grad 3 hat eine ganzzahlige Nullstelle.
- 7. Jedes rationale Polynom $f(X) \in \mathbb{Q}[X]$ von Grad 3 hat eine rationale Nullstelle.
- 8. Jedes Polynom $f(X) \in \mathbb{Z}_2[X]$ von Grad 2 hat eine Nullstelle in $\mathbb{Z}_2[X]$. (D.h.: Jede Funktion $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ der Form $f(x) = a_2x^2 + a_1x + a_2$, mit $a_i \in \mathbb{Z}_2$ und $a_2 \neq 0$.)

- 9. Jedes Polynom $f(X) \in \mathbb{Z}_2[X]$ von Grad 3 hat eine Nullstelle in $\mathbb{Z}_2[X]$. (D.h.: Jede Funktion $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ der Form $f(x) = a_3x^3 + a_2x^2 + a_1x + a_2$, mit $a_i \in \mathbb{Z}_2$ und $a_2 \neq 0$.)
- 10. Für jeden Körper K, jedes n > 0 und $\lambda_1, \ldots, \lambda_n$ in K gibt es ein Polynom $f \in K[X]$ von Grad n das die Nullstellen $\lambda_1, \ldots, \lambda_n$ hat. (D.h.: Eine Funktion $f: K \to K$ der Form $f(x) = a_n x^n + \cdots + a_1 x + a_2$, mit $a_i \in K$ und $a_n \neq 0$, und $f(\lambda_i) = 0$.)
- 11. Wenn $f(X) \in \mathbb{Z}_2[X]$ Nullstelle $\overline{1}$ hat, dann können wir f(X) faktorisieren als $f(X) = (X \overline{1})g(X)$, mit $g(X) \in \mathbb{Z}_2[X]$.

10 Injektiv, Bijektiv, surjektiv 2

Welche der folgenden Aussagen gilt allgemein, für X Y eines von injektiv, surjektiv, bijektiv:

- 1. Wenn $f: A \to A$ X ist, dann ist f Y (für eine beliebige Menge A).
- 2. Wenn $f: A \to A$ X ist, dann ist f Y (für eine beliebige endliche Menge A).
- 3. Wenn $f: V \to V$ X ist, dann ist f Y (für einen beliebigen Vektorraum V und eine beliebige Funktion $V \to V$).
- 4. Wenn $f: V \to V$ X ist, dann ist f Y (für einen beliebigen endlich-dimensionalen Vektorraum V und eine beliebige Funktion $V \to V$).
- 5. Wenn $f: V \to V$ X ist, dann ist f Y (für einen beliebigen Vektorraum V und eine beliebige lineare Funktion $V \to V$).
- 6. Wenn $f: V \to V$ X ist, dann ist f Y (für einen beliebigen endlich-dimensionalen Vektorraum V und eine beliebige lineare Funktion $V \to V$).
- 7. Wenn $f: G \to G$ X ist, dann ist f Y (für eine beliebige Gruppe G und einen Gruppenhomomorphismus f).
- 8. Jeder Ringhomomorphismus ist injektiv.
- 9. Jeder Körperhomomorphismus ist injektiv.
- 10. Jeder Vektorraum-Homomorphismus ist injektiv.
- 11. Eine Gruppen-Einbettung $f:G\to G$ von G in sich selbst, für eine beliebige Gruppe G, ist immer eine Bijektion.
- 12. Eine Gruppen-Einbettung (inj. Gruppenhomomorphismus) $f: G \to G$ von G in sich selbst, für eine endliche Gruppe G, ist immer bijektiv.
- 13. Eine Vektorraum-Einbettung (inj. lineare Abbildung) $f: V \to V$, für einen beliebigen Vektorraums f, ist immer bijektiv.

- 14. Eine Vektorraum-Einbettung (inj. lineare Abbildung) $f: V \to V$, für einen endlichdimensionalen Vektorraum f, ist immer bijektiv.
- 15. Die Verknüpfung einer injektiven Funktion f mit einer injektiven Funktion g ist injektiv.
- 16. Die Verknüpfung $g \circ f$ einer injektiven Funktion f mit einer surjektiven Funktion g ist injektiv.
- 17. Die Verknüpfung $g \circ f$ einer injektiven Funktion f mit einer bijektiven Funktion g ist injektiv.
- 18. Die Verknüpfung $g \circ f$ einer injektiven Funktion f mit einer bijektiven Funktion g ist bijektiv.
- 19. etc

11 Gruppen

Welche Aussagen bzw Gleichungen gelten in allen Gruppen (G, \circ) , wobei e das neutrale Element bezeichnet, und a^{-1} das Inverse zu a: Welche gelten in allen kommuttiven Gruppen?

1.
$$(a \circ b)^{-1} = a^{-1} \circ b^{-1}$$

2.
$$(a \circ b)^{-1} = b^{-1} \circ a^{-1}$$

3.
$$(a \circ b \circ c)^{-1} = a^{-1} \circ (b \circ c)^{-1}$$

4.
$$(a \circ b \circ c)^{-1} = a^{-1} \circ (c \circ b)^{-1}$$

5.
$$(a \circ b \circ c)^{-1} = (b \circ c)^{-1} \circ a^{-1}$$

6.
$$(a \circ b \circ c)^{-1} = (c \circ b)^{-1} \circ a^{-1}$$

7.
$$(a \circ b \circ c)^{-1} = c^{-1} \circ b^{-1} \circ a^{-1}$$

8.
$$(a \circ b \circ c)^{-1} = a^{-1} \circ b^{-1} \circ c^{-1}$$

9.
$$(a \circ b \circ c)^{-1} = a^{-1} \circ c^{-1} \circ b^{-1}$$

10.
$$a \circ b = c \circ a$$
 impliziert $b = c$

11.
$$a \circ b = a \circ c$$
 impliziert $b = c$

12.
$$c \circ a = b \circ a$$
 implizient $b = c$

13.
$$a \circ e = e$$
 impliziert $a = e$.

14.
$$b^{-1} \circ a^{-1} \circ a \circ b = e$$

15.
$$a \neq b$$
 impliziert $a \circ c \neq b \circ c$.

16.
$$(a \circ b) \circ (a \circ b) = a \circ (b \circ a) \circ b$$

17.
$$a \circ a \circ b \circ a^{-1} \circ b^{-1} \circ a^{-1} \circ b = b$$

12 S_n : Zweizeilendarstellung in Zyklendarstellung

Stelle die folgenden Permutationen in Zyklendarstellung dar. Ist die Permutation gerade oder ungerade? Schreibe das Inverse der Permutation in Zweizeilendarstellung an.

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

$$3. \ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 7 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

13 S_n : Zyklendarstellung in Zweizeilendarstellung

Stellen Sie in Zweizeilendarstellung dar: Ist die Permutation gerade oder ungerade? Stellen Sie das Inverse in Zyklendarstellung dar.

3. etc

14 S_n : Zyklendarstellung in Zweizeilendarstellung 2

Gegeben ein Produkt von Zyklen (nicht notwendigerweise disjunkt, d.h. nicht notwendigerweise eine Zyklendarstellung). Dabei heißt $a \circ b$ dass zuerst die Permutation b und danach a angewendet wird. Ist die Permutation gerade oder ungerade? Gib die Zweizeilenund die Zyklendarstellnung an:

1.
$$(12)(23)(34)$$

3. etc.

15 S_n : Verknüpfung

Gegeben zwei Permutationen, schreibe das Produkt in Zweizeilendarstellung an: Dabei heißt $a \circ b$ dass zuerst die Permutation b und danach a angewendet wird.

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$

2. etc

16 S_n und A_n

 S_n ist die symmetrische Gruppe (Gruppe aller Permutationen), A_n die alternierende Gruppe (Gruppe aller geraden Permutationen).

Welche der folgenden Gruppen sind kommutativ? Welche zyklisch?

1.
$$S_2$$

3.
$$S_4$$

5.
$$A_2$$

7.
$$A_4$$

2.
$$S_3$$

4.
$$S_5$$

6.
$$A_3$$

8.
$$A_5$$

17 Nebenklassen

Gib die Rechtsnebenklassen Ua bzw die Linksnebenklasse aU der folgenden U < Gund $a \in G$ an. Für endliche Gruppen: Gib an wieviele Element die Rechts- bzw die Linksnebenklasse hat.

1.
$$G = (\mathbb{Z}_{12}, +), U = \langle \overline{5} \rangle, a = \overline{2}$$

4.
$$G = (\mathbb{Z}_{12}, +), U = \langle \overline{6} \rangle, a = \overline{0}$$

2.
$$G = (\mathbb{Z}_{12}, +), U = \langle \overline{5} \rangle, a = \overline{0}$$

5.
$$G = S_3, U = A_3, a = (12)$$

3.
$$G = (\mathbb{Z}_{12}, +), U = \langle \overline{6} \rangle, a = \overline{2}$$

6.
$$G = S_3$$
, $U = \{e, (12)\}$, $a = (23)$.

7. G = (V, +) für den Vektorraum \mathbb{R}^3 mit Standardbasis e_1, e_2, e_3 ;

$$U$$
 der Unterraum $\langle e_1, e_3 \rangle$, und $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

8. G die 2×2 Matrizen über dem Grundkörper \mathbb{Z}_2 , U die Diagonalmatrizen, und $a = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

9. etc

18 Gruppen 2

Welche der folgenden Strukturen sind Gruppen, welche kommutative Gruppen?

1.	$(\mathbb{N}, \dashv$	-)
٠.	(+1)	/

6.
$$(\mathbb{N},\cdot)$$

11.
$$(\mathbb{N} \setminus \{0\}, +)$$
 16. $(\mathbb{N} \setminus \{0\}, \cdot)$

16.
$$(\mathbb{N} \setminus \{0\}, \cdot)$$

$$2. (\mathbb{Z},+)$$

7.
$$(\mathbb{Z},\cdot)$$

12.
$$(\mathbb{Z}\setminus\{0\},+)$$
 17. $(\mathbb{Z}\setminus\{0\},\cdot)$

17.
$$(\mathbb{Z}\setminus\{0\},\cdot)$$

3.
$$(\mathbb{Q}, +)$$

8.
$$(\mathbb{Q},\cdot)$$

13.
$$(\mathbb{Q} \setminus \{0\}, +)$$

18.
$$(\mathbb{Q} \setminus \{0\}, \cdot)$$

4.
$$(\mathbb{R},+)$$

9.
$$(\mathbb{R},\cdot)$$

14.
$$(\mathbb{R}\setminus\{0\},+)$$

19.
$$(\mathbb{R}\setminus\{0\},\cdot)$$

5.
$$(\mathbb{C},+)$$

10.
$$(\mathbb{C},\cdot)$$

15.
$$(\mathbb{C} \setminus \{0\}, +)$$

20.
$$(\mathbb{C}\setminus\{0\},\cdot)$$

21.
$$(\{x \in \mathbb{C} : xne0\}, +)$$

27.
$$(\{x \in \mathbb{Q} : x \ge 0\}, +)$$

22.
$$(\{x \in \mathbb{C} : x \neq 0\}, \cdot)$$

28.
$$(\{x \in \mathbb{Q} : x > 0\}, +)$$

23.
$$(\{x \in \mathbb{Z} : x \ge 0\}, +)$$

29.
$$(\{x \in \mathbb{Q}: x \geq 0\}, \cdot)$$

24.
$$(\{x \in \mathbb{Z} : x > 0\}, +)$$

30.
$$(\{x \in \mathbb{Q}: x > 0\}, \cdot)$$

25.
$$(\{x \in \mathbb{Z} : x \ge 0\}, \cdot)$$

31.
$$(\{x \in \mathbb{R} : x \ge 0\}, +)$$

26.
$$(\{x \in \mathbb{Z} : x > 0\}, \cdot)$$

32.
$$(\{x \in \mathbb{R} : x > 0\}, +)$$

- 33. $(\{x \in \mathbb{R} : x \ge 0\}, \cdot)$ 34. $(\{x \in \mathbb{R} : x > 0\}, \cdot)$
- 35. $(L(n), \cdot)$, die $n \times n$ -Matrizen mit der Matrixmultiplikation.
- 36. (L(n), +), die $n \times n$ -Matrizen mit der Matrixaddition.
- 37. $(GL(n), \cdot)$, die invertierbaren $n \times n$ -Matrizen mit der Matrixmultiplikation.
- 38. (GL(n), +), die invertierbaren $n \times n$ -Matrizen mit der Matrixaddition.
- 39. (V, +) wobei V ein Vektorraum ist und + die Vektor-Addition.
- 40. (L(V, W), +) mit V W Vektorräumen.
- 41. $(L(V), \circ)$ mit V Vektorraum.
- 42. etc

19 Gruppen-Einbettungen

Für welche der folgenden Gruppen G, H läßt sich G in H einbetten? (Mit Einbettung bezeichnen wir einen injektiven Homomorphismus.) K bezeichnet einen beliebigen Körper. GL(n) sind die invertierbaren $n \times n$ -Matrizen über K, mit der Matrix-Multiplikation als Verknüpfung.)

- 1. G = (K, +) und H die $n \times n$ Matrizen über K mit der Matrix-Addition (wobei K ein beliebiger Körper ist).
- 2. $G = (K \setminus \{0\}, \cdot)$ und H = GL(n) über K.
- 3. $G = (\mathbb{Z}, +)$ und H die 2×2 Matrizen über \mathbb{Q} mit der Matrix-Addition.
- 4. $G = (\mathbb{Q} \setminus \{0\}, \cdot)$ und H die GL(2) über \mathbb{Q} .
- 5. G die GL(2) über dem Grundkörper \mathbb{Q} und $H = (\mathbb{Q} \setminus \{0\}, \cdot)$.
- 6. G die GL(2) über dem Grundkörper \mathbb{Q} und $H = (\mathbb{Q}, +)$.
- 7. G die GL(2) über dem Grundkörper \mathbb{Q} und $H = (\mathbb{C} \setminus \{0\}, \cdot)$.
- 8. $G = (\mathbb{Z}, +)$ und $H = (\mathbb{Q} \setminus \{0\}, \cdot)$
- 9. $G = (\mathbb{Z}, +)$ und H die GL(2) über dem Grundkörper \mathbb{Q} .
- 10. $(\mathbb{Z}_2^{10}, +)$ (Vektorraum-Addition) und S_{11}
- 11. S_{27} und S_{28}
- 13. \mathbb{Z}_{1000} und S_5
- 15. S_5 und \mathbb{Z}_6

- 12. \mathbb{Z}_{235} und S_{235}
- 14. S_4 und \mathbb{Z}_{41}
- 16. S_3 und \mathbb{Z}

17. \mathbb{Z}_2 und \mathbb{Z}_6

19. \mathbb{Z}_5 und \mathbb{Z}_{41}

21. etc

18. \mathbb{Z}_5 und \mathbb{Z}_6

20. \mathbb{Z}_6 und \mathbb{Z}_{12}

20 Untergruppen

Ist G Unterruppe von H?

1.
$$H = (V, +)$$
 für V der Vektorraum \mathbb{R}^2 , und $G = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} : x \ge 0 \right\}$

2.
$$H = (V, +)$$
 für V der Vektorraum \mathbb{R}^2 , und $G = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} : x \in \mathbb{Q} \right\}$

3.
$$H = (V, +)$$
 für V der Vektorraum \mathbb{R}^2 , und $G = \left\{ \begin{pmatrix} x \\ x \end{pmatrix} : x \in \mathbb{R} \right\}$

4.
$$H = (V, +)$$
 für V der Vektorraum \mathbb{R}^2 , und $G = \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix} : x \in \mathbb{R} \right\}$

5. H = GL(2) (mit Matrixmultiplikation) und G die symmetrischen Matrizen in GL(2).

6. H = GL(2) (mit Matrixmultiplikation) und G die Diagonalatrizen in GL(2).

7. H = GL(n) (mit Matrixmultiplikation) und G = SL(n).

8. H = GL(n) (mit Matrixmultiplikation) über dem Grundkörper \mathbb{R} , und G = O(n)

9. $H = (\mathbb{Z}, +)$ und G die geraden Zahlen

10. $H = (\mathbb{Z}, +)$ und G die ungeraden Zahlen

11.
$$H = (\mathbb{Z}_6, +) \text{ und } G = {\overline{0}, \overline{3}}$$

12.
$$H = (\mathbb{Z}_5, +) \text{ und } G = {\overline{0}, \overline{3}}$$

13.
$$H = (\mathbb{Z}_6, +) \text{ und } G = {\overline{0}, \overline{2}}$$

14.
$$H = (\mathbb{Z}_4, +) \text{ und } G = \{\overline{0}, \overline{2}\}\$$

15.
$$H = (\mathbb{Z}_8, +) \text{ und } G = \{\overline{0}, \overline{2}\}\$$

16. etc

21 Untergruppen 2

Was gilt allgemein für Gruppen G und Untergruppen U < G:

- 1. Wenn G kommutativ ist, dann ist U kommutativ.
- 2. Wenn U kommutativ ist, dann ist G kommutativ.
- 3. Wenn G zyklisch ist, dann ist U zyklisch.
- 4. Wenn U zyklisch ist, dann ist G zyklisch.
- 5. Wenn G endlich ist, dann teilt die Größe (Ordnung) von U diejenige von G.
- 6. Wenn G endlich ist, und die Primzahl p die Größe (Ordnung) von G teilt, dann hat G eine Untergruppe der Größe p.
- 7. Wenn U ein Element mit Ordnung 17 enthält, dann auch G.
- 8. Wenn G ein Element mit Ordnung 17 enthält, dann auch U.
- 9. Wenn G ein Element mit Ordnung 17 enthält, und $a \in U$, dann teilt die Ordnung von a 17.

22 Ringe und Körper

Welche der folgenden Strukturen sind Ringe, kommutative Ringe, Körper?

1. $(\mathbb{N}, +, \cdot)$	10. $(\mathbb{C}\setminus\{0\},+,\cdot)$
2. $(\mathbb{Z},+,\cdot)$	11. $(\{x \in \mathbb{Z} : x \ge 0\}, +, \cdot)$
3. $(\mathbb{Q}, +, \cdot)$	12. $(\{x \in \mathbb{Z} : x > 0\}, +, \cdot)$
4. $(\mathbb{R},+,\cdot)$	13. $(\{x \in \mathbb{Q} : x \ge 0\}, +, \cdot)$
5. $(\mathbb{C}, +, \cdot)$	14. $(\{x \in \mathbb{Q} : x > 0\}, +, \cdot)$
6. $(\mathbb{N}\setminus\{0\},+,\cdot)$	15. $(\{x \in \mathbb{R} : x \ge 0\}, +, \cdot)$
7. $(\mathbb{Z}\setminus\{0\},+,\cdot)$	16. $(\{x \in \mathbb{R} : x > 0\}, +, \cdot)$
8. $(\mathbb{Q} \setminus \{0\}, +, \cdot)$	17. $(\{x \in \mathbb{R} : x \ge 0\}, +, \cdot)$
9. $(\mathbb{R}\setminus\{0\},+,\cdot)$	18. $(\{x \in \mathbb{R} : x > 0\}, +, \cdot)$

- 19. Die linearen Abbildungen von \mathbb{R}^n nach \mathbb{R}^n mit der Addition und Verknüpfung.
- 20. $(R[X], +, \cdot)$ wobei R ein KRE ist, + die Polynomaddition und \cdot die Polynommultiplikation

- 21. $(GL(n), +, \cdot)$ über einem Körper K, wobei + und \cdot die Matrix-Addition und Multiplikation ist.
- 22. Die 4×7 Matrizen über dem Grundkörper \mathbb{R} (mit der Matrix-Addition und Multiplikation).
- 23. Die 4×4 Matrizen über dem Grundkörper $\mathbb R$ (mit der Matrix-Addition und Multiplikation).

23 Ring-Einbettungen

Welche der folgenden Ringe lassen sich ineinander einbetten? (Ring-Einbettungen sind injektive Ring-Homomorphismen. Ein Ring-homomorphismus bildet das Einselement auf das Einselemnent ab.)

- 1. \mathbb{Z}_2 in \mathbb{Z}_4
- 2. \mathbb{Z}_4 in \mathbb{Z}_2
- 3. \mathbb{Q} in \mathbb{C}
- 4. $L(\mathbb{Z}_{41}^2)$ in \mathbb{Z} $(L(\mathbb{Z}_{41}^2)$ sind die 2×2 Matrizen über dem Grundkörper $\mathbb{Z}_{41})$
- 5. $\mathbb Z$ in $L(\mathbb Z_{41}^2)$ ($L(\mathbb Z_{41}^2)$ sind die 2×2 Matrizen über dem Grundkörper $\mathbb Z_{41}$)
- 6. $\mathbb{Z}_{41}[X]$ in \mathbb{Z} ($\mathbb{Z}_{41}[X]$ sind die Polynome mit Koeffizienten aus \mathbb{Z}_{41})
- 7. \mathbb{Z} in $\mathbb{Z}_{41}[X]$ ($\mathbb{Z}_{41}[X]$ sind die Polynome mit Koeffizienten aus \mathbb{Z}_{41})
- 8. \mathbb{Z} in $L(\mathbb{Q}^2)$ ($L(\mathbb{Q}^2)$ sind die rationalen 2×2 Matrizen)
- 9. etc

24 Unterringe

Welches der folgenden sind Unterringe der 7×7 Matrizen über \mathbb{R} ? (Unterringe müssen per Definition dasselbe Einselement enthalten.) Sind sie sogar Körper?

- 1. Die Diagonalmatrizen.
- 2. Die Diagonalmatrizen die denselben Eintrag in der Diagonale haben, d.h. $a_{i,j} = \lambda$ für i = j und 0 sonst.
- 3. Die symmetrischen Matrizen.
- 4. Die invertierbaren Matrizen.
- 5. Die Projektionen.
- 6. Die orthogonalen Matrizen.

- 7. Die Matrizen deren Einträge allesamt dieselbe Zahl sind, d.h. $a_{i,j} = c$ für alle i, j.
- 8. Die oberen Dreiecksmatrizen, d.h. $a_{i,j} = 0$ wenn i > j.
- 9. Die unteren Dreiecksmatrizen, d.h. $a_{i,j} = 0$ wenn i < j.

25 Unterringe und Körper

Welches der folgenden Teilmengen der 2×2 Matrizen über \mathbb{R} sind

- Abgeschlossen unter Addition? (D.h., enthalten mit A, B auch A + B.)
- Abgeschlossen unter Additiven Inversen? (D.h., enthalten mit A auch -A.)
- Abgeschlossen unter Multiplikation? (D.h., enthalten mit A, B auch $A \cdot B$.)
- Sind Unterring des Rings der 2×2 Matrizen über \mathbb{R} ? (Unterringe müssen per Definition dasselbe Einselement enthalten.)
- Sind sogar ein Körper?
- Sind Unter-Vektorraum des Vektorraums der 2×2 Matrizen über \mathbb{R} ?
- 1. Die Matrizen der Form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ für $a \in \mathbb{R}$
- 2. Die Matrizen der Form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ für $a \in \mathbb{R}$
- 3. Die Matrizen der Form $\begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$ für $a \in \mathbb{R}$
- 4. Die Matrizen der Form $\begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$ für $a \in \mathbb{R}$.
- 5. Die Matrizen der Form $\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ für $a \in \mathbb{R}$.
- 6. Die Matrizen der Form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ für $a \in \mathbb{R}$.
- 7. Die Matrizen der Form $\begin{pmatrix} a & -a \\ -a & a \end{pmatrix}$ für $a \in \mathbb{R}$.
- 8. Die Matrizen der Form $\begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ für $a \in \mathbb{R}$.
- 9. Die Matrizen der Form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ für $a,b \in \mathbb{R}$

- 10. Die Matrizen der Form $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ für $a, b \in \mathbb{R}$
- 11. Die Matrizen der Form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ für $a, b \in \mathbb{R}$
- 12. Die Matrizen der Form $\begin{pmatrix} a & b \\ -a & b \end{pmatrix}$ für $a, b \in \mathbb{R}$
- 13. Die Matrizen der Form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ für $a, b \in \mathbb{R}$

26 Vektorraum-Einbettungen

Gibt es eine Einbettung (lineare injektive Abbildung) vom Vektorraum V in den Vektorraum W (alle VR über \mathbb{R})?

1.
$$V = \mathbb{R}^4$$
 und $W = \mathbb{R}^{12}$

4.
$$V$$
 die 2×3 Matrizen und $W = \mathbb{R}^7$

2.
$$V = \mathbb{R}^{13}$$
 und $W = \mathbb{R}^{11}$

5.
$$V = \mathbb{R}^4$$
 und W die 2×2 -Matrizen

3.
$$V$$
 die 2×3 Matrizen und $W = \mathbb{R}^5$

27 Untergruppen einer gegebenen Größe

Hat die Gruppe G eine Untergruppe der Größe n?

1.
$$G = (\mathbb{Z}_6, +), n = 2$$
 5. $G = S_{12}, n = 10!$ 9. $G = (\mathbb{Z}, +), n = 10$

5.
$$G = S_{12}, n = 10!$$

9.
$$G = (\mathbb{Z}, +), n = 10$$

2.
$$G = (\mathbb{Z}_6, +), n = 3$$
 6. $G = S_{12}, n = 11$

6.
$$G = S_{12}$$
, $n = 11$

3.
$$G = (\mathbb{Z}_6, +), n = 5$$
 7. $G = S_{12}, n = 13$

7.
$$G = S_{12}, n = 13$$

4.
$$G = (\mathbb{Z}_{110}, +), n = 11$$
 8. $G = S_7, n = 11$

8.
$$G = S_7$$
, $n = 11$

28 Matrizen: Elementare Operationen

Welcher der folgenden Sätze gilt für alle Matrizen A, wobei X "Bild", "Kern", "Rang", "Spur" oder "Determinante" oder "die Invertierbarkeit von A" sein kann:

- 1. Vertauschen zweier Zeilen lässt X unverändert.
- 2. Vertauschen zweier Spalten lässt X unverändert.
- 3. Multiplikation einer Zeile mit $\lambda \neq 0$ lässt X unverändert.
- 4. Multiplikation einer Spalte mit $\lambda \neq 0$ lässt X unverändert.

- 5. Multiplikation einer Zeile mit (bzw: ersetzen durch) 0 lässt X unverändert.
- 6. Multiplikation einer Spalte mit (bzw: ersetzen durch) 0 lässt X unverändert.

Gilt allgemein:

- 7. Wenn B durch eine elementare Zeilenoperation aus A konstruieren kann, dann ist B ähnlich zu A.
- 8. Wenn B ähnlich ist zu A, dann kann man B durch elementare Zeilen- und Spaltenoperationen aus A konstruieren.

29 $n \times n$ Matrizen

Welcher der folgenden Sätze gilt für alle $n \times n$ Matrizen (bzw für alle invertierbaren $n \times n$ -Matrizen, falls A^{-1} erwähnt wird):

- 1. Wenn $A = A^{-1}$, dann det(A) = 1
- 2. Wenn $A = A^{-1}$, dann $det(A) = \pm 1$
- 3. Wenn A Projektion ist, dann ist $det(A) = \pm 1$
- 4. Wenn A Orthogonal ist, dann ist det(A) = 1
- 5. Wenn A Orthogonal ist, dann ist $det(A) = \pm 1$
- 6. Wenn det(A) = 1 dann ist A orthogonal.
- 7. Wenn det(A) = 1 dann ist A Drehung.
- 8. Wenn A Drehung ist dann ist det(A) = 1
- 9. $\det(A) = \det(A^{-1})$
- 10. $\det(A^{-1}) = \det(A)^{-1}$
- 11. $\det(A^{\top}) = \det(A)^{-1}$
- 12. $\det(A^{\top}) = \det(A)$
- 13. $\det(A^{\top}) = \det(A^{-1})$
- 14. Die Verknüpfung von Projektionen ist eine Projektion.
- 15. Die Summe zweier Projektionen ist eine Projektion.
- 16. Das Vielfache (mit einem $\lambda \in K$) einer Projektion ist eine Projektion.
- 17. Das Vielfache mit einem $\lambda \in K$ ungleich Null einer Projektion ist eine Projektion.

- 18. Das Produkt zweier symmetrischen Matrizen ist symmetrisch.
- 19. Die Summe zweier symmetrischen Matrizen ist symmetrisch.
- 20. Das Vielfache (mit einem $\lambda \in K$) einer symmetrischen Matrix ist symmetrisch.
- 21. Das Vielfache mit einem $\lambda \in K$ ungleich Null einer symmetrischen Matrix ist symmetrisch.
- 22. Das Produkt zweier invertierbaren Matrizen ist invertierbar.
- 23. Die Summe zweier invertierbaren Matrizen ist invertierbar.
- 24. Das Vielfache (mit einem $\lambda \in K$) einer invertierbaren Matrix ist invertierbar.
- 25. Das Vielfache mit einem $\lambda \in K$ ungleich Null einer invertierbaren Matrix ist invertierbar.
- 26. Wenn A eine Projektion ist, dann ist $A^n = A$ für jedes natürliche $n \ge 1$.
- 27. Jede komplexe $n \times n$ -Matrix hat mindestens einen komplexen Eigenwert.
- 28. Eine komplexe 2×2 -Matrix hat zwei verschiedene komplexe Eigenwerte.
- 29. etc

30 Eigenwerete und -Vektoren

Welcher der folgenden Sätze gilt allgemein:

- 1. Wenn λ ein Eigenwert von A ist, dann ist λ Nullstelle des charakteristischen Polynoms von A.
- 2. Wenn λ Nullstelle des charakteristischen Polynoms von A ist, dann ist λ ein Eigenwert von A.
- 3. Für $\lambda_1 \neq \lambda_2$ in K gibt es kein $v \neq 0$ in V das gleichzeitig Eigenvektor von λ_1 und λ_2 ist.
- 4. Für $\lambda_1 \neq \lambda_2$ in K und v_1 ein λ_1 -Eigenvektor und v_2 ein λ_2 -Eigenvektor ist v_1 und v_2 orthogonal.
- 5. Für $\lambda_1 \neq \lambda_2$ in K und v_1 ein λ_1 -Eigenvektor und v_2 ein λ_2 -Eigenvektor ist v_1 und v_2 l.u.
- 6. Zwei orthogonale Vektoren können nicht Eigenvektoren desselben Eigenwertes sein.
- 7. λ ist Eigenwert von A gdw $\frac{1}{\lambda}$ Eigenwert von A^{-1} ist.
- 8. Wenn die reelle $n \times n$ -Matrix A einen Eigenwert in \mathbb{C} hat, dann auch in \mathbb{R} .

- 9. Für die reelle $n \times n$ -Matrix A und $\lambda \in \mathbb{R}$ gilt: Es gibt ein $\vec{v} \in \mathbb{R}^2$ mit $A\vec{v} = \lambda \vec{v}$ gdw es gibt ein $\vec{v} \in \mathbb{C}^2$ mit $A\vec{v} = \lambda \vec{v}$.
- 10. Etc

31 Eigenwerte bestimmen

Welche der folgenden Zahlen sind Eigenwerte der Matrix A? (Wenn A keine Eigenwerte hat ist keine Zahl anzukreuzen, wenn A genau einen EW hat dann ist dieser EW anzukreuzen, wenn A zwei verschiedene hat dann sind beide anzukreuzten, etc)

1.
$$\begin{pmatrix} -2 & -3 \\ -3 & 1 \end{pmatrix}$$
 3. $\begin{pmatrix} 2 & 3 \\ -4 & -4 \end{pmatrix}$ 5. $\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}$ 7. $\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$ 2. $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ 4. $\begin{pmatrix} 1 & -3 \\ -4 & -3 \end{pmatrix}$ 6. $\begin{pmatrix} -2 & 3 \\ -4 & -2 \end{pmatrix}$ 8. etc

3.
$$\begin{pmatrix} 2 & 3 \\ -4 & -4 \end{pmatrix}$$

5.
$$\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}$$

7.
$$\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

$$4. \begin{pmatrix} 1 & -3 \\ -4 & -3 \end{pmatrix}$$

6.
$$\begin{pmatrix} -2 & 3 \\ -4 & -2 \end{pmatrix}$$

32 Verknüpfungstabellen

In welchen der Strukturen $\{a, b, c\}$ mit der folgenden Verknüpfungstabelle ist \cdot kommutativ? Gibt es ein neutrales Element? (welches?) Wenn es ein neutrales Element gibt: Ist die Operation assoziativ? Eine Gruppe? (Hinweis: Für assoziativität muss hier nur (xy)x = x(yx), (xx)y = x(xy), (xy)y = x(yy) geprüft werden für x, y Elemente ungleich dem neutralen Element.)

33 Verknüpfungstabellen 2

Gegeben die folgende teilweise ausgefüllte Verknüpfungstabelle der Gruppe $G = \{e, a, b, c\}$ bzw $G = \{e, a, b, c\}$ mit neutralem Element e. Ergänze die Verknüpfungstabelle. Ist das eindeutig möglich?

1.	e	e a b c e	6. a
2.	e a b c e	c	c _ e _ e e
3.	e a b c e	c L L L	c

34 Verknüpfungstabellen 3

Sei $G=\{e,a,b,c\}$ und \circ die durch folgende Verknüpfungstabelle gegebene Operation. Es gilt dass \circ assoziativ ist (das muss nicht mehr nachgerechnet werden). Ist (G,\circ) eine Gruppe?

		e	a	b	\mathbf{c}	d			e	\mathbf{a}	b	\mathbf{c}	d
	е	е	a	b	c	d		е	е	a	b	c	d
1.	a	a	\mathbf{c}	a	\mathbf{c}	a	3.	a	a	\mathbf{c}	e	d	b
1.	b	b	a	b	\mathbf{c}	b	ა.	b	b	e	d	a	\mathbf{c}
	c	c	\mathbf{c}	\mathbf{c}	\mathbf{c}	\mathbf{c}		\mathbf{c}	c	d	a	b	e
	d	d	a	b	\mathbf{c}	d		d	d	b	\mathbf{c}	e	a
		e	\mathbf{a}	b	\mathbf{c}	d			e	\mathbf{a}	b	\mathbf{c}	d
	е	е	a	b	c	d		е	е	a	b	c	d
2.	a	a	b	\mathbf{c}	d	e	1	\mathbf{a}	a	d	\mathbf{c}	e	b
۷.	b	b	\mathbf{c}	d	e	a	4.	b	b	\mathbf{c}	a	d	e
	\mathbf{c}	c	d	e	a	b		\mathbf{c}	c	e	d	b	a
	d	d	e	a	b	\mathbf{c}		d	d	b	e	a	\mathbf{c}

		e	a	b	\mathbf{c}	d
	e	e	a	b	$^{\mathrm{c}}$	d
5.	\mathbf{a}	a	\mathbf{c}	\mathbf{c}	$^{\mathrm{c}}$	\mathbf{c}
ο.	b	b	b	b	b	b
	\mathbf{c}	c	\mathbf{c}	\mathbf{c}	\mathbf{c}	\mathbf{c}
	d	d	b	b	b	b
		ا		b		d
		е	a		С	
	\mathbf{e}	e	\mathbf{a}	b	\mathbf{c}	d
6.	\mathbf{a}	a	d	e	b	\mathbf{c}
0.	b	b	\mathbf{e}	\mathbf{c}	d	\mathbf{a}
	\mathbf{c}	c	b	d	a	\mathbf{e}
	d	d	\mathbf{c}	a	e	b
				,		
		e	a	b	\mathbf{c}	d
	<u>е</u>	e e	a	b b	$\frac{\mathbf{c}}{\mathbf{c}}$	d
7	e a					
7.		е	a	b	c	d
7.	a	e a	a a	b c	c	d a
7.	a b	e a b	a a c	b с а	c c a	d a b
7.	a b c	e a b c d	a a c c a	b c a a b	c c a a c	d a b c d
7.	a b c	e a b c	a a c c	b c a a b	c c a a	d a b c d
7.	a b c	e a b c d	a a c c a	b c a a b b	c c a a c	d a b c d
	a b c d	e a b c d	a a c c a a	b c a a b	c c a a c	d a b c d
7. 8.	a b c d	e a b c d	a a c c a a a	b c a a b b	c c a a c c c	d a b c d d
	a b c d	e a b c d e e a	a a c c a a a a	b c a b b b b	c c a a c c c c c	d a b c d d d c

		e	a	b	\mathbf{c}	d
	е	е	a	b	c	d
9.	\mathbf{a}	a	\mathbf{a}	b	a	a
9.	b	b	b	b	b	b
	\mathbf{c}	c	\mathbf{c}	b	\mathbf{c}	\mathbf{c}
	d	d	a	b	\mathbf{c}	d
		е	a	b	c	d
	e	e	\mathbf{a}	b	\mathbf{c}	d
10.	\mathbf{a}	a	b	d	\mathbf{e}	\mathbf{c}
10.	b	b	d	\mathbf{c}	a	\mathbf{e}
	\mathbf{c}	c	\mathbf{e}	\mathbf{a}	d	b
	d	d	\mathbf{c}	e	b	a
		ا ا	9	h	c	А
		e	a	b	c	d
	<u>е</u>	е	a	b	С	d
11.	a	e a	a b	b b	c b	d b
11.	a b	e a b	a b b	b b b	c b b	d b b
11.	a b c	e a b c	a b b b	b b b	c b b	d b b d
11.	a b	e a b	a b b	b b b	c b b	d b b
11.	a b c	e a b c	a b b b	b b b	c b b	d b b d
11.	a b c	e a b c d	a b b b	b b b b	c b c d	d b b d c
	a b c d	e a b c d	a b b b b a	b b b b b b	c b c d	d b d c d
11. 12.	a b c d	e a b c d e e	a b b b b a a	b b b b b b b	c b c d c c	d b b d c d
	a b c d	e a b c d e e a	a b b b b a a c	b b b b b b d	c b c d c c b	d b b d c d

35 Identifizieren von Projektionen

Ist die folgende Matrix eine Projektion?

$$1. \begin{pmatrix} 6 & 3 \\ -10 & -5 \end{pmatrix}$$

$$4. \begin{pmatrix} 5 & -5 \\ 4 & -4 \end{pmatrix}$$

$$7. \begin{pmatrix} 6 & 3 \\ -10 & -5 \end{pmatrix}$$

$$2. \begin{pmatrix} -3 & -6 \\ 2 & 4 \end{pmatrix} \qquad 5. \begin{pmatrix} 7 & -7 \\ 8 & -6 \end{pmatrix}$$

$$5. \ \begin{pmatrix} 7 & -7 \\ 8 & -6 \end{pmatrix}$$

$$8. \begin{pmatrix} -6 & 1 \\ -41 & 7 \end{pmatrix}$$

$$3. \begin{pmatrix} 7 & 20 \\ -1 & -6 \end{pmatrix}$$

$$6. \begin{pmatrix} 6 & 1 \\ -14 & -5 \end{pmatrix}$$

36 Quadrieren von Projektionen

Die folgende Matrix A ist eine Projektion. Berechne die Spur $Tr(A^2)$.

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 6 & 3 & 6 \\ -3 & -1 & -2 \end{pmatrix}$$

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 6 & 3 & 6 \\ -3 & -1 & -2 \end{pmatrix}$$
 4.
$$\begin{pmatrix} \frac{6}{7} & -\frac{12}{7} & -\frac{6}{7} \\ -\frac{2}{7} & \frac{4}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{6}{7} & -\frac{3}{7} \end{pmatrix}$$

$$7. \begin{pmatrix} \frac{4}{3} & \frac{4}{3} & 0\\ -\frac{1}{3} & -\frac{1}{3} & 0\\ -\frac{2}{3} & -\frac{2}{3} & 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 0 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$2. \begin{pmatrix} 0 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad 5. \begin{pmatrix} \frac{4}{7} & -\frac{6}{7} & -\frac{6}{7} \\ 0 & 0 & 0 \\ -\frac{2}{7} & \frac{3}{7} & \frac{3}{7} \end{pmatrix} \qquad 8. \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$8. \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

3.
$$\begin{pmatrix} \frac{10}{13} & -\frac{9}{13} & -\frac{3}{13} \\ -\frac{6}{13} & -\frac{5}{13} & -\frac{6}{13} \\ \frac{8}{13} & \frac{24}{13} & \frac{21}{13} \end{pmatrix} \qquad 6. \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{7}{6} & \frac{1}{6} \\ \frac{1}{2} & -\frac{1}{6} & \frac{5}{6} \end{pmatrix}$$

$$6. \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{7}{6} & \frac{1}{6} \\ \frac{1}{2} & -\frac{1}{6} & \frac{5}{6} \end{pmatrix}$$

37 Identifizieren von orthogonalen Matrizen

Ist die folgende Matrix orthogonal?

1.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$

1.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$
 3.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix}$$
 6.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

6.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

$$2. \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$2. \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix} \qquad 4. \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix} \qquad 8. \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

$$\begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

5.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

38 Invertieren von orthogonalen Matrizen

Die folgende Matrix A ist orthogonal. Berechne die Spur $Tr(A^{-1})$.

$$1. \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$4. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \qquad 7. \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$7. \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$2. \begin{tabular}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{tabular}$$

$$5. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$5. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$8. \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$3. \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

3.
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 6.
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

39 Berechnen der Determinante

Berechne $det(A^2)$ für die folgende Matrix A:

1.
$$\begin{pmatrix} 0 & -2 & -4 & -2 \\ 0 & -1 & -2 & -1 \\ 0 & -1 & -3 & 1 \\ 4 & 3 & 1 & -4 \end{pmatrix}$$

1.
$$\begin{pmatrix} 0 & -2 & -4 & -2 \\ 0 & -1 & -2 & -1 \\ 0 & -1 & -3 & 1 \\ 4 & 3 & 1 & -4 \end{pmatrix}$$
 4.
$$\begin{pmatrix} -1 & -2 & 3 & 4 \\ -1 & -2 & 2 & 3 \\ 0 & 1 & -4 & 2 \\ 0 & -1 & 3 & -2 \end{pmatrix}$$
 7.
$$\begin{pmatrix} 0 & 3 & 2 & 1 \\ -3 & -3 & -3 & -4 \\ 0 & 2 & -2 & 2 \\ -2 & -2 & 1 & -4 \end{pmatrix}$$

7.
$$\begin{pmatrix} 0 & 3 & 2 & 1 \\ -3 & -3 & -3 & -4 \\ 0 & 2 & -2 & 2 \\ -2 & -2 & 1 & -4 \end{pmatrix}$$

$$2. \begin{pmatrix} 2 & 0 & 4 & -3 \\ -1 & -1 & -4 & 4 \\ -3 & 2 & -3 & 0 \\ 1 & -2 & 3 & 1 \end{pmatrix} \qquad 5. \begin{pmatrix} 2 & -3 & 4 & -4 \\ 2 & 3 & 0 & 3 \\ 4 & -1 & -3 & -3 \\ 1 & -2 & -1 & -3 \end{pmatrix} \qquad 8. \begin{pmatrix} -4 & 0 & 1 & -2 \\ -1 & -2 & 2 & 0 \\ 0 & 1 & 1 & 4 \\ 4 & -2 & -1 & -1 \end{pmatrix}$$

5.
$$\begin{pmatrix} 2 & -3 & 4 & -4 \\ 2 & 3 & 0 & 3 \\ 4 & -1 & -3 & -3 \\ 1 & -2 & -1 & -3 \end{pmatrix}$$

$$8. \begin{pmatrix} -4 & 0 & 1 & -2 \\ -1 & -2 & 2 & 0 \\ 0 & 1 & 1 & 4 \\ 4 & -2 & -1 & -1 \end{pmatrix}$$

3.
$$\begin{pmatrix} -2 & -4 & 2 & -4 \\ -3 & -1 & 3 & -1 \\ -1 & -2 & -3 & 3 \\ -2 & 1 & 4 & -2 \end{pmatrix} \qquad 6. \begin{pmatrix} -2 & 2 & 3 & 0 \\ 1 & 2 & -3 & 2 \\ -1 & 2 & 0 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix}$$

$$6. \begin{pmatrix} -2 & 2 & 3 & 0 \\ 1 & 2 & -3 & 2 \\ -1 & 2 & 0 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix}$$

40 Euklidischer Algorithmus

Der Euklidische Algorithmus gibt für 1 < a < b ganze Zahlen x, y mit $x \cdot a + y \cdot b =$ ggT(a, b). Berechne |x| + |y| (die Summe der Absolutbeträge).

(Bemerkung: Es sind diejenigen x und y gesucht die sich wie in der VO besprochen aus dem Euklidischen Algorithmus ergeben; es gibt auch andere x' y' mit der Eigenschaft $x' \cdot a + y' \cdot b = ggT(a, b).$

1.
$$a = 14, b = 19$$
 5. $a = 36, b = 44$ 9. $a = 32, b = 38$ 13. $a = 11, b = 20$

5.
$$a = 36, b = 44$$

9.
$$a = 32, b = 38$$

13.
$$a = 11, b = 20$$

2.
$$a = 24$$
. $b = 33$

6.
$$a = 11$$
. $b = 14$

2.
$$a = 24, b = 33$$
 6. $a = 11, b = 14$ 10. $a = 34, b = 48$

$$3 \quad a = 26 \quad b = 4/$$

3.
$$a = 26, b = 44$$
 7. $a = 16, b = 37$ 11. $a = 22, b = 31$

11.
$$a = 22, b = 3$$

4.
$$a = 21$$
. $b = 36$

8.
$$a = 41$$
. $b = 49$

4.
$$a = 21, b = 36$$
 8. $a = 41, b = 49$ 12. $a = 23, b = 27$

41 Inverse in \mathbb{Z}_n

Berechne (z.B. mithilfe des Euklidischen Algorithmus) \overline{a}^{-1} in \mathbb{Z}_n . Genauer: Finde $0 \le b < n$ (Achtung! nur dieses b verwenden) s.d $\overline{a} \cdot \overline{b} = 1$ in \mathbb{Z}_n , oder äquivalent: $a \cdot b \equiv 1 \mod n$. Als Antwort ist das $0 \le c < 5$ gesucht mit $b \equiv c \mod 5$.

Bsp: Angenommen n=47 und a=41, dann bekommt man als a^{-1} z.B. -8 (weil $-8\cdot 41=-328\equiv 1\mod 47$). Dann ist das gesuchte b=-8+47=39. (Beachte: $\overline{b}=\overline{-8}$ ist das eindeutige Inverse von \overline{a} in \mathbb{Z}_n .) Daher ist c=4 (39 $\equiv 4\mod 5$).

1.
$$n = 35$$
. $a = 33$

4.
$$n = 31$$
. $a = 14$

7.
$$n = 47, a = 17$$

2.
$$n = 47, a = 22$$

5.
$$n = 27$$
, $a = 23$

8.
$$n = 14, a = 11$$

3.
$$n = 35, a = 24$$

6.
$$n = 37$$
, $a = 16$

42 Drei Vektoren im \mathbb{R}^3

Sind die folgenden Vektoren x, y, z in $V = \mathbb{R}^3$ l.u.? Erzeugen Sie V? Sind sie eine Basis? Sind sie orthonormal? Sind sie eine ONB?

1.
$$x = \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix}, y = \begin{pmatrix} -4 \\ -2 \\ 3 \end{pmatrix}, z = \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}$$

2.
$$x = \begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix}, y = \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}, z = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

3.
$$x = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix}, y = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}, z = \begin{pmatrix} -6 \\ -2 \\ -4 \end{pmatrix}$$

4.
$$x = \begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}, y = \begin{pmatrix} -2 \\ 4 \\ 4 \end{pmatrix}, z = \begin{pmatrix} 1 \\ -1 \\ -6 \end{pmatrix}$$

5.
$$x = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}, y = \begin{pmatrix} -6 \\ -2 \\ 1 \end{pmatrix}, z = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$

6.
$$x = \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix}, y = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, z = \begin{pmatrix} -4 \\ 2 \\ -5 \end{pmatrix}$$

7.
$$x = \begin{pmatrix} -3 \\ -2 \\ 0 \end{pmatrix}, y = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}, z = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix}$$

8.
$$x = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}, y = \begin{pmatrix} 5 \\ 4 \\ -2 \end{pmatrix}, z = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

9.
$$x = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

10.
$$x = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

11.
$$x = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

12.
$$x = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

13.
$$x = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

14.
$$x = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, y = \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, z = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

15. etc

43 Vier Vektoren im \mathbb{R}^3

Sind die folgenden vier Vektoren im $V = \mathbb{R}^3$ l.u.? Erzeugen Sie V? Sind sie eine Basis? Sind sie orthonormal? Sind sie eine ONB?

1.
$$\begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -4 \\ 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -4 \\ -3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -4 \\ -3 \\ 4 \end{pmatrix}$

13.
$$\begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$

2.
$$\begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 14 \\ 6 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

14.
$$\begin{pmatrix} -2\\4\\4 \end{pmatrix}$$
, $\begin{pmatrix} 4\\1\\4 \end{pmatrix}$, $\begin{pmatrix} 3\\0\\2 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$

3.
$$\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}$

15.
$$\begin{pmatrix} -5\\1\\4 \end{pmatrix}$$
, $\begin{pmatrix} -5\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 0\\-2\\2 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$

4.
$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

16.
$$\begin{pmatrix} 6 \\ 0 \\ 9 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

5.
$$\begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$

17.
$$\begin{pmatrix} 0 \\ 9 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$

6.
$$\begin{pmatrix} 7\\13\\7 \end{pmatrix}$$
, $\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 7\\8\\7 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$

18.
$$\begin{pmatrix} -1\\4\\4 \end{pmatrix}$$
, $\begin{pmatrix} 2\\4\\4 \end{pmatrix}$, $\begin{pmatrix} -3\\3\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\4\\4 \end{pmatrix}$

7.
$$\begin{pmatrix} 2 \\ -4 \\ -4 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$

19.
$$\begin{pmatrix} 2\\1\\6 \end{pmatrix}$$
, $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$

8.
$$\begin{pmatrix} 1\\11\\6 \end{pmatrix}$$
, $\begin{pmatrix} 0\\5\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\17\\10 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$

$$20. \quad \begin{pmatrix} 3\\2\\-2 \end{pmatrix}, \begin{pmatrix} 2\\4\\-2 \end{pmatrix}, \begin{pmatrix} 4\\-4\\-1 \end{pmatrix}, \begin{pmatrix} 4\\0\\-2 \end{pmatrix}$$

9.
$$\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$

21.
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 10 \\ 4 \end{pmatrix}$

10.
$$\begin{pmatrix} -4\\4\\-3 \end{pmatrix}$$
, $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} -2\\2\\-4 \end{pmatrix}$, $\begin{pmatrix} -2\\2\\-2 \end{pmatrix}$

22.
$$\begin{pmatrix} 7 \\ 0 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 8 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

11.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 9 \\ 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$

23.
$$\begin{pmatrix} -2\\0\\-3 \end{pmatrix}$$
, $\begin{pmatrix} -5\\0\\-2 \end{pmatrix}$, $\begin{pmatrix} 3\\0\\4 \end{pmatrix}$, $\begin{pmatrix} -3\\0\\-2 \end{pmatrix}$

12.
$$\begin{pmatrix} -5 \\ -5 \\ -5 \end{pmatrix}$$
, $\begin{pmatrix} -5 \\ 4 \\ -5 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 3 \\ -4 \end{pmatrix}$, $\begin{pmatrix} -5 \\ 3 \\ -5 \end{pmatrix}$

24.
$$\begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ -5 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -4 \\ 4 \end{pmatrix}$

44 Zwei Vektoren im \mathbb{R}^4

Sind die folgenden zwei Vektoren l.u.? Erzeugen sie den \mathbb{R}^4 ? Sind sie eine Basis? Sind sie orthonormal? Eine ONB?

$$1. \begin{pmatrix} 1\\3\\-2\\1 \end{pmatrix}, \begin{pmatrix} -2\\-6\\4\\-2 \end{pmatrix}$$

$$3. \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}$$

$$5. \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$2. \begin{pmatrix} 1\\3\\-2\\1 \end{pmatrix}, \begin{pmatrix} 2\\-6\\4\\3 \end{pmatrix}$$

$$4. \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}$$

$$6. \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

45 Linear unabhängig in \mathbb{Z}_n^2

Sind die folgenden zwei Vektoren in \mathbb{Z}_p^2 l.u.? Erzeugen Sie V? Sind sie eine Basis? Der besseren Lesbarkeit halber schreiben wir nur 2 statt $\overline{2}$ etc.

1.
$$p=3$$
, $\begin{pmatrix} 2\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\2 \end{pmatrix}$

7.
$$p = 7$$
, $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$

13.
$$p = 7$$
, $\binom{4}{1}$, $\binom{6}{5}$

$$2. \ p = 7, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

8.
$$p = 7$$
, $\binom{1}{4}$, $\binom{3}{4}$

8.
$$p = 7$$
, $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ 14. $p = 5$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$

3.
$$p = 5$$
, $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

9.
$$p=3$$
, $\begin{pmatrix} 1\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\2 \end{pmatrix}$

15.
$$p = 5$$
, $\binom{2}{4}$, $\binom{1}{3}$

4.
$$p=3$$
, $\begin{pmatrix} 1\\2 \end{pmatrix}$, $\begin{pmatrix} 1\\1 \end{pmatrix}$

10.
$$p = 7$$
, $\begin{pmatrix} 6 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 6 \\ 5 \end{pmatrix}$

16.
$$p = 5, \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

5.
$$p = 5, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

11.
$$p=5$$
, $\begin{pmatrix} 4\\4 \end{pmatrix}$, $\begin{pmatrix} 4\\4 \end{pmatrix}$

17.
$$p = 5, \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$6. \ p = 5, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

12.
$$p = 3, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

18.
$$p = 7$$
, $\binom{5}{2}$, $\binom{4}{6}$

Bzw.: Für welches p sind die gegebene Vektoren l.u. / Basis / ... in \mathbb{Z}_p^2 ? Gilt allgemein:

- 1. Sei V ein Vektorraum über einem Körper K, und $v \neq \vec{0}$ in V. Dann ist $v + v \neq \vec{0}$.
- 2. Sei V ein Vektorraum über einem Körper K, und $\lambda \neq 0$ in K, und $v \neq \vec{0}$ in V. Dann ist $\lambda v \neq \vec{0}$.

- 3. Sei V ein Vektorraum über einem Körper K, und (v_1, v_2) l.u. Dann ist auch $(v_1, v_2 + v_1)$ l.u.
- 4. Sei V ein Vektorraum über einem Körper K, und (v_1, v_2) l.u. Dann ist auch $(v_1, v_2 + v_2)$ l.u.

46 Rang von reellen Matrizen

 $8. \begin{pmatrix} 1 & -4 & 2 \\ -1 & 1 & -2 \\ -3 & -2 & 3 \end{pmatrix}$

Was ist der Zeilenrang, der Spaltenrang, der Rang der folgenden Matrix A? Was ist die Dimension von $\ker(A)$ und von $\operatorname{img}(A)$? Ist A injektiv, surjektiv, bijektiv?

1. Betrachte die Matrix M deren Spalten aus den drei Vektoren aus Beispiel 42.1 besteht

2 etc Analog für die anderen Punkte aus Beispiel 42.

47 Invertierbarkeit von reellen Matrizen

Welche der folgenden reellen 2x2 oder 3x3 Matrizen ist invertierbar?

1.
$$\begin{pmatrix} -2 & -3 & 0 \\ -2 & 1 & 2 \\ 4 & -2 & -4 \end{pmatrix}$$

9. $\begin{pmatrix} -3 & 2 & 2 \\ 4 & 2 & -2 \\ 3 & -1 & 0 \end{pmatrix}$

17. $\begin{pmatrix} 1 & -4 & 0 \\ -3 & 1 & 0 \\ -2 & -2 & 0 \end{pmatrix}$

2. $\begin{pmatrix} -1 & -1 & 1 \\ 4 & -4 & -4 \\ 2 & -4 & -4 \end{pmatrix}$

10. $\begin{pmatrix} 0 & -3 \\ 0 & 2 \end{pmatrix}$

18. $\begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$

3. $\begin{pmatrix} 2 & 2 \\ -1 & 3 \end{pmatrix}$

11. $\begin{pmatrix} -2 & -3 \\ 0 & 0 \end{pmatrix}$

12. $\begin{pmatrix} 3 & 0 & 0 \\ 3 & 4 & 0 \\ 4 & -2 & 0 \end{pmatrix}$

20. $\begin{pmatrix} -2 & 1 & -1 \\ -2 & 4 & -4 \\ 2 & 3 & 2 \end{pmatrix}$

5. $\begin{pmatrix} 1 & -1 \\ 0 & -3 \end{pmatrix}$

13. $\begin{pmatrix} 0 & -3 & -4 \\ 1 & -1 & -1 \\ 3 & -3 & -3 \end{pmatrix}$

21. $\begin{pmatrix} 2 & 3 \\ -4 & -4 \end{pmatrix}$

6. $\begin{pmatrix} 0 & -1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{pmatrix}$

14. $\begin{pmatrix} -4 & -4 \\ 1 & 1 \end{pmatrix}$

22. $\begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix}$

7. $\begin{pmatrix} -4 & -3 & -3 \\ 4 & 4 & 2 \\ -3 & -3 & 4 \end{pmatrix}$

15. $\begin{pmatrix} 0 & -4 & 2 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$

16. $\begin{pmatrix} 0 & 0 & 0 \\ -4 & -2 & 2 \\ -4 & -4 & -2 \end{pmatrix}$

48 Rang von Matrizen über \mathbb{Z}_p

(Frage wurde aus dem Katalog entfernt)

49 Lösungen von linearen Gleichungssystemen

Hat das Gleichungsystem Ax = b (über \mathbb{R}): keine Lösung; genau eine Lösung; oder mehr als eine Lösung?

$$\begin{array}{lll} 1. \ A = \begin{pmatrix} 0 & 2 & -2 \\ 1 & 1 & -1 \\ -2 & -2 & -1 \\ 4 & 4 & -1 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 2 \\ -1 \\ 6 \end{pmatrix} & 10. \ A = \begin{pmatrix} -1 & -1 & 2 \\ -3 & -2 & 4 \\ -5 & -2 & 4 \end{pmatrix}, \ b = \begin{pmatrix} -1 \\ 2 \\ -3 \\ 7 \end{pmatrix} \\ 2. \ A = \begin{pmatrix} -1 & -2 & 0 \\ 5 & 4 & 3 \\ 1 & 4 & -1 \\ 9 & 4 & 7 \end{pmatrix}, \ b = \begin{pmatrix} 5 \\ -22 \\ -6 \\ -38 \end{pmatrix} & 11. \ A = \begin{pmatrix} -1 & -4 & 1 & -9 \\ 2 & -1 & 4 & -6 \\ 0 & 3 & -2 & 8 \end{pmatrix}, \ b = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \\ 3. \ A = \begin{pmatrix} -3 & -6 & 3 \\ -3 & -4 & 2 \\ 0 & -2 & 1 \\ -6 & -6 & 3 \end{pmatrix}, \ b = \begin{pmatrix} 27 \\ 20 \\ 7 \\ 33 \end{pmatrix} & 12. \ A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 4 & 5 \\ -2 & -2 & -1 \\ 2 & 10 & 11 \end{pmatrix}, \ b = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 1 \end{pmatrix} \\ 4. \ A = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 2 & -2 \\ 2 & 0 & -2 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} & 13. \ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -2 \\ -2 & 1 & -1 \\ 4 & 3 & -3 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 7 \\ 6 \end{pmatrix} \\ 5. \ A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 2 & 2 \\ -2 & -2 & -1 \\ 4 & 4 & -1 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 2 \\ -1 \\ 6 \end{pmatrix} & 14. \ A = \begin{pmatrix} 1 & -2 & -1 & -3 \\ 0 & -2 & 0 & -4 \\ 1 & 1 & 0 & 2 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} \\ 6. \ A = \begin{pmatrix} 0 & 2 & -2 \\ 1 & 1 & -1 \\ -2 & -2 & -1 \\ 4 & 4 & -1 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 2 \\ -1 \\ 6 \end{pmatrix} & 15. \ A = \begin{pmatrix} -4 & -5 & 3 \\ 0 & -2 & 0 & -4 \\ 1 & 1 & 0 & 2 \end{pmatrix}, \ b = \begin{pmatrix} -16 \\ -13 \\ 10 \end{pmatrix} \\ 7. \ A = \begin{pmatrix} -2 & 1 & 3 \\ -1 & 1 & 2 \\ 0 & -3 & -3 \end{pmatrix}, \ b = \begin{pmatrix} 6 \\ -12 \end{pmatrix} & 17. \ A = \begin{pmatrix} 7 & 2 & -4 \\ 1 & -1 & 2 \\ 4 & -1 & 2 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} \\ 8. \ A = \begin{pmatrix} 0 & -2 & 2 \\ 0 & 0 & -2 \\ -1 & 2 & 0 \\ 1 & -2 & -4 \end{pmatrix}, \ b = \begin{pmatrix} -3 \\ 0 \\ -1 & 1 \end{pmatrix} \\ 9. \ A = \begin{pmatrix} 0 & 1 & -2 & 4 \\ 0 & -2 & -2 & -2 \\ -1 & -1 & -2 & 0 \end{pmatrix}, \ b = \begin{pmatrix} -3 \\ 0 \\ 1 & 1 & 9 \end{pmatrix} \\ 19. \ \text{etc} \end{array}$$

19. etc

50 Basiswechsel: Vektoren

Gegeben eine Basis $B = (b_1, b_2, b_3)$. Die B-Darstellung des Vektors v ist \vec{a} . Berechne die Darstellung $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ von v in der Standardbasis. Als Antwort gefragt ist x_1 .

1.
$$b_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $b_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$; $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$

2.
$$b_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, b_2 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}; \vec{a} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

3. etc

51 Basiswechsel: Vektoren, orthonormal

Gegeben ein Vektor \vec{a} (in Standardbasis) und eine Orthonomalbasis $B = (b_1, b_2, b_3)$. Berechne die B-Darstellung $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ von \vec{a} . Als Antwort gefragt ist x_1 .

1.
$$b_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; a = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$

2.
$$b_1 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; a = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$

3.
$$b_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}; a = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$$

4.
$$b_1 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; a = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

5.
$$b_1 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; a = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

6.
$$b_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; a = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

7.
$$b_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; a = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

8.
$$b_1 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}; a = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$$

9.
$$b_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; a = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$$

10.
$$b_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; a = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$

52 Basiswechsel: $n \times n$ Matrizen, orthonormal

Gegeben eine 2×2 Matrix A und eine Orthonormalbasis $B = (b_1, b_2)$. Sei C die B-Darstellung von A. Was ist $c_{1,1}$ (d.h. der erste Eintrag der ersten Zeile von C)?

1.
$$b_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

2.
$$b_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} 2 & -2 \\ -2 & 0 \end{pmatrix}$$

3.
$$b_1 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} 1 & -2 \\ 1 & -2 \end{pmatrix}$$

4.
$$b_1 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$$

5.
$$b_1 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} -2 & 2 \\ -1 & 0 \end{pmatrix}$$

6.
$$b_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, b_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}; A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$

53 Basiswechsel Matrizen im Definitionsbereich

Die Lineare Funktion $f: \mathbb{R}^2 \to \mathbb{R}^3$ hat die (E, E')-Darstellung A. Sei B diejenige Basis des \mathbb{R}^2 deren Vektoren die E-Darstellung (b_1, b_2) haben. Sei C die (B, E')-Darstellung von A. Was ist $c_{1,1}$ (d.h. der erste Eintrag der ersten Zeile von C)?

1.
$$b_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$; $A = \begin{pmatrix} 3 & 1 \\ 1 & 0 \\ 2 & -1 \end{pmatrix}$.

2.
$$b_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$; $A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 1 \end{pmatrix}$.

54 Komplemente

Gegeben $W_1 = (b_1, b_2)$ und $W_2 = (b_3)$ im \mathbb{R}^3 . Sind W_1 und W_2 Komplemente? Orthogonale Komplemente?

1.
$$b_1 = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}; b_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

2.
$$b_1 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}; b_3 = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$$

3.
$$b_1 = \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix}; b_3 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

4.
$$b_1 = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}; b_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

5.
$$b_1 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}; b_3 = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$$

6.
$$b_1 = \begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

7.
$$b_1 = \begin{pmatrix} -2\\1\\1 \end{pmatrix}, b_2 = \begin{pmatrix} 0\\-1\\-2 \end{pmatrix}; b_3 = \begin{pmatrix} 2\\-2\\-1 \end{pmatrix}$$

8.
$$b_1 = \begin{pmatrix} -2\\2\\1 \end{pmatrix}, b_2 = \begin{pmatrix} -1\\-1\\-2 \end{pmatrix}; b_3 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

9.
$$b_1 = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix}; b_3 = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$$

10.
$$b_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}; b_3 = \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$$

11.
$$b_1 = \begin{pmatrix} -2\\0\\-2 \end{pmatrix}, b_2 = \begin{pmatrix} -2\\0\\-2 \end{pmatrix}; b_3 = \begin{pmatrix} -1\\-2\\1 \end{pmatrix}$$

12.
$$b_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}; b_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

13.
$$b_1 = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}; b_3 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

14.
$$b_1 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$

15.
$$b_1 = \begin{pmatrix} -2\\0\\-1 \end{pmatrix}, b_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}; b_3 = \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

16.
$$b_1 = \begin{pmatrix} -2\\2\\2\\2 \end{pmatrix}, b_2 = \begin{pmatrix} -1\\1\\-2 \end{pmatrix}; b_3 = \begin{pmatrix} -2\\-2\\1 \end{pmatrix}$$

17.
$$b_1 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix}$$

18.
$$b_1 = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}; b_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

19.
$$b_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$

20.
$$b_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, b_2 = \begin{pmatrix} 0\\2\\-2 \end{pmatrix}; b_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

21.
$$b_1 = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

22.
$$b_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; b_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

23.
$$b_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}; b_3 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

24.
$$b_1 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix}; b_3 = \begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix}$$

55 RSA 1

Es werden multiple Choice Fragen der Folgenden Form gestellt (für möglicherweise andere p,q):

Gegeben p=5 und q=7, $n:=p\cdot q.$ Welche der folgeden Zahlen ist eine gültige Wahl für den public Key e?

1. 2

5. 6

9. 10

13. 14

2. 3

6. 7

10. 11

14. 15

3. 4

7. 8

11. 12

15. 16

4. 5

8. 9

12. 13

56 RSA 2

Es werden multiple Choice Fragen der Folgenden Form gestellt (für möglicherweise andere p,q,e):

Wir wählen p = 3, q = 11, e := 7. Was ist der private key d?

1. 1

3. 3

5. 5

7. 13

2. 2

4. 4

6. 9

8. 12

57 RSA 3

Es werden multiple Choice Fragen der Folgenden Form gestellt (für möglicherweise andere n, e, t):

Gegeben der public key n = 33, e = 3. Was ist der Ciphertext c vom Klartext t = 2?

1. 6

2. 8

3. 9

4. 27

58 RSA 4

Es werden multiple Choice Fragen der Folgenden Form gestellt (für möglicherweise andere n,d,c):

Gegeben der private key n = 33, d = 3. Was ist der Klartext t vom Ciphertext c = 3?

1. 6

2. 9

3. 21

4. 27

59 RSA 5

Gegeben der public key (n, e) und der private key (n, d), mit n = pq (wobei p, q so große Primzahlen sind dass man n de facto nicht ohne zusätzliche Information faktorisieren kann). Sei c_1 der verschlüsselte Ciphertext zum Reintext t_1 , und c_2 der verschlüsselte Ciphertext zu einem anderen Reintext t_2 . Welche der folgenden Informationen reichen aus um den Schlüssel (effizient) zu knacken?

1. p und q

3. $\varphi(n)$ 5. c_1 und t_1

2. *p*

4. c_1 und c_2

60 RSA 6

Der öffentliche Schlüssel (e, n) ist gegeben. Brechen Sie die Verschlüsselung mit brute force, d.h. berechnen Sie den private key (d, n).

1. e = 7, n = 33

2. e = 27, n = 55

3. etc

61 Ähnliche Matrizen

Sei B ähnlich zu A, d.h. $B = U^{-1}AU$ für ein $U \in GL(n)$. Was gilt allgemein:

- 1. Tr(A) = Tr(B) (Spur)
- 2. det(A) = det(B) (Determinante)
- 3. $\operatorname{rk}(A) = \operatorname{rk}(B)$ (Rang)
- 4. Wenn A die Identitätsmatrix I ist, dann ist auch B = I
- 5. Wenn A eine Projektion ist, dann auch B
- 6. Wenn A eine Orthogonalprojektion ist, dann auch B
- 7. Wenn A orthogonal ist, dann auch B
- 8. Wenn A eine Diagonalmatrix ist (d.h. $a_{i,j} = 0$ für $i \neq j$), dann auch B.
- 9. Wenn A eine obere Dreiecksmatrix ist (d.h. $a_{i,j} = 0$ für i > j), dann auch B.
- 10. Wenn A symmetrisch ist, dann auch B
- 11. Wenn A injektiv ist, dann auch B
- 12. Wenn A surjektiv ist, dann auch B
- 13. Wenn A bijektiv ist, dann auch B

62 Induktion 1

Ist die folgende induktive Definition wohldefiniert für alle Element von \mathbb{N} ? (D.h. gibt es eine eindeutige Funktion $f: \mathbb{N} \to \mathbb{N}$ mit den angegebenen Eigenschaften?)

- 1. f(0) = 0, f(1) = 0, f(p) = p für p Primzahl, und $f(a \cdot b) = f(a) + f(b)$ für $1 < a \le b$.
- 2. f(0) = 0, f(1) = 0, f(p) = p für p Primzahl, und $f(a \cdot b) = 2 \cdot f(a) + f(b)$ für $1 < a \le b$.
- 3. f(0) = 0, f(1) = 0, f(p) = p für p Primzahl, und $f(a \cdot b) = 2 \cdot f(a) + 2 \cdot f(b)$ für 1 < a < b.
- 4. f(0) = 0, f(1) = 1, f(p) = p für p Primzahl, und $f(a \cdot b) = f(a) \cdot f(b)$ für $1 < a \le b$.
- 5. $f(0)=0,\ f(1)=1,\ f(p)=p$ für p Primzahl, und $f(a\cdot b)=2\cdot f(a)\cdot f(b)$ für $1< a \le b.$
- 6. f(0) = 0, f(1) = 1, f(p) = p für p Primzahl, und $f(a \cdot b) = f(a)^2 \cdot f(b)$ für $1 < a \le b$.

63 Induktion 2

Welche der folgenden Beweisprinzipien ist gültig: $\varphi(x)$ gilt für alle $x \in A$, für ...

- 1. $A = \mathbb{N}$, wenn gilt: $\varphi(0)$, und für alle $n \in A$ gilt: $\varphi(n) \to \varphi(n+1)$.
- 2. $A = \{z \in \mathbb{Z} : z \ge -12\}$, wenn gilt: $\varphi(-12)$, und für alle $n \in A$ gilt: $\varphi(n) \to \varphi(n+1)$.
- 3. $A = \mathbb{Z}$, wenn gilt: $\varphi(0)$, und für alle $n \in A$ gilt: $\varphi(n) \to \varphi(n+1)$.
- 4. $A = \{q \in \mathbb{Q} : q \geq 0\}$, wenn gilt: $\varphi(0)$, und für alle $n \in A$ gilt: $\varphi(n) \to \varphi(n+1)$.
- 5. $A = \{n \in \mathbb{N} : n \ge 12\}$, wenn gilt: $\varphi(12)$, und für alle $n \in A$ gilt: $\varphi(n) \to \varphi(n+1)$.

64 Frage zu Permutationen

- 1. Die Permutation c ist die Verknüpfung $p = c_1 \circ c_2 \cdots c_{\ell-1} \circ c_\ell$ von **disjunkten** Zyklen c_i . Sei $q = c_\ell \circ c_{\ell-1} \cdots c_2 \circ c_1$ (d.h. das Produkt derselben Zyklen, in umgekehrter Reihenfolge). Gilt allgemein dass p = q?
- 2. Die Permutation c ist die Verknüpfung $p = c_1 \circ c_2 \cdots c_{\ell-1} \circ c_\ell$ von **disjunkten** Zyklen c_i . Sei $q = c_\ell \circ c_{\ell-1} \cdots c_2 \circ c_1$ (d.h. das Produkt derselben Zyklen, in umgekehrter Reihenfolge). Gilt allgemein dass das Vorzeichen von p gleich dem Vorzeichen von q ist?

- 3. Die Permutation c ist die Verknüpfung $p = c_1 \circ c_2 \cdots c_{\ell-1} \circ c_\ell$ von (nicht notwendigerweise disjunkten) Zyklen c_i . Sei $q = c_\ell \circ c_{\ell-1} \cdots c_2 \circ c_1$ (d.h. das Produkt derselben Zyklen, in umgekehrter Reihenfolge). Gilt allgemein dass p = q?
- 4. Die Permutation c ist die Verknüpfung $p = c_1 \circ c_2 \cdots c_{\ell-1} \circ c_\ell$ von (nicht notwendigerweise disjunkten) Zyklen c_i . Sei $q = c_\ell \circ c_{\ell-1} \cdots c_2 \circ c_1$ (d.h. das Produkt derselben Zyklen, in umgekehrter Reihenfolge). Gilt allgemein dass das Vorzeichen von p gleich dem Vorzeichen von q ist?