Programm- & Systemverifikation

Hoare Logic

Georg Weissenbacher M
184.741

What happened so far

» How bugs come into being:

» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

We specified infended behaviour using assertions

We learned how to test programs.
We heard about logical formalisms:

» Propositional Logic
» First Order Logic

>
» We proved our programs correct (inductive invariants).
>
>

Instructions and Assertions

» FOL and derivations enable us to reason about assertions
» But what about instructions?
» Currently, we can’t refer to instructions in inference rules

Assigning Meaning to Programs [Floyd67]

» Used assertions to attach
logical interpretations to
programs

» proof “by induction on the
number of commands
executed”

Robert W. Floyd
(1936-2001)

Assigning Meaning to Programs [Floyd67]

———————— nEJTAI=1AS=0

=1

________ nEJTAIEITAisSn+IAS= 2 g
=1

i-i L
———n€J Ai=n+1AS=Ta;ie, S=2 g
i=1 j=1

i-1
———————— nedtAIEITAISAAS= Y 0
Jj=1

i
________ ned*AI€JTAISRAS=Ta;
J=1

-1

———————— neJ*/\ieJ*Méi;nH/\S-Zlﬂj
=

FiGURE 1. Flowchart of program to compute S = 2_j-1 @; (# 2 0)

An Axiomatic Basis for Computer Programming [Hoare69]

» “Hoare Logic” (aka
Floyd-Hoare Logic)

» System of axioms and
inference rules for program
verification

Sir Tony Hoare
(1934-)

Hoare Triples

{PyC{Q}

Definition (Hoare Triple)

A Hoare triple comprises a pre-condition, a statement, and a
post-condition.

The Hoare Triple

{P} C{Q}
means that if C is executed in a state for which P holds, then Q is
true for any state in which C may halt.

We refer to P as the pre-condition and to Q as the post-condition
of the Hoare Triple.

Hoare Triples

{Py C{Q}

As an FOL instance (schematic):

on,yo,...,x1,y1,... .
P(Xo,yo,...)/\C(Xo,yo,...,X1,y1,...) — Q(X1,y1,...)

A Hoare triple characterizes the effect of commands on assertions

Hoare’s Axioms: Skip statement

{P} skip {P}
Example:
» {x > 10} skip {x > 10}
» one example should really be enough ;-)

Hoare’s Axioms: Assignment

{QIE/x]} x:=E {Q}
Intuition:
» Q holds for new value of x
> E evaluated in old state determines new value of x
» Therefore, Q[E/x] must hold before execution

Hoare’s Axioms: Assignment

{QIE/x]} x:=E {Q}
Examples:
> {x>10} y:=10 {x > y}
> (x>y+1}y=y+1{x>y}

> {3z.z>x+1}y=x+1{3Ix.x >y}
» Rename quantified x to avoid clash!

Hoare’s Axioms: Assignment

Remember from our lecture on assertions:

y =vy-1

x = x-1;
assert (x>y);

Hoare’s Axioms: Assignment

Remember from our lecture on assertions:

y =y 4
assert (x-1>y);
x = x-1;

assert (x>y);

Hoare’s Axioms: Assignment

Remember from our lecture on assertions:

assert (x-1>y-1);

y =y 1
assert (x-1>y);
x = x-1;

assert (x>y);

Hoare’s Axioms: Composition

{P}Ci{R} {R}G{Q}
{P} Ci;C {Q}

Example:

{(x+1) <10} x:=x+1{x <10} {x <10} y:=0{x <10}
{(x+1) <10} x:=x+1; y:=0{x <10}

Hoare’s Axioms: Composition

{P}Ci{R} {R}G{Q}
{P} Ci;C {Q}

Example:

{(x+1) <10} x:=x+1{x <10} {x <10} y:=0{x <10}
{(x+1) <10} x:=x+1; y:=0{x <10}

Note: “intermediate” assertion must be exact match!

2
&
S

Hoare’s Axioms: Composition

We have implicitly applied this before:

assert (x-1>y-1);
y=y1
assert (x-1>y);

assert (x-1>y);
x = x-1;
assert (x>y);

Hoare’s Axioms: Composition

We have implicitly applied this before:

assert (x-1>y-1);
y =y

x = x-1;
assert (x>y);

Enables us to eliminate intermediate assertions!

Hoare’s Axioms: Conditional

{BAP}YC {Q) {-BAP}GC{Q}
{P} if Bthen C; else C; {Q}

Example:

{even(x)} x := x+ 1 {odd(x)} {—even(x)} skip {odd(x)}
{true} if (even(x)) then x := x + 1 else skip {odd(x)}

Hoare’s Axioms: Conditional

{BAP}YC {Q) {-BAP}GC{Q}
{P} if Bthen C; else C; {Q}

Example:

{even(x)} x := x+ 1 {odd(x)} {—even(x)} skip {odd(x)}
{true} if (even(x)) then x := x + 1 else skip {odd(x)}

» Where (or what) is P in this example?

Hoare’s Axioms: Conditional

{B/\ P} Ci {Q} {—\B/\ P} Co {Q}
{P} if B then C; else C, {Q}

Example:

if (n % 2) then
z=z+Yy;
else
skip;

y =y * 2

n=n/ 2;
{m*x=z+(n*y)}

Hoare’s Axioms: Conditional

{B/\ P} Ci {Q} {—\B/\ P} Co {Q}
{P} if B then C; else C, {Q}

Example:

if (n % 2) then
z=z+Yy;
else
skip;

y=y*2;
{m*x=z+([3]"y)}
n=n/ 2;
[m*x=z+("y)}

Hoare’s Axioms: Conditional

{B/\ P} Ci {Q} {—\B/\ P} Co {Q}
{P} if B then C; else C, {Q}

Example:

if (n % 2) then

z =2z +75;
else

skip;
{m x=z+(2]*2"y)}
y=yox2;
{m*x=z+(3]"y)}
n=n/ 2;
{m*x=z+({"y)}

Hoare’s Axioms: Conditional

{B/\ P} Ci {Q} {—\B/\ P} Co {Q}
{P} if B then C; else C, {Q}

Example:

if (n % 2) then

z =2z +75;
else

skip;
{m x=z+(2]*2"y)}
y=yox2;
{m*x=z+(3]"y)}
n=n/ 2;
{m*x=z+({"y)}

Hoare’s Axioms: Conditional

{B/\ P} Cy {Q} {—\B/\ P} Co {Q}
{P} if Bthen C; else C; {Q}

Example:

if (n % 2) then
z=z+y,
else
skip;

Hoare’s Axioms: Conditional

{B/\ P} Cy {Q} {—\B/\ P} Co {Q}
{P} if Bthen C; else C; {Q}

Example:

if (n % 2) then
z=z+y,
else
skip;

Need to prove:
{(n%2=1)A(mxx=z+(nx*y))}

Z=z+y
{m*x::z+({gJ*2*yn

Hoare’s Axioms: Conditional (continued)

{(n%2=1)A(mxx=z+(nxy))}
z=z+y
{m*x:z—kqu x2xy)}
Rewrite pre-condition:
(N%2=1)A(mxx=2z+(nxy))

Hoare’s Axioms: Conditional (continued)

{(n%2=1)A(mxx=z+(nxy))}
Z=2z+Yy
{m*X:z—i—qu x2xy)}
Rewrite pre-condition:
(N%2=1)A(mxx=2z+(nxy))
=n%2=1)A(mxx=z+y+((n—1)*y))

Hoare’s Axioms: Conditional (continued)

{(n%2=1)A(m*xx=2z+(nx*y))}
Z=2z+Yy
{m*X:z—i—qu x2xy)}
Rewrite pre-condition:
(n%2 =1)
=(n%2 =1)

mxx=2z+(nxy))

A(
Amxx=z+y+((n—1)xy))

=(n%2=1) A (m*x:z+y+(n;1 *Z*y)>

Hoare’s Axioms: Conditional (continued)

{(n%2=1)A(mxx=z+(nxy))}

Z=2z+Yy

{m*X:z—i—qu x2xy)}
Rewrite pre-condition:
(N%2=1)A(mxx=2z+(nxy))
(n%2=1)AMmxx=z+y+((n—1)xy))

(n%2 =1) A (m*x:z+y+(n;1 *2*y)>

E(n%2:1)/\(m*x:z+y+({gJ +2+y))

Hoare’s Axioms: Conditional (continued)

{(n%2=1)A(mxx=z+(nxy))}

Z=2z+Yy

{m*X:z—i—qu x2xy)}
Rewrite pre-condition:
(n%2=1)A(m*xx=2z4(nxy))
(N%2=N)A(Mmxx=z+y+((n—1)xy))

(n%2 =1) A (m*x:z+y+(n;1 *2*y)>

E(n%2:1)/\(m*x:z+y+({gJ +2+y))

Note: Using the assignment rule, we can prove the following:
n
{m*x:z+y+({ﬂ x2xYy)}
Z=2zZ+y

{m*x:z-i-(EJ x2xy)}

Hoare’s Axioms: Conditional (continued)

But the pre-condition of

{(n%2:1)/\<m*x:z+y+([gJ *Z*y)>}
z=z+y

{m*x:er(gJ x2xy)}

is stronger than the precondition of

{m*X:Z—i—y—i—(LgJ x2xy)}

Z=z+Yy

{m*x:z—i—qu *2%y)}

Hoare’s Axioms: Consequence

PP {P)S{Q) Q=@
{P'}S{Q}

Itis legal to
» strengthen pre-condition, and
> weaken the post-condition
Also allows us to combine Hoare Logic and FOL derivations:

—even(x) - odd(x)
{even(x)} x := x + 1 {—even(x)} —even(x) — odd(x)
{even(x)} x := x + 1 {odd(x)}

and
Vn. even(n) V odd(n)

—even(x) even(x) V odd(x)
odd(x)

Hoare’s Axioms: Previous Example Revisited

We are allowed to strengthen the the pre-condition:
n
{ (m*x:z—ky—i-(bJ*Z*y))}
z=2z+Yy
n
{m*x:z—i-(bJ *2%y)}

Hoare’s Axioms: Previous Example Revisited

We are allowed to strengthen the the pre-condition:
n
0, — — —
{(n%2 =1) A (m*x_z+y+(L2J *Z*y))}
z=2z+Yy
n
{m*x:z—i-(bJ *2%y)}

Hoare’s Axioms: Previous Example Revisited

We are allowed to strengthen the the pre-condition:

{(n%2=1) A (m*X:Z—I—y—l-(LgJ *Z*y))}

z=2z+Yy
{m*x::z+(LgJ*2*yH

Since

(n%2:1)/\(m*x:z+y—|—([gJ *Z*y)> =

(n%2=1)A(mxx=2z+(nxy))

we obtain

{(n%2:1)/\(m*x:z+(EJ *Z*y))}
Z=z+Yy
{m*x:z+({gJ *2xy)}

Hoare’s Axioms: Previous Example Revisited

Similarly, we strengthen pre-condition of else-branch:

{ (m*x:z+({gJ*Z*y)>}skip{m*x:z+({gJ*2*y)}

Hoare’s Axioms: Previous Example Revisited

Similarly, we strengthen pre-condition of else-branch:

{(n%2 = 0) A (mx=z+(|5|+2x1)} skip {mex=z+(| 5| +2%y)}

Hoare’s Axioms: Previous Example Revisited

Similarly, we strengthen pre-condition of else-branch:

{(n%2 = 0) A (m*x=z+(g*2*y))}skip{m*x:z+qu «2%y)}

Hoare’s Axioms: Previous Example Revisited

Similarly, we strengthen pre-condition of else-branch:

{(n%2=0)A (m*x=z+ (n*y))} skip{m*x:zﬂgJ «2xy)}

Hoare’s Axioms: Previous Example Revisited

Similarly, we strengthen pre-condition of else-branch:

{(n%2=0)A (m*x=z+ (n*y))} skip{m*x:zﬂgJ ¥ 2% y)} v

Hoare’s Axioms: Example for Conditional Rule

We can now apply

{BAP}YC1 {Q} {-BAP}C{Q}
{P} if B then C; else C; {Q}

toCc £ if (n%2) then z = z + y; else skip;

{(n%2=0)A(mxx=z+(nxy))} {(M%2=1)A(mxx=2z+ (nxy))}

skip z=z+y
{m*X:z+({gJ*2*y)} {mxx=2z+ {gJ*2*y)}

(
{mxx=z+(nxy)} C{mxx=z+(|3]*2xy)}

Hoare’s Axioms: Example Revisited

Finally, we obtain:

{m*x=z+(n"y)}
if (n % 2) then

z =2z +7y;
else

skip;
{m*x=z+([3]*2"y)}
{m*x=z+(3]"2%y)}
y=y*2;
n=n/2;
{m*x=z+(n*y)}

Hoare’s Axioms: Example Revisited

Finally, we obtain:

{m*x=2z+(n"y)}
if (n % 2) then
z =2z +75;
else
skip;
y=y*2
n=n/2;
{m*x=z+(n*y)}

Therefore, m+ x = z+ (n x y) is an invariant for the loop body!

Hoare’s Axioms: Example Revisited

Finally, we obtain:

{m*x=z+(n*y)}
if (n % 2) then
z=z+Yy;
else
skip;
y =y *x2
n=n/2;
{m*x=z+(n*y)}

Therefore, m+ x = z+ (n x y) is an invariant for the loop body!
» But we don’t have a rule for loops yet!

While Loops

{PAB} C{P}
{P} while Bdo C {-B A P}

» Statement S doesn’t change P (P is invariant)
» P holds upon loop entry and exit (loop invariant)
Example:

{x#0)AN(x>0)} x:=x—1{x>0}
{x >0} while (x #0)do x :=x —1 {=(x #0) A (x > 0)}

While Loops

In context of a larger proof:

(x£Z0)A(Xx>0F(x—1>0)
(X#£0)A(Xx>0)— (x—1>0) {x=1>0}x:=x—1{x>0}
{x£0)A(x>0)}x:=x—1{x>0}
{x >0} while (x #0)dox :=x — 1 {~(x #0) A (x > 0)}

Here, we derive
» {(x —1>0)} x:=x—1{x >0} using Hoare’s assignment rule
> {(x #0) A (x >0)} x :=x—1 {x > 0} using rule of consequence

» {x >0} while (x #0)do x := x — 1 {=(x # 0) A (x > 0)} using loop
rule

While Loops

In context of a larger proof:

(x£Z0)A(Xx>0F(x—1>0)
(X#£0)A(Xx>0)— (x—1>0) {x=1>0}x:=x—1{x>0}
{x£0)A(x>0)}x:=x—1{x>0}
{x >0} while (x #0)dox :=x — 1 {~(x #0) A (x > 0)}

Here, we derive
» {(x —1>0)} x:=x—1{x >0} using Hoare’s assignment rule
> {(x #0) A (x >0)} x :=x—1 {x > 0} using rule of consequence
» {x >0} while (x #0)do x := x — 1 {=(x # 0) A (x > 0)} using loop
rule

Don’t forget: we still have to discharge the assumption
(x#0)A(x>0)F(x—12>0)

to show that the Hoare triple is valid. Requires the theory of integer
arithmetic (not presented here).

Hoare Rules: Example Revisited

We can now apply this to the loop body from before:

while (n # 0)
{m*x=z+(n*y)}
if (n % 2) then

z =2z +y;
else

skip;
y=y*2;
n=n/ 2;
{m*x=z+(n*y)}

Hoare Rules: Example Revisited

We can now apply this to the loop body from before:

{m*x=z+(n*y)}
while (n # 0)
{m*x=z+(n*y)}
if (n % 2) then
z=z+Yy;
else
skip;
y =y o*2;
n=n/ 2;
{m*x=z+(n*y)}
{{(n=0)A(mxx=z+(nxy))}

Hoare Rules: Example Revisited

We can now apply this to the loop body from before:

{m*x=z+(n*y)}
while (n # 0)
{m*x=z+(n*y)}
if (n % 2) then
z=z+Yy;
else
skip;
y =y o*2;
n=n/ 2;
{m*x=z+(n*y)}
{{(n=0)A(mxx=z+(nxy))}

and weaken the post-condition to (z = m = x).

Hoare Rules: Overview

{P} G {Q},{Q} C {R}
{P[E/x]} x:=E {P} {P} Cy; G2 {R}

{B/\ P} C1 {Q} {_'B/\ P} C2 {Q}
{P} if Bthen Cy else C, {Q}

P—P {PLC{Q} Q-
{Prc{Q}

{PAB} C{P}
{P} while Bdo C {-B A P}

Example: Finding an Inductive Invariant

» Add an inductive invariant to the code
» Use it to show that the assertion after the loop holds

> Add comments to the code explaining

» why your assertion is an inductive invariant
» why it shows that the assertion after the loop holds

int x = 1i;
int y = j;
while (x != 0)
{
X—=3
y——3
assert (?);
}
assert ((i !'= j) |l (y == 0));

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = 1i;

y =3
while (x '= 0)
X =x - 1;
y=y -1

{i#)v(y=0)}

One possible invariant is (i — j) = (x — y).

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = 1i;
y =173

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = 1i;
y =173

»
]

e
|

—

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = i
y =13

while (x !'= 0)

x=x-1;
{(i=)=Kx-(W-1))
y=y -1
{(i—=)=Kx-y)}

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = i
y =13

while (x !'= 0)

{("—/):((X—1)—(y—1))}

x=x - 1;
{i=)=Kx-(-1)}
y=y -1
{(i—=))=(x=y)}

{(i#)V(y=0))}

Example: Finding an Inductive Invariant

We want to prove:

{true}
X = i
y =13

{i=D=Kx-y)}
while (x != 0)
{i=)=Kx=-y)}

x=x - 1;

y = - 1;

{(i /) (x—y)}
{(x=0)A((i=))=(x=y))}
{(i#7) v (y=0))}

Example: Finding an Inductive Invariant

We want to prove:

{(i=))=(x=y)}

while (x != 0)
{(i—=))=Kx-y)}

x=x - 1;

y = - 1;

{(i /) (x—y)}
{(x=0)A((i=))=(x=y))}
{(i#7) v (y=0))}

Example: Finding an Inductive Invariant

We want to prove:

{true}
(=)=~
(=)= (-}
y =173

{(i—=))=Kx-y)}
while (x != 0)

{(i=)) ==y}

x=x - 1;

y = - 1;

{(i /) (x—y)}
{(x=0)A((i=))=(x=y))}
{(i#7) v (y=0))}

Example: Finding an Inductive Invariant

We want to prove:

{true}

{true}

(=)= (-}

y =173

{(i=))=(Kx=y)}

while (x != 0)
{(i=))=(x=y)}

x=x - 1;

y = - 1;
{(i /) (x—y)}
{(x=0)A((i—j)=(x—y))}

—J
{(i#)V(y=0))}

Example: Finding an Inductive Invariant

We want to prove:

{true}

{true}

(=)= (-}

y =173

{(i=))=(Kx=y)}

while (x != 0)
{(i=))=(x=y)}

x=x - 1;

y = - 1;
{(i /) (x—y)}
{(x=0)A((i=j)=(0-y))}

—J
{(i#)V(y=0))}

Want something more challenging?

If you know the invariant, this was rather easy. ..
» (easy enough for an exam)

Want something more challenging?

If you know the invariant, this was rather easy. ..
» (easy enough for an exam)
Let’s try something harder!

Greatest Common Divisor

Let

Vx,y,z. divides(x, y,z) < ((x%z = 0) A (y%z = 0))
Vx,y,z.(z= GCD(x,y)) < divides(x, y, Z)A
(Ar.(r > z) Adivides(x, y,r))

» (assuming D = IN and % is the modulo operator)

A Hoare Logic Proof of Euclid’s Algorithm

We want to show the following:

{true}

if (x > y) then
K:=x;
mii=y;

else
ki=y;
m :=X;

while (m # 0) do
r:=k%m;
kK :=m;
m:=r;

{GCD(x,y) = k}

A Hoare Logic Proof of Euclid’s Algorithm

» Break the proof into sub-proofs
» Use compact “in-line” presentation:

{P}

{ {PLCI{Q} (O} Co(R)
{,2?} {P} C1; G2 {R}

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
> Vx,y.GCD(x,y) = GCD(y, x)
> Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) = GCD(x,y) = GCD(x%y,y)
We will first show the following:

{(k > m) A GCD(x,y) = GCD(m, k)}
while (m !'= 0) {

r =k % m;
k = m;
m=r;

}
{GCD(x,y) = k}

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

r =k % m;
k = m;
m = r;

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

r =k % m;
k = m;
m = r;

{(k > m) A GCD(x,y) = GCD(k, m)}
}

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

r =k % m;

k = m;

{(k > r) A GCD(x, y) = GCD(k, r)}
{(k > m) A GCD(x.y) — GCD(k, m)}

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

=k % m;
r) A GCD(x,y) = GCD(m, r)}

m >

=m

k > r) AN GCD(x,y) = GCD(k,r)}
= I"

k >

m) A GCD(x, y) = GCD(k, m)}

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y,y)

while (m != 0) {
{(m 2 (k%m)) A GCD(x,y) = GCD(m, (k%m))}
k % m
{(m > r) A GCD(X y) = GCD(m,r)}

-

{(k > r) A GCD(x,y) = GCD(k, r)}

(k > m) A GCD(x,y) = GCD(k, m)}

~ B

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
» Vx,y.GCD(x,y) = GCD(y, x)
> Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) — GCD(x,y) = GCD(x%y.y)

while (m !'= 0) {
{(m > (k%m)) A\GCD(x, y) = GCD(m, (k%m))}
true
=k % m;
{(m>r)ANGCD(x,y) = GCD(m,r)}

H

-
=}

{(/: > 1) A GCD(x, y) = GCD(k, r)}

I}

(/; > m) A GCD(x, y) = GCD(k, m)}

-~ B

Euclid’s Algorithm — Loop Invariant

Assume we have a predicate GCD with the following axioms
> Vx,y.GCD(x,y) = GCD(y, x)
» Vx.GCD(0,x) = x
» Vx.GCD(x,x) = x
> Vx,y.(x >y) = GCD(x,y) = GCD(x%y,y)

(k > m) A GCD(x, y) = GCD(k, m) {GCD(x,y) = GCD(m, (k%m))}
— ri=k%m k:=m m=r
(GCD(x,y) = GCD(m, (k%m)) {(k > m) A GCD(x,y) = GCD(k, m)}

{(k > m) A GCD(x,y) = GCD(k, m)}
r:=k%m, k:=m;, m=r
{(k > m) A GCD(x, y) = GCD(k, m)}

Proof by Case Split

We still need to show that
((k > m) A (GCD(x, y) = GCD(k, m))) — (GCD(x, y) = GCD(m, (k%m))
We need the following axioms of the theory of arithmetic:

X,y (x> y) e (x=y)V(x>y))
Vx,y.(x%x) =0
V,y,2. (x=y)A(y =2) = (x = 2)
Perform a case split. First for (k > m):

(k > m) A (GCD(x,y) = GCD(m, k)) (k> m) — GCD(k, m) = GCD(k%m, m)
(k > m) A (GCD(x,y) = GCD(k%m, m))

(k > m) A (GCD(x,y) = GCD(k%m, m)) GCD(k%m, m) = GCD(m, k%m)
(k > m) A (GCD(x,y) = GCD(m, k%m))

Proof by Case Split

Perform a case split. Second case (k = m):

(k= m) A (GCD(x,y) = GCD(m, k)) GCD(m,m) =m
(k=m) A (GCD(x,y) = m)

(k=m)AN(GCD(x,y) =m) GCD(0,m)=m
(k =m) A (GCD(x,y) = GCD(0, m))
(k = m) A (GCD(x,y) = GCD(0,m)) m%m =0
(k =m) A (GCD(x,y) = GCD(m%m, m))
(k=m) A (GCD(x,y) = GCD(k%m, m))
(k =m) A (GCD(x,y) = GCD(k%m, m)) GCD(k%m, m) = GCD(m, k%m)
(k=m) A (GCD(x,y) = GCD(m, k%m))

Proof by Case Split

Perform a case split. Second case (k = m):

(k= m) A (GCD(x,y) = GCD(m, k)) GCD(m,m) =m
(k=m) A (GCD(x,y) = m)

(k=m)AN(GCD(x,y) =m) GCD(0,m)=m
(k =m) A (GCD(x,y) = GCD(0, m))
(k = m) A (GCD(x,y) = GCD(0, m)) m%m =0

(k =m) A (GCD(x,y) = GCD(m%m, m))

(k=m) A (GCD(x,y) = GCD(k%m, m))
(k =m) A (GCD(x,y) = GCD(k%m, m)) GCD(k%m, m) = GCD(m, k%m)

(k=m) A (GCD(x,y) = GCD(m, k%m))
By combining the two cases we can conclude

GCD(x,y) = GCD(m, k%m)

Euclid’s Algorithm — Loop Invariant

Note: Though tedious, this proof was still not entirely formal.
We implicitly applied a number of rules.

» Quantifier instantiation
» Transitivity of equality, substitution
» Following propositional rules:

PAQ PAQ P Q P—Q -PvQ P
P Q PAQ —-PVQ Q

Euclid’s Algorithm — Loop Invariant

We have established:

while (m# 0)do
{(k > m) A GCD(x,y) = GCD(k, m)}
r:=k%m; k:=m; m=r
{(k > m) A GCD(x,y) = GCD(k, m)}

Apply Hoare’s loop rule:

{PAB} C{P}
{P} while Bdo C {-B A P}

with
> P = (k> m)AGCD(x,y) = GCD(k, m)
> B= (m+#0)

Euclid’s Algorithm — Loop Invariant

We obtain:

{(k > m) A GCD(x,y) = GCD(k, m)}
while (m#0)do

r :=k % m;
k := m;
m :=r;

{ (m=0)A (k> m)A(GCD(x,y) = GCD(k, m))}

Euclid’s Algorithm — Loop Invariant

We obtain:

{(k > m) A GCD(x,y) = GCD(k, m)}
while (m#0)do

r :=k % m;
k := m;
m :=r;

{ (m=0)A (k> m)A(GCD(x,y) = GCD(k, m))}

(m=0)A(GCD(x,y) = GCD(k, m))
(GCD(x,y) = GCD(k,0)) GCD(k,0) = k
GCD(x,y) =k

Euclid’s Algorithm — Loop Invariant

We obtain:

{(k > m) A GCD(x,y) = GCD(k, m)}
while (m#0)do

r :=k % m;
k := m;
m :=r;

{ GCD(x,y) = k}

(m=0)A(GCD(x,y) = GCD(k, m))
(GCD(x,y) = GCD(k,0)) GCD(k,0) = k
GCD(x,y) =k

Euclid’s Algorithm — Loop Invariant

> We have established
P = (k>m)AGCD(x,y) = GCD(k, m)

as a loop invariant
» If P holds after niterations of the loop, it also holds after n + 1
> We still need to establish the base case n =0

Euclid’s Algorithm — Induction, Base Case

Does
(k> m) A GCD(x,y) = GCD(k, m)

hold at the beginning of the loop?

{7}

if (x > y) then
K:=x;
m:=y;

else
ki=y;
m = X;

{(k > m) A GCD(x, y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then

K:=x;

{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then
K:=x;
m:=y;

else
k:=y;
m = X;

{(k > m) A GCD(x,y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then

K:=x;

mi=y;
else

k:=y;

{(k > x) AN GCD(x,y) = GCD(k, x)}

m = X;

{(k > m) A GCD(x,y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then
K:=x;
m:=y;

else
{(y 2 x) A GCD(x,y) = GCD(y, x)}
k:=y;
{(k > x) AN GCD(x,y) = GCD(k, x)}
m = X;
{(k > m) A GCD(x,y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then
K:=x;

m:=y;

{(k > m) AN GCD(x,y) = GCD(k, m)}
else

{(y 2 x) A GCD(x,y) = GCD(y, x)}

k:=y;

{(k > x) AN GCD(x,y) = GCD(k, x)}

m = X;

{(k > m) A GCD(x,y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}

if (x > y) then

?(:; gy) A GCD(x,y) = GCD(k,y)}
?(kzzy ;m) A GCD(x, y) = GCD(k, m)}
el;(ey > x) AN GCD(x, y) = GCD(y, x)}
lE(:; é;x) A GCD(x, y) = GCD(k, x)}
r{n(/:zx ;m) A GCD(x, y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

{7}
if (x > y) then
{(x > y) A GCD(x,y) = GCD(x,y)}
K:=x;
{(k > y) A GCD(x,y) = GCD(k, y)}
m:=y;
{(k > m) AN GCD(x,y) = GCD(k, m)}
else
{(y 2 x) A GCD(x,y) = GCD(y, x)}
k:=y;
{(k > x) AN GCD(x,y) = GCD(k, x)}
m = X;
{(k > m) A GCD(x,y) = GCD(k, m)}
{(k > m) A GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Induction, Base Case

Strengthen the pre-conditions of the branches:
» then-branch:

—~~

X>Y)
(x>y) (GCD(x,y) = GCD(x,y))
(x = y) A(GCD(x, y) = GCD(x,y))

» eclse-branch:

y) (GCD(x,y) = GCD(x,y))
(y > x) (GCD(x,y) = GCD(y, x))
(¥ = x) A (GCD(x,y) = GCD(y, x))

Euclid’s Algorithm — Hoare’s Conditional Rule

Apply
{BAP}Ci{Q} {-BAP} C {Q}
{P} if Bthen C; else C> {Q}

with

> BE (x > y)

> P = true

> QZ (k> m)AGCD(x,y) = GCD(k, m)

> G Zk=x;m:=y

> G2 k:i=y;m:=x

Euclid’s Algorithm — Hoare’s Conditional Rule

We obtain

{true }
if (x > y) then
K:=x;
m:=y;
else
ki=y;
m = X;
{(k > m) AN GCD(x,y) = GCD(k, m)}

Euclid’s Algorithm — Hoare’s Compositional Rule

Finally:
{P} C1 {Q},{Q} G2 {R}
{P} C1) Cg {R}
Wgerdeef C def
1= 2=
if (x > y) then
K:=x; while (m#0)do
m:=y; r :=k % m;
else k :=m;
K:=y; m :=1;
m = X;

and P = true, Q = (k > m) A GCD(x,y) = GCD(k, m),
R (GCD(x,y) = k)

Euclid’s Algorithm — Correctness Established

{true}

if (x > y) then
k:=x;
m:=y;

else
K:=y;
m = X;

while (m#0)do
r := k % m;
k := m;
m := r;

{GCb(x, j’/) =k}

Disjunctive Invariants

How do we find an invariant for the following code fragment?

{true}

x =y = 0;
while (x # 100) {
if (x> 50){

yi=y+1
} else {
skip;
}
X

}
{y=50}

=x +1;

Disjunctive Invariants

How do we find an invariant for the following code fragment?

{true}
x =y = 0;

Loop has two phases:
» (x < 50): x increases and y remains 0
» (x > 50): x and y increase in lockstep

Disjunctive Invariants

Loop has two phases:
» (x <50)A(y=0)
» (x >50)A(x—y=50)

Disjunctive Invariants

Loop has two phases:

(x<80)A(y=0)) Vv ((x=50)A(x—y=50))

Disjunctive Invariants

if (x >50) {
yi=y ity
} else {

skip;

}

X =x + 1;

{((x<80) A (y=0)) V ((x >50) A (x —y = 50))}

Disjunctive Invariants

if (x >50) {

y 1=y +1;
} else {

skip;
}
{(x+1<50)A(y=0)) V ((x+1>50)A(x+1—y3=50))}
X =x + 1;

{((x<80) A (y=0)) V ((x >50) A (x —y = 50))}

Disjunctive Invariants

if (x >50) {

y 1=y +1;
} else {

skip;
}
{(x<49) A(y=0)) V ((x > 49) A (x+1 —y =50))}
X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

Disjunctive Invariants

if (x >50) {

yi=y ity

} else {
{(x<B50)A((x<49)A(y=0)) V (x=>49) A (x+1—y=D50))}
skip;

}

{((x <49 A (y=0)) V ((x=49) A (x+1 -y =50))}

X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

Disjunctive Invariants

if (x >50) {

SA AN
else
{(x<49) A (y=0)) V ((x=49) A (x —y =49))}
skip;
}
{(x <49 A (y=0)) V ((x=49) A (x+1—y=150))}
X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

Disjunctive Invariants

if (x >50) {
{(x > 50)A
((x <49) A
yi=y+ 1

} else {
{(x<49)A(y=0)) vV ((x =49 A (x —y = 49))}
skip;

}

{((x<49)A(y=0)) vV (=49 A (x+1 -y =50))}

X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

(y+1=0)) v (x=49) A ((x+1)-(y+1)=750))}

Disjunctive Invariants

{(x<49) A(y=0)) V ((x > 49) A (x+1 —y =50))}
X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

Disjunctive Invariants

{(x<49) A(y=0)) V ((x > 49) A (x+1 —y =50))}
X =x + 1;

{((x<80) A (y=0)) V ((x = 50) A (x —y = 50))}

> We need to strengthen the preconditions of the branches!

Disjunctive Invariants — Strengthen Branches

Then branch:
(x>50)A((x<50)A(y=0)) V ((x >50) A (x—y=50))

implies

(x >50) A (x —y =50)

Disjunctive Invariants — Strengthen Branches

Then branch:
(x>50)A((x<50)A(y=0)) V ((x >50) A (x—y=50))

implies

(x >50) A (x —y =50)

Note that (x > 50) A (x < 50) is contradictory.

Disjunctive Invariants — Strengthen Branches

Else branch:
(x<B0)A((x<50)A(y=0)) vV ((x >50) A (x—y=>50))

implies

(x <49) A (y=0)) V ((x=49) A (x —y = 49))

Disjunctive Invariants — Strengthen Branches

Else branch:
(x<B0)A((x<50)A(y=0)) vV ((x >50) A (x—y=>50))

implies

(x <49) A (y=0)) V ((x=49) A (x —y = 49))

» Note that (x < 50) A (x > 50) is contradictory.

Disjunctive Invariants — Strengthen Branches

Else branch:
(x<B0)A((x<50)A(y=0)) vV ((x >50) A (x—y=>50))

implies

(x <49) A (y=0)) V ((x=49) A (x —y = 49))

» Note that (x < 50) A (x > 50) is contradictory.
» So we know that y = 0 and x < 50 . Case split over x:

» x < 49. Then (x < 49) A (y = 0) holds.
» x =49. Then (x = 49) A (x — y = 49) holds.

Disjunctive Invariants

We have established that the induction step for the invariant
(x <B50) A (y =0)) V ((x = 50) A (x —y = 50))

works.
Does the base case work out?

Disjunctive Invariants

We have established that the induction step for the invariant
(x <B50) A (y =0)) V ((x = 50) A (x —y = 50))

works.
Does the base case work out?

> Yes, sincex =y =0.

Disjunctive Invariants

That wasn'’t so hard, right?

Disjunctive Invariants

That wasn'’t so hard, right?

» Remember: if-statements in a loop may require a case split
(i.e., disjunction or implication) in the invariant.

Hoare’s Axioms: Summary

{P} G {Q},{Q} C {R}
{P[E/x]} x:=E {P} {P} Cy; G2 {R}

{B/\ P} C1 {Q} {_'B/\ P} C2 {Q}
{P} if Bthen Cy else C, {Q}

P—P {PLC{Q} Q-
{Prc{Q}

{PAB} C{P}
{P} while Bdo C {-B A P}

