Distributed Algorithms 182.702 Quiz 1 (Ch.2 + Pre, SS 2021), Form: A

Name: ______
Prog. code, registr.. no.: ______
Date: _____
Achieved points: _____

Question 1. If f(n) = n + O(1) and $g(n) = \Omega(\log n)$ for $n \to \infty$, then

Hint: Multiple choices possible.

- 1. f(n)/g(n) =
 - (a) $\Omega(\frac{n}{\log n})$
 - (b) $O(\frac{n}{\log n})$
 - (c) $\Omega(n^{1-\varepsilon})$, for any $\varepsilon > 0$

- 2. f(n)g(n) =
 - (a) $\Omega(n \log n)$
 - (b) $O(n \log n)$
 - (c) $\Omega(n^{1+\varepsilon})$, for any $\varepsilon > 0$

Question 2. Mark (= tick) the correct statements (for $n \to \infty$):

- 1. (a) For k large but fixed, $k^n = \Omega(n^k)$
 - (b) $\Theta(n) + \Theta(n) = \Omega(n)$
 - (c) $\log n = o(n^{\varepsilon})$, for any $\varepsilon > 0$

Question 3. Mark (= tick) the correct statements (for $n \to \infty$):

- 1. (a) Termination is an example of a safety property.
 - (b) In the synchronous model, processors are assumed to execute in lock-step rounds.
 - (c) The message complexity of broadcasting via a given spanning tree of n nodes is n(n-1)/2.
 - (d) In an initial configuration, no message can be in transit.

Question 4. Fill in the missing words:

- 1. Of which components does the local accessible state of processor p_i consist of?
- 2. How many ways are there to choose a weakly monotonic sequence of length k from the integers $\{1, \ldots, n\}$? [Repetitions of the same element in the sequence are of course allowed.]
- 3. Let G=(V,E) be a simple undirected graph, and deg(v) the node degree of $v\in V$. Then, $\sum_{v\in V}deg(v)=0$
- 4. How many complete matchings, i.e., n (unordered) pairs of distinct elements, can be formed from 2n distinct elements?

Question 5. Prove or disprove in a mathematically sound way:

Write readable!

1. Using the pigeon hole principle, prove that among $n \geq 2$ positive integers a_1, \ldots, a_n there are a_i, a_j such that $a_i \equiv a_j \mod (n-1)$.

2. Using induction on $n \ge 1$, show that $\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m}$, for every $m \ge 0$. [Hint: Recall that $\binom{0}{0} = 1$ and $\binom{0}{1} = 0$.]

3. What is the result of $(\log n + 2 + O(1/n)) \cdot (n + O(\sqrt{n}))$? [Simplify!]

4. Using an indirect proof, show that the removal of any edge e = (p, q) with $p, q \in V(T)$ of a tree T disconnects the resulting graph T'.