Name: \qquad

Distributed Algorithms 182.702
Quiz 1 (Ch. 2 + Pre, SS 2021), Form: A

Prog. code, registr.. no.: \qquad
Date: \qquad
Achieved points: \qquad

Question 1. If $f(n)=n+O(1)$ and $g(n)=\Omega(\log n)$ for $n \rightarrow \infty$, then
Hint: Multiple choices possible.

1. $f(n) / g(n)=$ 2. $f(n) g(n)=$
(a) $\Omega\left(\frac{n}{\log n}\right)$
(b) $O\left(\frac{n}{\log n}\right)$
(c) $\Omega\left(n^{1-\varepsilon}\right)$, for any $\varepsilon>0$
(a) $\Omega(n \log n)$
(b) $O(n \log n)$
(c) $\Omega\left(n^{1+\varepsilon}\right)$, for any $\varepsilon>0$

Question 2. Mark (= tick) the correct statements (for $n \rightarrow \infty$):

1. (a) For k large but fixed, $k^{n}=\Omega\left(n^{k}\right)$
(b) $\quad \Theta(n)+\Theta(n)=\Omega(n)$
(c) $\log n=o\left(n^{\varepsilon}\right)$, for any $\varepsilon>0$

Question 3. Mark (= tick) the correct statements (for $n \rightarrow \infty$):

1. (a) Termination is an example of a safety property.
(b) In the synchronous model, processors are assumed to execute in lock-step rounds.
(c) The message complexity of broadcasting via a given spanning tree of n nodes is $n(n-1) / 2$.
(d) In an initial configuration, no message can be in transit.

Question 4. Fill in the missing words:

1. Of which components does the local accessible state of processor p_{i} consist of?
2. How many ways are there to choose a weakly monotonic sequence of length k from the integers $\{1, \ldots, n\}$? [Repetitions of the same element in the sequence are of course allowed.] \qquad
3. Let $G=(V, E)$ be a simple undirected graph, and $\operatorname{deg}(v)$ the node degree of $v \in V$. Then, $\sum_{v \in V} \operatorname{deg}(v)=$
4. How many complete matchings, i.e., n (unordered) pairs of distinct elements, can be formed from $2 n$ distinct elements? \qquad

Question 5. Prove or disprove in a mathematically sound way:
Write readable!

1. Using the pigeon hole principle, prove that among $n \geq 2$ positive integers a_{1}, \ldots, a_{n} there are a_{i}, a_{j} such that $a_{i} \equiv a_{j} \bmod (n-1)$.
2. Using induction on $n \geq 1$, show that $\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m}$, for every $m \geq 0$. [Hint: Recall that $\binom{0}{0}=1$ and $\binom{0}{1}=0$.]
3. What is the result of $(\log n+2+O(1 / n)) \cdot(n+O(\sqrt{n}))$? [Simplify!]
4. Using an indirect proof, show that the removal of any edge $e=(p, q)$ with $p, q \in V(T)$ of a tree T disconnects the resulting graph T^{\prime}.
