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1. Equity Instruments 
 
1.1 Equity financing of a joint stock company (AG, Aktiengesellschaft) 
 
• Limitation of liability to the nominal (share) capital (Min: €70,000) 
 
• Nominal (share) capital (Grundkapital): Stocks (=Shares) 
 
  easy to sell (usually by agreement and transfer) 
 

  easier to raise capital: unlimited number of shareholders 
 

  Stress ratio is solved (especially for traded stock company) 
 

Large long term capital requirements  Liquidity considerations of 
small investors 

 
• Shareholders do not have a direct influence on the management 
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1.1.1 Types of shares 
 
• Distinction based on the level of rights: 
 

Common shares (Stammaktien): 
 

 • Equal voting rights in the annual general meeting (AGM) 
 

 • Equal rights to receive dividends 
 

 • Equal share of liquidation proceeds 
 

 • Statutory subscription right (gesetzliches Bezugsrecht) 
 

 • Most common type of shares 
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Preference shares (Vorzugsaktien): 
 

 • Do not have voting rights 
 

 • Take priority for the purpose of profit distribution 
 

 • Are entitled to higher dividends 
 

 • Reason: equity , upkeeping of voting right structure (see e.g. 
Google) 

 
• Distinction based on transfer conditions: 
 

Bearer shares (Inhaberaktien): Shares made out to the bearer 
 

 • The bearer owns all rights associated with the shares 
 

 • Transfer: by agreement and transfer 
 

 • Advantage: easy to transfer 
 

 • Most common type  
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Registered shares (Namensaktien): 
 

 • Registered under the shareholder's name 
 

 • Registration in the share register (Aktienbuch) of the joint stock 
company 

 

 • Transfer: Documentation on the back of the security (signature 
of the the transferor, name of the new owner, endorsement 
(Indossament), adjustments in the share register) 
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1.1.2 Increase in share capital (Kapitalerhöhung) 
 
 
 Types to increase the share capital: 
 
• Ordinary capital increase (ordentliche Kapitalerhöhung): 
  Issue of new shares, general case 
 
• Authorized capital increase (genehmigte Kapitalerhöhung): 
  Special case of the ordinary capital increase, the annual general meeting 

approves in advance the capital increase; the actual execution only takes 
place at a later date (e.g. when a higher agio can be achieved). 

 
• Contingent capital increase (bedingte Kapitalerhöhung): 
  Execution upon the occurrence of certain conditions (e.g. convertible 

bond, warrant bond). 
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• Capital increase from company funds (Kapitalerhöhung aus Gesellschafts-

mitteln): 
 
  No liquidity inflow. 
 
  Increase of share capital by converting reserves into share capital. 
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 Seasoned Equity Offering (Ordentliche Kapitalerhöhung) 
 
 
Reasons for a capital increase: (i) Capacity expansions, 
 

  (ii) Large restructurings 
 

  (iii) Interest in other firms 
 

  (iv) Capital structure improvements 
 

 
Placement with public investors: Typically a third-party issue (a banking syndi-

cate underwrites the issue) 
 
 Advantage: • consulting capacity 
 

 • distribution network 
 

 • Risk   
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2. Return calculation 
 
2.1 Discrete Returns 
 
A Return is defined as the relative price change of an asset between two points 
in time, i.e. between t-1 and t. The period between t-1 and t is very often one 
day, but it can also be any other period, e.g. a week, a month, a year, or periods 
smaller than one day, e.g. 10 minutes. The length of the period depends on the 
purpose. Smaller periods have the advantage that the number of return periods 
is larger and that certain statistical statements are more reliable. The return for 
one period (from t-1 until t) is defined as: 
 

−
−

−

−
= t t 1

t 1,t
t 1

P PR
P

 

Pt: Price at time t (e.g. the closing price on day t) 
Pt-1: Price at time t-1 (e.g. the closing price on day t-1) 
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Example 
 
Return calculation for Siemens equity prices: 
 

Trading days Closing price Return (%) discrete 
13.01.2014 98.52  
14.01.2014 98.73 0.21315 
15.01.2014 101.35 2.65370 
16.01.2014 100.00 -1.33202 
17.01.2014 100.55 0.55000 

 
 
E.g., the return for the 15.1.2014 can be calculated as: 
 

%6537.2
73.98

73.9835.101R =
−

=  
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If the return calculation is performed for many intervals, a so-called return time 
series appears. The following figure reveals the time series of daily returns for 
Siemens using a 34 years long period (2.1.1975 bis 31.3.2009, 8934 observa-
tions). 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Returns (% p.d.) Stock price (€) 
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 Consideration of dividend payments 
 
Dividends are part of the performance for the equity owner (the investor) and, 
thus, have to be considered in the return calculation: 
 

1t

t,1t1tt
t,1t P

DPP
R

−

−−
−

+−
=  

 
Dt-1,t: Dividend payments (or other cash payments) between t-1 and t 
 (Assumption: reinvestment at t) 
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Example 
 
Return calculation for Siemens equity prices. On 29.1.2014 (= ex-day) a divi-
dend of €3 for the last business year is payed (Dividendenabschlag). 
 
 

Trading days Closing price Dividend Return (%) discret 
27.01.2014 97.41   
28.01.2014 98.94  1.571 
29.01.2014 94.87 3.00 -1.081 
30.01.2014 94.14  -0.769 
31.01.2014 93.96  -0.191 
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Example: Reinvestment of Dividends 
 
Day 1: P1 = €39 
Day 2: P2 = €40, €2.9 Dividend (ex-Day) R1,2 = 10% ((40 – 39 + 2.90)/39) 
Day 3: P3 = €41 R2,3 = 2.5% ((41 – 40)/40) 
 
Implicitly: Reinvestment of the dividend at €40. 
 
Investor with 10,000 Shares on Day 1: 
Day 1: 10,000 Shares 
Day 2: 10,725 Shares = 10,000 + (2.9/40)⋅10,000 
Day 3: 10,725 Shares 
 
Wealth development: 
Day 1: 10,000 Shares x €39 = €390,000 
Day 2: 10,725 Shares x €40 = €429,000 = €390,000 ⋅ (1 + 0.1) 
Day 3: 10,725 Shares x €41 = €439,725 = €390,000 ⋅ (1 + 0.1) ⋅ (1 + 0.025) 
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 Correction for artificial price changes 
 
The market value of equity is defined as share price times the number of shares 
outstanding. The stock price is changing over time due to supply and demand. 
 
But the stock price can also change due to artificial effects. Typical examples are: 
 
Stock split, seasoned equity offering (Kapitalerhöhung), capital reduction (Kapital-
erhabsetzung) 
 
In these cases, the number of shares outstanding is increasing or decreasing 
without changes in the market value of equity. 
 
E.g., at a 10:1 stock split the number of shares outstanding increases tenfold 
and correspondingly reduces the share price to a tenth compared to the share 
price immediately before the split. This price change of -90% (e.g. from €100 to 
€10) is an artificial process, as investors wealth is not affected. 
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Thus, artificial price changes have to be considered when calculating returns! 
This can be done via a correction factor f: 
 

1tt

t,1t1ttt
t,1t Pf

DPfP
R

−

−−
− ⋅

+⋅−
=  

 
 ft: Correction factor for time t 
 f = 1: Value of subscription rights = 0 
 f < 1: Value of subscription rights > 0 
 
 

 
1t

t1t
t P

SRPf
−

− −
=  

 
 SRt: Value of subscription rights for time t 
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 Subscription right (Bezugsrecht) 
 
Issue of new shares: Affects the old shareholders 
 
• Percentage fraction , lower influence, capital dilution effect (Kapitalver-

wässerungseffekt) 
 
• Share price , as: issue price of the new shares < current share price (market) 
 

  But: share capital (number of shares outstanding)  
 
Subscription right: Protection of the old shareholders against this disadvantage 
 

 Offert to buy new shares proportional to the # of existing (old) shares 
 

 Ex-Day: Subscription right discount (Bezugsrechtsabschlag), thereafter: 
trading of subscription rights takes place 

 

 Subscription right discount = computed subscription right value (SR)  
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 Computing of the subscription right value 
 

 
newold

newIPoldPPPPSR 1t
1tex,1t1tt +

⋅+⋅
−=−= −

−−−  

 

1
new
old

IPP
newold

newIPnewP 1t1t

+

−
=

+
⋅−⋅

= −−  

 
 

 old: Number of shares an investor has to have to buy "new" new shares. 
 

 Pt: Closing price on day t 
 

 Pt-1: Closing price on day t-1 
 

 IP: Issue price of the new shares 
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Example: OMV – Historical capital changes (2.12.1987 – 28.2.2014) 
 

  # of shares Issues price # of shares outstanding 
Ex-Day  Old New (IP) before after 

21.04.1991 10:1 Split 1 9 0 2 Mio 20 Mio 
21.05.1991 SEO 5 1 €65.4056 20 Mio 24 Mio 
09.06.1994 SEO 8 1 €50.8710 24 Mio 27 Mio 
02.12.2004 SEO 9 1 €219 27 Mio 30 Mio 
11.07.2007 10:1 Split 1 9 0 30 Mio 300 Mio 
19.05.2011 SEO 11 1 €27.50 300 Mio 327,272,727 

SEO: Seasoned equity offering 
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OMV – uncorrected share price (€) (2.12.1987 – 28.2.2014, 6516 observations) 
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(a) OMV: 10:1 Split (21.4.1991) 
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43.60071.6614.667
19

90114.66714.667SRt =−=
+

⋅+⋅
−=  

 

1.0
14.667

43.60014.667ft =
−

=  

 
 
 
 
 
 
 
 
 
 
 
 
  

Trading Day Price Return SR 
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(b) OMV: SEO 2 (9.6.1994) 
 
8:1:€50.8710 = old:new:IP  8 subscription rights for one new share 
 
Value of one subscription right (SRt): 
 

8732.186.6573.67
81

1)8710.50(873.6773.67SRt =−=
+

⋅+⋅
−=  

 
Correction factor: 
 

9723.0
73.67

8732.173.67ft =
−

=  

 
 
 
 
 
  

Trading Day Price SR Return 
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 Dividend disadvantage 
 
If the new shares are not (100%) entitled to dividends for the current fiscal year, 
the SRt calculation has to be corrected: 
 

( )
newold

newDivxnewIPnewP
newold

DivxIPnewoldPPSR 1t1t
1tt +

⋅⋅−⋅−⋅
=

+
⋅+⋅+⋅

−= −−
−  

 

1
new
old

DivxIPP 1t

+

⋅−−
= −  

 
x: Dividend disadvantage = 1 - dividend entitlement of the new shares 
  (between 0 and 1) 
 

Div: Dividend for the current fiscal year 
 

IP: Issue price  
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OMV – corrected share price (€) and daily returns 
(2.12.1987 – 28.2.2014, 6516 observations) 
 
 
 
 
 
 
 
 
 
 
 
2.12.1987: IPO, issue price = €323.76 (ATS 4,455)  2x 10:1 Split:  €3.2376 
 
Cumulative correction factor for 4 SEOs:  0.956217 
 

Issue date (1.12.1987): 
Adjusted share price = €3.09582 (= 323.76⋅0.1⋅0.1⋅0.956217)  
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28.2.2014: Share price = €32.97 (i.e., x10.6498) 
 
Wealth increase (26.25 years): 
1.12.1987: €1,000 
28.2.2014: €10,649.80 
 +964.98% or +9.43% p.a. (without dividends of 2-3% p.a.) 
 
OMV – corrected share price (€) in logarithmic scalling: 
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2.2. Continuous Returns 
 
• Discrete returns are not exact symmetric 
 

• But this asymmetry is only important for really large returns 
 
 

Example: Relationship between discrete and continuous returns 
 
Lets assume we invest €100 over a period of 12 months and earn Z = €10 after 
this 12 month. Thus, the discrete return equals R = Z/100 = 10%. 
 
If we would get instead two interest payments of €5 after 6 and 12 months the 
return equals: 

%25.101
100

511
100

2
Z

1R
2

2

=−





 +=−

















+=  p.a.  
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Generally for n sub-periods or n interest payments: 
 

1
100

n
Z

1R

n

−
















+=  

 
If the number of sub-periods becomes larger and larger (and, thus, its length 
smaller and smaller), then if n → ∞: 
 

n

Z
100

n

Z
nR lim 1 1 e 1

100→∞

 
 

= + − = − 
 
 
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This implies for the example above: 
 

%5171.101e1e1
100

n
10

1limR 1.0100
10

n

n
=−=−=−

















+=
∞→

 

 
Thus, if the payment interval becomes infinitesimal, the realized return increas-
es from 10% to 10.5171%. This illustrates the relationship between realized 
(discrete) and continuously compounded return: 
 
 1.0eR1 =+  

 

 ( ) continuous
1.0 R%10or1.0eln)105171.01ln()R1ln( ===+=+  

 
A continuously compounded return of 10% p.a. corresponds to a discrete return 
of 10.5171% p.a.  
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 Return calculation: 
 

( )t,1tcontinuous,t,1t R1lnR −− +=  
 

ln = natural logarithm 
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Example 
 
Calculation of discrete and continuous returns for Siemens: 
 

Trading Day Closing price (€) Return discrete (%) Return conti. (%) discrete/conti. 
13.01.2014 98.52    
14.01.2014 98.73 0.21315 0.21293 1.0011 
15.01.2014 101.35 2.65370 2.61910 1.0132 
16.01.2014 100.00 -1.33202 -1.34097 0.9933 
17.01.2014 100.55 0.55000 0.54849 1.0027 

 
E.g., continously compounded return for 15.1.2014: 
 

( ) %61910.2
73.98
35.101ln0265370.01lnRcontinuous =






=+=  
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Example: The following figure reveals that the differences between discrete and 
continuously compounded returns increase with the size of price fluctuations. 
The base price in this example is always €10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Return (%) 
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2.3 Time series of returns 
 
 FX Rates – USD/EUR (2.1.1987 bis 30.7.2010, 6072 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Returns (% p.d.) USD/EUR 

 

  

 
34 



PEF_6-8 Part 1 
 

 
 
 Discount factor - Euro 5Y (19.9.2000 - 16.9.2003) 
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2.4. Buy-and-Hold Returns 
 
A common method to calculate the performance of an asset based on a return 
time series over a longer period are Buy-and-Hold returns (BHRs). BHRs have 
the advantage that they are based on a realistic and ex-ante implementable 
trading strategy. The BHR for company i until T is defined as: 
 

 ( ) 1R11)R1(.....)R1()R1(BHR
T

1t
t,iT,i2,i1,iT,i −







∏ +=−+⋅⋅+⋅+=
=

 

 
Ri,t   Return of comany i in (sub-) period t (e.g. trading day t) 
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If no dividends or artificial price changes take place, BHRs can also be calculat-
ed based on share prices. Let us consider the BHR calculation for 2 periods: 
 

 ( ) ( ) ( )2,i1,i
2

1t
t,i2,0,i R1R11R1BHR +⋅+=−







∏ +=
=

 

 

 1
P

PP
1

P
PP

1BHR
1,i

1,i2,i

0,i

0,i1,i
2,0,i −







 −
+⋅







 −
+=  

 

 1
P

PPP
P

PPP
BHR

1,i

1,i2,i1,i

0,i

0,i1,i0,i
2,0,i −

−+
⋅

−+
=  

 

 
0,i

0,i2,i

0,i

2,i
2,0,i P

PP
1

P
P

BHR
−

=−=  
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2.4.1. Geometric Mean 
 
The geometric mean corresponds to the constant, period based growth rate 
GMτ1,τ2 that leads over the same period (i.e. between t = τ1 and t = τ2 over n 
(sub-) periods) to the same final value as the BHRτ1,τ2. It can be calculated us-
ing the corresponding return time series or the corresponding BHR: 
 

 τ τ τ + τ + τ

τ τ

= + ⋅ + ⋅ ⋅ + −

= + −
1, 2 1 1 1 2 2

n
1, 2

BHR (1 R ) (1 R ) ..... (1 R ) 1

(1 GM ) 1
 

 

 [ ]( ) ( )
( )τ

τ τ τ + τ + τ
=τ +

 
= + ⋅ + ⋅ ⋅ + − = + 

 
∏

1 n2
1 n

1, 2 1 1 1 2 2 τ
τ 1 1

GM (1 R ) (1 R ) ..... (1 R ) 1 1 R  

 
 ( )

τ τ τ τ = + − 
1 n

1, 2 1, 2GM 1 BHR 1 
  
 

  

 
38 



PEF_6-8 Part 1 
 

 
 
If no dividends are payed between points in time τ1 und τ2 and/or no artificial pe-

rice changes occur (or the price time series has been corrected corresponding-

ly), the geometric mean can also be directly calculated by comparing the prices 

or index values at t = τ1 and t = τ2 (Pτ1 and Pτ2): 

 

 
( )

τ
τ τ

τ

 
= − 

 

1 n

2
1, 2

1

PGM 1
P
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Example: Annual returns of various US asset classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quelle: Ibbotson Associates. 
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Example: 
 
BHR for Large Company Stocks, 1926 until 1928: 
 
 %393.1204361.13749.11162.1BHR 1928,1926 +=⋅⋅=  
 
Yearly (constant) growth rate: 
 
 [ ]( ) %137.30120393.11GM 31

1928,1926 +=−+=  p.a. 
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Example: Index values of various US asset classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quelle: Ibbotson Associates.  
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BHR for Large Company Stocks, End 1928 until End 1931: 
 

 %025.611
204.2
859.0BHR 1931,1928 −=−



=  

 
Constant growth rate p.a.: 
 

 
( )

.a.p%95.261
204.2
859.0GM

31

1931,1928 −=−



=  

 
Increased consequence for Small Company Stocks due to the crash in 1929: 
 

 %85.841
710.1
259.0BHR 1931,1928 −=−



=  

 

 
( )

.a.p%70.461
710.1
259.0GM

31

1931,1928 −=−



=   
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Wealth development of $100 invested at the end of 1925 until the end of 20111 
 

  
1 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 314. 
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E.g., an investment of $100 in large US stocks (firms included in the Standard & 

Poor‘s 500 Index) increased during the 86 year period to $275,240. This im-

pressive growth corresponds to an annual constant growth rate (geometric 

mean GM) of 9.6%: 

 

( )
 = − =  

1 86

End1925,End 2010
275,240GM 1 9.6%

100
 

 
 
An important fact from the graph: 
 
A higher performance is associated with higher price fluctuations (higher risk). 
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Empirical distribution of annual returns for various asset classes 1926-20112 
 

  
2 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 322. 
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Average annual return and return volatility (standard deviation) 
 
 Artihmetic mean Geometric mean Standard deviation 
Small stocks 18.7% 12.6% 39.2% 
S&P 500 11.7% 9.6% 20.3% 
Corporate bonds 6.6% 6.4% 7.0% 
Treasury bills 3.6% 3.6% 3.1% 
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The horizon matters: Value of $100 invested for different horizons3 
 

  
3 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 315. 
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Historic trade-off between risk and return: Large portfolios4 
 

  
4 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 327. 
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Performance: Nominal vs real 
 

(a) Nominal Performance of US Asset Classes, 1900-20165 

  

5 Quelle: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Summary Edi-
tion, p. 11. 
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(b) Real Performance of US Asset Classes, 1900-20166 

 
  

6 Quelle: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Summary Edi-
tion, p. 12. 
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(c) Real performance of stock, bonds and bills in different countries, 1900-
20167 

  

7 Quelle: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Summary Edi-
tion, p. 13. 
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The implication of dividend payments and their re-investment (Large 
Stocks)8: 

 
  

8 Quelle: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Summary Edi-
tion, p. 13. 
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2.4.2. Arithmetic Mean 
 
The arithmetic mean AM between t = τ1 and t = τ2 is defined as the simple aver-
age of period returns: 
 

 ∑⋅=
τ

+τ=
ττ

2

11τ
τ2,1 R

n
1AM  

 
 
Due to the compound interest effect the geometric mean is smaller than the 
arithmetic mean if the long run performance is positive. 
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2.4.3. Risk-Return trade-off – International Evidence 
 

Inflation adjusted performance in 15 countries, 1900-2016:9 

  

9 Data source: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Sum-
mary Edition, p. 14 and p. 16-17. 
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With Austria (AT):10 
 

  
10 Datenquelle: Dimson, Marsh, and Staunton, Credit Suisse Global Investment Returns Yearbook 2017 – Sum-
mary Edition, p. 14 and p. 16-17. 
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3. Risk Quantification 
 
Ex-post returns are the basis for historical performance and variance calcula-
tions. 
 
For investment decisions, potential future (ex-ante) returns are of interest. 
 
Therefore, ex-ante returns are described via probability distributions. 
 
Especially the first two moments of the (ex-ante) return distribution are of inter-
est. 
 
As ex-ante returns are unknown, often historical observations are used as esti-
mate for the (ex-ante) return distribution. 
 
Ex-ante returns are typically modeled as random variables. 
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3.1 Empirical Distribution 
 
Example: Empirical return distribution and the corresponding normal density for 

1000 returns of Siemens (26.10.1999 until 16.9.2003). 
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3.2 Normal Distribution 
 
In finance returns are often assumed to be normal distributed. 
 
A normal distribution is entirely characterized by the first two moments. 
 
To characterize empirical distributions, sometimes also median and mode 
(Modalwert) as well as the third and fourth moment (skewness and kurtosis) are 
of interest. 
 
Density function of the normal distribution: 
 

( )
( )

σ⋅
µ−

⋅
σ⋅π⋅

= 2
x 2

e
2

1xf  
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      µ-2σ      µ-σ        µ        µ+σ      µ+2σ 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Example: Normal distribution with mean µ = 5% und standard deviation σ = 4%: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If returns are normally distributed, investors can predict that future returns will fall with-
in one standard deviation above or below the mean about 68.3% of the time; and with-
in 2 standard deviations about 95.4% of the time.  
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1. Moment: Mean 
 

See Arithmetic mean in 2.4.2 
 
 MS-Excel:  Average(starting cell:ending cell) 
 
 
 Median (important measure of location) 
 

 • 50% of all observations (returns) are smaller than the median 
 • 50% of all observations (returns) are larger than the median 
 
 MS-Excel:  Median(starting cell:ending cell) 
 
Median: Return that the center of a seris of observations (returns) sorted ac-
cording to size ( T21 R...RR ≤≤≤ ) 
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• Median for uneven T: 2)1T(RMedian +=  
 
Example 
 
Return time series: 4%, 8%, 5%, 5.5%, 5% 
 

%5RRMedian 32)15( === +  
 
 

• Median for even T: ( )1)2T()2T( RR
2
1Median ++⋅=  

 
Example 
 
Return time series: 4%, 8%, 5%, 5.5%, 5%, 7% 
 

( ) ( ) %25.5RR
2
1RR

2
1Median 431)26()26( =+⋅=+⋅= +   
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2. Moment: Variance 
 

 ( )∑ −
−

=σ
=

N

1t

2
t

2 RR
1N

1   2σ=σ  

 
• The standard deviation (volatility) often used as an estimate to represent 

risk associated with the expected return (mean). 
 
 MS-Excel:  STDEV(starting cell:ending cell) 
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• The larger the standard deviation is, the more uncertain the outcomes 

are. It is a measure of the goodness or confidence placed in the mean value. 
 
• Being able to measure and determine the past volatility of realized re-

turns provides some insight into the riskiness of that security as an in-
vestment. 

 
• Increased volatility, or price fluctuations, is associated with increased risk. 
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3. Moment: Skewness 
 
Reveals the degree of asymmetry for a return distribution. A normal distribution 
has a skewness of zero. 
 

3

N

1t

3
t

3N

1t

2
t

N

1t

3
t )RR(

N
1

)RR(
N
1

)RR(
N
1

s
s

∑ −
=









∑ −

∑ −
= =

=

=  

 
  s = 0 ⇒ Distribution = symmetric 
 s < 0 ⇒ Distribution = skewed to the left 
 s > 0 ⇒ Distribution = skewed to the right 
 
 MS-Excel:  SKEWNESS(starting cell:ending cell) 
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• Symmetric distribution (s = 0) 
 
 ⇒ Mean = Median = Mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Mean 
Median 
Mode 
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 Median 

Modalwert Mittelwert 

 
 
• Distribution is skewed to the right (s > 0) 
 
 ⇒ Mean > Median > Mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Mode     Mean 
Median 
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Modalwert 
Median 

Mittelwert 

 
 
• Distribution is skewed to the left (s < 0) 
 
 ⇒ Mean < Median < Mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Mean      Mode 
Median 
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4. Moment: Kurtosis 
 
The kurtosis shows, whether the maximum of a frequency distribution is higher 
or lower compared to a normal distribution. A normal distribution has a kurtosis 
of zero: 

( )
3

)RR(
n
1

RR
n
1

k 2n

1t

2
t

n

1t

4
t

−







∑ −

∑ −
=

=

=  

 
 

 k > 0 ⇒ leptokurtic distribution 
 k < 0 ⇒ platykurtic distribution 
 
 MS-Excel:  KURT(starting cell:ending cell) 
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Leptocurtic versus normal distribution 
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Empirical example of a leptokurtic distribution: 1533 daily OMV returns 
(2.1.1995 – 16.3.2001) 
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Example 
 
Siemens, 1000 Returns, 26.10.1999 to 16.9.2003, return distribution character-
istics: 
 
Mean (%) 0.048 
Median (%) 0.000 
Mode (%) 0.000 
Variance (%^2) 8.532 
Standard Deviation (%) 2.921 
Skewness 0.167 
Kurtosis 0.125 

 
 
 Not significant different from a normal distribution. 
  

Example: Empirical return distribution and the corresponding normal density for 
1000 returns of Siemens (26.10.1999 until 16.9.2003). 
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3.3 Value at Risk (VaR) - Basics 
 
 If: Return R  ∼  N(µ, σ2), then a probability α exists, so that 

  R ≤ [µ + σ⋅Φ(α)] and 

 ( )[ ] α=αΦ⋅σ+µ≤RP  (1) 
 
 P[.] Probability of the parenthesized expression 
 
 E.g. for α = 1% and 5%: ( )[ ] 01.0326.2RP =−⋅σ+µ≤  
 

 ( )[ ] 05.0645.1RP =−⋅σ+µ≤  
 
 Important quantiles Φ(α) of the standard normal distribution: 
 

α 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 
Φ(α) -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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 Density of the standard normal distribution and the 1%-Quantile 
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 Normal distribution of Siemens, 1000 daily returns, µ = 0.048%, σ = 2.921% 
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 VaR = expected loss of a position/portfolio that will be exceeded with a 
prespecified probability. 

 
 ( ) ( )[ ] α=α−≤−+ VαRMVMVP t1t  (2) 
 
 MVt Market value of the position/portfolio at time t 
 
 Instead of returns: absolute value changes in € (MVt+1 - MVt) are used 
 
 Negative sign for the VaR, because VaR is defined as loss-variable. 
 
 3 main methods to calculate VaR: 
 
   Delta Normal (Variance-Covariance) Approach 
 
   Historical Simulation Approach 
 
   Monte Carlo Simulation Approach  
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(a) Delta Normal Approach 
 
 Assumptions: Returns of the portfolio (RMV) are normal distributed 
  Returns of all risk factors (R) are normal distributed 
 
 Under the normality assumption eq. (1) is also valid for returns of a portfolio: 
 
 ( )[ ] α=αΦ⋅σ+µ≤+ MVMV1t,tRP  
 

 ( )( ) α=







αΦ⋅σ+µ≤







 −+
MVMV

t

t1t
MV

MVMVP  

 

 ( ) ( )( )[ ] α=αΦ⋅σ+µ⋅≤−+ MVMVtt1t MVMVMVP  
 
 VaR for quantile α: 
 

( ) ( )[ ]αΦ⋅σ+µ⋅−=α MVMVtMVVαR   so that  ( ) ( )[ ] α=α−≤−+ VαRMVMVP t1t  (3)  
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 VaR(α) = expected loss for the next trading day that will be exceeded with 

probability α, based on the current market value MVt. 
 

 
 Delta Normal Approach: Advantages 
 

 • Easy to understand 
 • Fast to implement (for linear instruments) 
 • Return series of market risk factors are not necessary 
 
 
 Delta Normal Approach: Disadvantages 
 

 • Assumptions (normal distribution) 
 • More complex for non-linear instruments (Gamma, Vega) 
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 For linear instruments (e.g., stocks, bonds, etc.): expected portfolio return 

(µMV) and portfolio standard deviation (σMV) can be replaced by expected 

factor return (µ) and factor standard deviation (σ). 

 
 
 VaR for a position/portfolio 
 
 ( ) ( ) α = − ⋅ µ + σ ⋅Φ α tVαR MV  (4) 
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Example 
 
Portfolio: 5,000 Siemens stocks 
 Price = €55.90 (16.9.2003), market value (MV) = €279,500 
 µ = 0.048% (p.d.), σ = 2.921% (p.d.) 
 

( ) [ ] 76.855,18)326.2(02921.000048.0500,27901.0VaR =−⋅+⋅−= € 
 

( ) [ ] 94.295,13)645.1(02921.000048.0500,27905.0VaR =−⋅+⋅−= € 
 
 For a holding period of one trading day: 
 
 • With probability α = 5%: Loss  ≥  €13,295.94 
or 
 • With probability α = 95%: Loss  <  €13,295.94 
 
 For 250 trading days p.a., we can expect a loss > VaR on 12 to 13 trading 

days p.a.  
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 Density function for the (estimated) market value changes in the position 

of 5,000 Siemens stocks and the corresponding VaR for α = 5%. 
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(b) VaR: Historical Simulation 
 
 Advantages 
 

 • Conceptually simple and easy to implement 
 • No parametric assumptions about P/L or market risk factors 
 • Automatically accommodates for fat tails, skewness and any other 

non-normal features 
 • Can be used for any type of position (linear and non-linear) 
 
 Disadvantages 
 

 • It takes more time to calculate VaR compared to the delta normal approach 
 • Results are completely dependent on the data set 
   Volatility clustering effects can negatively affect the VaR 
   VaR estimates are affected by the largest losses in the historical 

data set  
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 Steps: 
 

1. Specify all necessary market risk factors. 
2. Select a historical period of T observations (e.g. the last 250 or 500 trading 

days). 
3. Calculate a historical time series of returns for each market risk factor. 
4. Use the returns in (3.) to construct a distribution of synthetic risk factor 

values (for each risk factor). 
5. Use the distribution in (4.) to revalue all positions in the portfolio (for each 

historical trading day (scenario)). This yields a distribution of synthetic 
market values for each position. 

6. Aggregate the distribution of synthetic (potential) market values over all 
positions to get the distribution of synthetic (potential) market values 
for the total portfolio. 

7. Use the distribution in (6.) and the current market value of the portfolio to 
calculate the distribution of synthetic (potential) market value changes. 

8. The VaR equals the α-quantile of the distribution in (7).  
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Example: 
 
Portfolio of 5,000 Siemens stocks: VaR(0.05) 
 
Historical period: 26.10.1999 to 16.9.2003 
 
T = 1000 daily returns 
 
Closing price (16.9.2003): €55.90 
 
Market value of Siemens position (16.8.2003) = €279,500. 
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 Distribution of synthetic (potential) market value changes 
 

History Forecast (in €) 
 Risk factor Siemens Position 

Date Price (€) Return 
(%) 

Price Market value Market value 
changes 

16.9.2003   55.90 279,500.00  
25.10.1999 54.40     
26.10.1999 55.47 1.967 56.99950 284,997.52 5,497.52 
27.10.1999 55.80 0.595 56.23256 281,162.79 1,662.79 
28.10.1999 56.63 1.487 56.73149 283,657.44 4,157.44 

      

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 
      

11.09.2003 55.40 0.819 56.35778 281,788.90 2,288.90 
12.09.2003 54.08 -2.383 54.56809 272,840.43 -6,659.57 
15.09.2003 54.60 0.962 56.43750 282,187.50 2,687.50 
16.09.2003 55.90 2.381 57.23095 286,154.76 6,654.76 
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 Sorted market value changes 
 

Rank  Market value changes 
1  30,454.00 
2  25,941.62 
⁞  ⁞ 

949  -13,065.38 
950  -13,127.20 
951  -13,254.71 
952  -13,302.41 
953  -13,447.42 
⁞  ⁞ 

989  -16,933.04 
990  -16,992.66 
991  -17,828.75 
992  -18,294.55 
993  -18,712.92 
994  -18,786.07 
995  -18,963.79 
996  -19,542.46 
997  -20,204.82 
998  -21,646.06 
999  -22,893.03 
1000  -26,007.37 

 

VaR(0.01)     
= €17,410.71 

    VaR(0.05) 
        = €13,190.96 

5% 

1% 

95% 

99% 
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Scaling of Volatilities 
 
• When assuming a normal distribution: 
 
 Variance growths linear with time 
 
 Standard deviation growths with the square root of time 
 
 
• Volatility transformation: 
 
 .d.p.a.p 250 σ⋅=σ  
 
 .w.p.a.p 52 σ⋅=σ  
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3.4 Relationship between return time series 
 
 Characterization via covariance and correlation 
 
• Covariance is a measure of the degree to which two variables move to-

gether in a systematic or predictable way, either positively or negatively. 
 
• Covariance for 2 return time series A and B: 
 

 ∑ −⋅−⋅
−

=
=

T

1t
Bt,BAt,ABA )RR()RR(

1T
1)R,R(Cov  

 
 RA,t Return of stock A in period t 
 RB,t Return of stock A in period t 
 N Number of periods 
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 MS-Excel:  COVAR(starting cell:ending cell) 
 
 
 
• Correlation: 
 
 Correlation is a standardized version of covariance where values range 

from -1 (perfect negative covariance) to +1 (perfect positive covariance): 
 

 
BA

BA
BA

)R,R(Cov)R,R(
σ⋅σ

=ρ  

 
 ρ(RA,RB) ..... Correlation coefficient between A and B 
 Aσ  ..... Standard deviation of return time series A 
 Bσ  ..... Standard deviation of return time series B 
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 MS-Excel:  CORR(starting cell:ending cell) 
 
 
Correlation between real stock returns:  ∼ +0.1 - +0.9 
 
 
• Positively correlated assets tend to move up and down together, while 

negatively correlated assets tend to move in opposite directions. 
 
• If two assets are completely independent, showing no systematic relation-

ship, their correlation and covariance are zero. 
 
 
  

 

  

 
92 



PEF_6-8 
 

 
 
Example: OMV versus ATX (1.1.1995 to 16.3.2001) (Scatterplot) 
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perfect positive correlation (ρ = 1)

   

 

 

 
perfect negative correlation (ρ = -1)

   
 

 

 

 
imperfect positive correlation (ρ = 0.5)

   
 

 
zero correlation
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4. Basics of Modern Portfolio Theory 
 
4.1 Portfolio Selection of Markowitz 
 
The portfolio selection model of Markowitz (1952) is often viewed as the origin 
of modern portfolio theory.11 
 
Markowitz used for the first time the return variance as risk measure for an as-
set portfolio. 
 
 
 
  

11 Markowitz, H., 1952, Portfolio Selection, Journal of Finance, Vol. 7, No. 1, S. 77-91. 
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4.1.1 Risk Return Profile 
 
Expected return and risk are the basis for any investment decision. 
 
Question: In which assets should one invest? The answer depends on: 
 

• Characteristics of the securities (E[R], σ, ρ) 
 

• Risk preferences of the investor 
 
A rational investor chooses: 
 
• If stocks are equally risky: The one with the highest E[R] 
 

• If stocks have equally E[R]: The one with the lowest risk 
 
  Implicit assumption:  Risk aversion 
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Risk return profile of assets A, B, and C 
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Example 
 
The table “TR Index“ in the MS-Excel file MPT2019_PEF.xlsx contains daily to-
tal return indices of 5 data sets for the 25 year period 21.2.1994 to 21.2.2019: 
 

(1) BMW (Bayerische Motoren Werke) AG 
(2) E.ON AG 
(3) Münchner Rückversicherungs AG 
(4) Siemens AG 
(5) DAX 30 

 
(a) Calculate (discrete) daily returns for all 5 time series. 
 
(b) Calculate (arithmetic) mean return and return standard deviation on (i) daily 

and (ii) yearly basis. 
 Sample mean p.a = N * sample mean p.d. (N=261 trading days p.a.) 
 Standard deviation p.a. = N * standard deviation p.d. 
 
(c) Compute covariances (p.d. and p.a.) and correlations between the 5 time series. 
 Covariance p.a. = N * covariance p.d.  
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For (a) and (b) one gets: 
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For (c) one gets: 
 

Correlations BMW E.ON Münchner R Siemens DAX 
BMW   0.41 0.47 0.52 0.67 
E.ON     0.43 0.44 0.60 
Münchner R       0.50 0.68 
Siemens         0.75 
 
 

Covariances p.a. BMW E.ON Münchner R Siemens DAX 
BMW 0.1035 0.0373 0.0454 0.0529 0.0495 
E.ON 0.0373 0.0811 0.0374 0.0396 0.0390 
Münchner R 0.0454 0.0374 0.0919 0.0476 0.0471 
Siemens 0.0529 0.0396 0.0476 0.0982 0.0538 
DAX 0.0495 0.0390 0.0471 0.0538 0.0523 
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4.1.2 Risk preferences 
 
 
Different investors value the relationship between risk and return differently. We 
can distinguish between: 
 
(a) risk aversion 
 
(b) risk neutrality 
 
(c) risk seeking behavior 
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(a) Risk aversion 
 
Starting point: Each investor tries to maximize his/her utility. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Indifference curve: Portfolio combinations with equal utility 
Dominance considerations: A is better than C; A is better than F  
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An indifference curve is defined as all portfolio combinations that generate for a 
particular investor the same utility. 
 
Thus, portfolios A and B generate the same utility (u1) and the corresponding 
investor is indifferent between them. 
 
But portfolios A and C are not equally ranked. A has the same expected return 
as C but lower risk. The investor will, therefore, prefer A to C. 
 
For a risk averse investor the utility increases along the green arrow. Portfolios 
B, D, E: Portfolio B generates for the corresponding (risk averse) investor the 
highest utility level and has, therefore, a higher ranking compared to D or E. 
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Different levels of risk aversion 
 
 
 
 
 
 
 
 
 
 
 
 
 
Investor A has a higher risk aversion than investor B. 
 

A requires for bearing the same amount of additional risk (σ2 - σ1) a higher extra 
return (or risk premium).  Steeper indifference curve 
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(b) Risk neutrality 
 
Risk neutrality is characterized by the fact that the utility only increases or de-
crease when the expected return increases or decreases. The corresponding 
level of risk does not matter for a risk neutral investor. 
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(c) Risk seeking behavior 
 
A risk seeking investor is special, as the utility increases for the same ex-
pected return but a higher risk level. He/she weights scenarios on the right side 
(up-side) of the return distribution more than the left side (downside). 
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 An example for risk aversion 
 
A risk-averse person is not willing to take part in a game where she/he can win 
and lose money with an expected value (to win/lose money) of zero. 
 
Example: Flipping a coin 
 
 • Head (50% probability): + €100,000.- 

 • Tail (50% probability):  - €100,000.- 
 
 

Expected profit = 0.5⋅100,000 + 0.5⋅(-100,000)  =  0 
 
 Risk-averse persons do not like this:  they weight negative outcomes more 
 

 Risk neutral persons:  they are indifferent 
 

 Risk lovers: they like this game and weight positive outcomes more  
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 Risk aversion (1) 
 
• We usually need to take more risk in order to get more return, so there 

must be some trade-off between risk and return. 
 
• Risk aversion means that for investments having the same expected re-

turn, lower volatility is preferred to higher volatility. 
 
• Most people are risk-averse, at least concerning large sums of money. 
 
• Higher levels of risk aversion lead to larger proportions in risk-free assets. 
 
• Lower levels of risk aversion lead to larger proportions in the risky asset 

portfolio. 
 
• Theories of capital markets assume (normally) that investors are risk-

averse.  
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 Risk Aversion (2) 
 
How can we measure risk aversion? 
 
One often used way to represent risk aversion is via a quadratic utility function: 
 

U(R) = E(R) – 0.5Aσ2 
 
 
 More expected return (E[R]) is always better 
 The utility decreases with more risk (σ) 
 “A” is the risk aversion parameter: the larger “A” the more return will be 

required for a particular risk level (higher risk aversion) 
 Many studies have concluded that investors’ average risk aversion is be-

tween A = 2 and A = 4 
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Example: Risk aversion 
 
• Use the 4 individual stocks in MPT2019_PEF.xlsx and assume a risk aver-

sion parameter A of 2. 
 
• Compute the utility values for the return series. Which stock would you 

choose in this case? 
 
 
 
You get (see MPT2019_PEF.xlsx): 
 

 BMW E.ON Münchner R Siemens 
Utility (A=2) 0.0384 0.0091 0.0263 0.0324 
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4.1.3 Diversification 
 
An investor has typically the possibility to invest in several assets at the 
same time. 
 
He/she can choose individual assets or can form a portfolio of several assets. 
 
If a portfolio of several assets is formed we have to solve the problem of how 
the portfolio components should be weight. 
 
Are all possible combinations efficient? 
 
The simplest approach is the 2-risky-asset approach. 
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Example: 
 

Let us assume that an investor can choose between asset A and B with the fol-
lowing characteristics: 
 

Asset A: E[RA] = 25%, σA = 30% 
 

Asset B: E[RB] = 10%, σA = 20% 
 
 
Summary of notations: 
 
 • E[Ri]  expected return of asset i 
 • σi  volatility (= standard deviation of returns) of asset i 
 • ρi,j  correlation between assets i and j 
 • xi  portfolio weight of asset i 
 • RP  portfolio return 
 • E[RP] expected portfolio return 
 • σP  portfolio volatility (risk)  
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If, e.g., the investor chooses a weight of 70% for A and 30% for B, the ex-
pected return of this portfolio easily can be calculated as: 
 

[ ] [ ] [ ] %22153.0257.0RE3.0RE7.0RE BAP =⋅+⋅=⋅+⋅=   

 

  

 
113 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

E[R] 

σ 

B 

A 

10% 

10% 

30% 

20% 

20% 30% 



PEF_6-8 
 

 
 
Without fixed weights: 
 

[ ] [ ] [ ]BBAAP RExRExRE ⋅+⋅=  
 
 
xA and xB are the weights invested in asset A and B, respectively. 
 
Furthermore, it is assumed that all weights sum up to 1 (or 100%). Thus, the in-
vestor is investing 100% of a particular amount of money, not more and not less: 
 

1xx BA =+  
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In general: 
 
The expected return of a portfolio (consisting of N individual securities) is a 
linear combination of the expected returns of the individual components in that 
portfolio: 
 

[ ] [ ]∑ ⋅=
=

N

1i
iiP RExRE  

 
with 

 ∑ =
=

N

1i
i 1x  
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Variance of the portfolio consisting of assets A and B: 
 

[ ] ( )[ ]2BBAABBAA
2

PP
2
P )R(Ex)R(ExRxRxE)R(ERE ⋅+⋅−⋅+⋅=−=σ  

 
[ ] [ ]

( )[ ]))R(ER()R(ERExx2
)R(EREx)R(EREx

BBAABA

2
BB

2
B

2
AA

2
A

2
P

−⋅−⋅⋅⋅
+−⋅+−⋅=σ  

 
)R,R(Covxx2xx BABA

2
B

2
B

2
A

2
A

2
P ⋅⋅⋅+σ⋅+σ⋅=σ  

 
Thus, the covariance between the portfolio components is an additional im-
portant determinat for the portfolio risk. 
 
The covariance is defined as: ( ) BAB,ABA R,RCov σ⋅σ⋅ρ=  
 
The volatility of the portfolio is the square root of the portfolio variance: 
 
 BAB,ABA

2
B

2
B

2
A

2
AP xx2xx σ⋅σ⋅ρ⋅⋅⋅+σ⋅+σ⋅=σ   
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3 important cases: 
 

1B,A +=ρ :  BABA
2
B

2
B

2
A

2
AP xx2xx σ⋅σ⋅⋅⋅+σ⋅+σ⋅=σ  

  ( )2BBAA xx σ⋅+σ⋅=  
  BBAA xx σ⋅+σ⋅=  
 

1B,A −=ρ :  BABA
2
B

2
B

2
A

2
AP xx2xx σ⋅σ⋅⋅⋅−σ⋅+σ⋅=σ  

  ( )2BBAA xx σ⋅−σ⋅=  
  BBAA xx σ⋅−σ⋅=  
 

1B,A +<ρ :  BAB,ABA
2
B

2
B

2
A

2
AP xx2xx σ⋅σ⋅ρ⋅⋅⋅+σ⋅+σ⋅=σ  

  ( ) 1,PBBAA B,A
xx +=ρσ=σ⋅+σ⋅<  
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Fundamental proposition: 
 
Different to expected portfolio returns, the return standard deviation of a portfo-
lio is only a linear combination of σA and σB, if the correlation between A and B 
is exactly +1 (ρA,B = +1). 
 
On the other hand, if ρA,B < +1, a diversification effect takes place: 
 
 Some risks can be eliminated by generating a portfolio. 
 
 
In the special case of ρA,B = -1, a combination of A and B (i.e. weights xA and xB) 
exists that eliminates the portfolio risk (σP = 0). 
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Example (continued) 
 
Case A: 1B,A +=ρ  
 

xA xB ρA,B σP E[RP] 
1 0 1.0 30.00 25.00 

0.9 0.1 1.0 29.00 23.50 
0.8 0.2 1.0 28.00 22.00 
0.7 0.3 1.0 27.00 20.50 
0.6 0.4 1.0 26.00 19.00 
0.5 0.5 1.0 25.00 17.50 
0.4 0.6 1.0 24.00 16.00 
0.3 0.7 1.0 23.00 14.50 
0.2 0.8 1.0 22.00 13.00 
0.1 0.9 1.0 21.00 11.50 
0 1 1.0 20.00 10.00 
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Case B: 3.0B,A −=ρ  
 

xA xB ρA,B σP E[RP] 
1 0 -0.3 30.00 25.00 

0.9 0.1 -0.3 26.47 23.50 
0.8 0.2 -0.3 23.12 22.00 
0.7 0.3 -0.3 20.03 20.50 
0.6 0.4 -0.3 17.37 19.00 
0.5 0.5 -0.3 15.33 17.50 
0.4 0.6 -0.3 14.20 16.00 
0.3 0.7 -0.3 14.19 14.50 
0.2 0.8 -0.3 15.31 13.00 
0.1 0.9 -0.3 17.34 11.50 
0 1 -0.3 20.00 10.00 

 
 
Minimum variance portfolio (MVP): Lowest possible portfolio risk 
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 Weights for the MVP: 
 

( )

( ) ( )( )

02x4x22x2

x
x1x2x1x
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xx2xx
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=

∂
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 xB = 1 - xA 
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MVP weights for assets A and B: 
 

 3494.0
2.03.0)3.0(22.03.0

2.03.0)3.0(2.0x
22

2

A =
⋅⋅−⋅−+

⋅⋅−−
=  

 
 xB = 1 - xA = 1 - 0.3494 = 0.6506 
 
 
Portfolio standard deviation of the MVP: 
 

( ) ( ) ( ) ( ) ( )
%048.14

2.03.03.06506.03494.022.06506.03.03494.0 2222
P
=

⋅⋅−⋅⋅⋅+⋅+⋅=σ  
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Case C: 1B,A −=ρ  
 

xA xB ρA,B σP E[RP] 
1 0 -1.0 30.00 25.00 

0.9 0.1 -1.0 25.00 23.50 
0.8 0.2 -1.0 20.00 22.00 
0.7 0.3 -1.0 15.00 20.50 
0.6 0.4 -1.0 10.00 19.00 
0.5 0.5 -1.0 5.00 17.50 
0.4 0.6 -1.0 0.00 16.00 
0.3 0.7 -1.0 5.00 14.50 
0.2 0.8 -1.0 10.00 13.00 
0.1 0.9 -1.0 15.00 11.50 
0 1 -1.0 20.00 10.00 
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Changing the correlation: Effect on volatility and expected return12 
 

  
12 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 366. 
 

  

 
124 

                                                 



PEF_6-8 
 

 
When short sales are allowed13 
 

  
13 Source: Berk and DeMarzo (2014), Corporate Finance, 3rd edition, p. 368. 
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Correlation effect: Portfolio standard deviation as a function of ρA,B for con-

stant portfolio weights of xA = xB = 0.5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

  

 
126 

0

5

10

15

20

25

30

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Standard 
Deviation 

Correlation coefficient 



PEF_6-8 
 

 
 
Example: Portfolio of E.ON AG and BMW AG 
 
Now let’s consider portfolios consisting of 2 stocks: E.ON AG and BMW AG 
(see MPT2019_PEF.xlsx). 
 

(a) Create a worksheet ‘2-Asset PF’ and copy for both stock expected return 
(p.a.) and standard deviation (p.a.) from the worksheet ‘Returns’. 

 

(b) Vary portfolio weights and compute expected return and the standard de-
viation for all portfolios. Consider only positive portfolio weights (no short 
selling permitted). 

 

 Note: Do not forget the condition x1 + x2 =1. 
  You can account for it by defining:  xBMW = 1 – xE.ON 
  Then you have only one weight to vary. 
 

(c) Plot the investment opportunity set and specify the efficient frontier on 
the graph.  
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You get (see MPT2019_PEF.xlsx): 
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Portfolio Combinations
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(d) Use the Solver to compute the minimum-variance portfolio (MPV). Find 

the corresponding portfolio weights, as well as the portfolio expected return 
and risk. 

 
 
You get: 
 

x(E.ON) x(BMW) E(RP) σP 
60.19% 39.81% 11.08% 25.23% 
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 Using the Solver for Portfolio Optimization 
 
• Make sure that under Excel-Options/Add-Ins the ‘Solver’ is included 
 
• Choose ‘Solver’ from the Data menu (if you have not done the previous 

step, this choice will not appear) 
 
• Target cell (Ziel festlegen): Minimize the portfolio risk 
 
• Changing cells (Durch Änderung von Variablenzellen): Cell with unknown 

portfolio weight; the second weight is defined as 1 minus the first one 
 
• Add a constraint (Unterliegt den Nebenbedingungen) that the unknown 

weight is >=0  and  <=1. 
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(e) Compute the optimal portfolio for an investor with a risk aversion parameter 

A of 0.5, 2, and 4 (use the quadratic utility function: U(R) = E(R) – 0.5Aσ2) 
 
 
 
You get (see MPT2019_PEF.xlsx): 
 
Risk Aversion A U(RP) x(E.ON) x(BMW) E(RP) σ(RP) 

lower 0.5 0.11602 0.00% 100.00% 14.19% 32.17% 
 2 0.05319 36.00% 64.00% 12.33% 26.48% 

higher 4 -0.01352 48.00% 52.00% 11.71% 25.55% 
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4.1.4 Risk of a well diversified portfolio 
 

Consider a portfolio with N assets (stocks) and equal weights:    
N
1xi =  

 

Adapted variance-covariance matrix as basis for the variance computation: 
 

Stock 1 2  N 

1 2
1

2
1x σ⋅  ( )2121 R,RCovxx ⋅⋅  

 ( )N1N1 R,RCovxx ⋅⋅  

2 ( )1212 R,RCovxx ⋅⋅  2
2

2
2x σ⋅    

 
  

  

N ( )1N1N R,RCovxx ⋅⋅    2
N

2
Nx σ⋅  

 

Portfolio variance:    )R,R(Covxxx ji
N

1i

N

ji
1j

ji
N

1i

2
i

2
i

2
P ⋅∑ ∑ ⋅+∑ σ⋅=σ

=
≠
==
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or alternatively with equal weights: 
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The decomposition of the portfolio variance into a pure variance component (A, 
main diagonal) and a pure covariance component (B) shows that the pure var-
iance component becomes more and more irrelevant for the portfolio risk with 
increasing N. 
 
For N  →  ∞: A  →  0  and  B  →  Cov, and for the portfolio risk it follows: 
 

Cov2
P →σ  

 
Thus, the risk level of individual securities within a portfolio is of decreasing im-
portance with increasing number of securities! The risk of a well-diversified port-
folio converges to the average covariance level of the individual securities. 
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4.1.5 Efficient Set 
 
Starting from the results for a portfolio consisting of 2 assets we now want to 
analyze the portfolio compositions for a portfolio with more than 2 assets. 
 
If a portfolio contains 3 risky assets A, B, and C all (endless many) portfolios in 
the grey area in the figure below can be generated. 
 
Portfolio E is special, as its variance is lowest. E is, therefore, the MVP of all 
possible combinations of the three risky assets. 
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However, not all possible portfolios (grey area) are relevant. Relevant (efficient) 
portfolios have the following characteristics: 
 

(a) Minimal risk for all possible expected returns. 
 

(b) Maximal expected return for all possible risk levels.  
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E.g., portfolio D is clearly dominated by portfolio D1 as well as portfolio D2. Thus, 
only portfolios on the line between E and A are efficient. They dominant all other 
possible portfolios (grey area). 
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Efficient Frontier: 
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Diversification effect due to additional assets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Portfolio L is efficient when only A and B can be used to generate portfolios. If C 
is added, the Efficient Frontier moves to the left. E.g., L is then clearly dominat-
ed by L1 and L2. 
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Portfolio selection steps by Markowitz: 
 
Based on Markowitz, investors should choose those portfolios that maximize 
the portfolio performance for a given level of risk (variance). 
 
Steps: 
 
(a) Selection of a set of assets for possible investment. 
 
(b) Estimation of expected return, volatility and correlation of in (a) specified as-
sets. 
 
(c) Calculation of the Efficient Frontier based on the information generated in 
(b). 
 
(d) Selection of the optimal portfolio for the corresponding investor based on 
the in (c) specified Efficient Frontier. 
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 Summary for a portfolio of N securities: 
 

(i) In total the sum of all portfolio weights equals one:    ∑ =
=

N

1i
i 1x  

 

 
(ii) The expected return of the portfolio is a linear combination of the ex-

pected returns on the stocks in that portfolio: 
 
 
 
 
(iii) Variance of the portfolio: 
 
 
 The volatility of the portfolio is the square root of the portfolio variance. 
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Example: Risk-Return profil for portfolios consisting of all securities (see also 
MPT2019_PEF.xlsx) 

 
 

Diversification: One gets less risk than by the least risky stock  
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Minimum-Variance Portfolio (MPV): The portfolio on the efficient frontier with 
the lowest risk level 
 
BMW 18.38% 
E.ON 38.36% 
Münchner R 24.94% 
Siemens 18.33% 
E(RP) 11.41% 
σ(RP) 23.31% 
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 Diversification effect if more assets are included 
 
 
Compare: 
 
• Minimum-variance portfolio of two securities: 
 

  Portfolio volatility is 25.23% 
 
• Minimum-variance portfolio of four securities: 
 

  Portfolio volatility is 23.31% 
 
 
• If we continue to increase the number of securities in a portfolio, the diversi-

fication effect will be even more pronounced. 
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 Efficient frontier and risk preferences (U(RP) = E(RP) – 0.5Aσ2

P) 
 
• Higher risk aversion (A = 4): 
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• Less risk aversion (A = 0.5) 
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 Summary 
 
• An indifference curve corresponds to portfolio combinations with the 

same utility value. 
 
• For more risk-averse investor, as volatility increases, he or she will de-

mand sharply higher expected returns to hold the portfolio. That’s why the 
indifference curves in this case increase steeper than of a less risk-averse 
investor. 

 
• These different curves will result in different optimal portfolio choices for 

investors. 
 
• The optimization procedure simply takes the efficient frontier and finds its 

point of tangency with the highest utility curve in the investor set. In other 
words, it identifies the single point that provides the investor with the highest 
level of utility.  
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4.2 Value at Risk - More than one Risk Factor 
 
 So far (see chapter 3.3 below) only one risk factor has been considered. 
 
 If there are two or more sources of risk: 
 

  Diversification effects in calculating VaR 
 

  Most important: Correlation structure between factor returns 
 
 First step: For each risk factor in a portfolio a delta-equivalent has to be 

calculated: 

 ∑∆=∆
=

N

1i
k,ik  (k = 1, ... , K) 

 

N Number of instruments in the portfolio 
∆i,k Delta-equivalent of instrument i relative to market risk factor k, with 
 ∆i,k =  δi,k⋅MVi  (δ = 1 for a stock when the stock is used as risk factor)  
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 Second step: For each market risk factor k a VaR has to be calculated 
 
 ( ) ( )[ ]αΦ⋅σ+µ⋅∆−=α kkkkVαR  
 or  (8) 
 ( ) ( ) kkkkkVaR µ⋅∆−aΦ⋅σ⋅∆−=a  
 
• If k > 1: 
 
  VaR has to be divided into 2 components: 
 

 ( ) µρσ +=α VαRVαRVαR ,  (9) 
 
Component 1: VaRσ ρ,  Depends on the volatility of the risk factors (σ1, ..., 

σK) and the correlation structure between risk fac-
tors. 

Component 2: VaRµ  Depends on the expected return (µ1, µ2, ... , µK) of 
the risk factors.  
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• VaRσ ρ,  is defined as: VaR V C VT
σ ρ, = ⋅ ⋅  (10) 

 
 with  [ ]V V V VT

K= 1 2 ...     and    ( )Vk k k= − ⋅ ⋅∆ Φσ α  
 
 ∆k Delta-equivalent of risk factor k 
 σk Volatility of risk factor k 
 

If we assume for all µk (k = 1, ... , K) to be 0: VT = vector of VaR num-
bers (all risk factors) 

 

• Correlation matrix of risk factor returns: 

 C

K

K

K K

=



















1
1

1

12 1

21 2

1 2

ρ ρ
ρ ρ

ρ ρ





   


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• VaRµ  is defined as: VaR T

µ µ= − ⋅∆  (11) 
 
 with 
 
 [ ]∆ ∆ ∆ ∆T

K= 1 2 ...  Vector of Delta-equivalents 
 [ ]µ µ µ µT

K= 1 2 ...  Vector of expected factor returns 
 
 
• For 2 risk factors the VaR is given by: 
 

 ( ) [ ] [ ]VaR V V
V
V

a
ρ

ρ
µ
µ

= ⋅








 ⋅






− ⋅ 





1 2
1 2

1 2

1

2
1 2

1

2

1
1
,

,
∆ ∆  

and (12) 
 ( ) ( ) ( )VaR V V V Va ρ µ µ= + + ⋅ ⋅ ⋅ − ⋅ − ⋅1

2
2

2
1 2 1 2 1 1 2 22 , ∆ ∆  
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Example: 
 
Portfolio of 2 stock positions: 50,000 T-Online stocks (long position) 
 70,000 Infineon stocks (short position) 
 α = 5%, H = 1 trading day 
Market data (10.10.2003): 

 T-Online Infineon 
Closing price €10.03 €12.19 

σ (p.d.) 3.29653% 4.39294% 
µ (p.d.) 0.05232% 0.00304% 

 
Correlation T-Online Infineon 
T-Online 1.000 0.543 
Infineon 0.543 1.000 
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Step 1: Vector of delta-equivalents 

• 500,501000,5003.10amountpriceOnlineT =⋅=⋅=∆ −  (long) 

• 300,853)000,70(19.12amountpriceInfineon −=−⋅=⋅=∆  (short) 
 
  Important: short positions have a negative sign! 
 
 
Step 2: Vector of VaRs for all µ = 0 

• ( ) 18.199,27645.103297.0500,501V OnlineT =−⋅⋅−=−  (long) 

• ( ) 60.663,61645.104393.0)300,853(VInfineon −=−⋅⋅−−=  (short) 
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Step 3: VaR component 1 
 

( ) ( ) )60.663,61(18.199,27543.0260.663,6118.199,27VaR 22
, −⋅⋅⋅+−+=ρσ  

 
 = 52,160.87 
 
 
Step 4: VaR component 2 
 

2211VaR µ⋅∆−µ⋅∆−=µ  = -501,500⋅0.0005232 - (-853,300)⋅0.0000304 = -236.44 
 
 
Step 5: Total VaR 
 

( ) µρσ +=α VαRVαRVαR ,  = 52,160.87 - 236.44 = 51,924.42 
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 Using matrix notation: 
 
 ( ) µ⋅∆−⋅⋅=α TT VCVVαR  

 [ ]K21
T V...VVV =  Vector of VaRs for all µ = 0 

 [ ]K21
T ... ∆∆∆=∆  Vector of Delta-equivalents 

 [ ]K21
T ... µµµ=µ  Vector of expected factor returns 

 
 
MS-Excel: 
 
{=SQRT(MMULT(MMULT(MTRANS(V_Start:V_End), C_Start:C_End), V_Start:V_End))} 
 
 minus 
 
{=MMULT(MTRANS(∆_Start:∆_End), µ_Start:µ_End)}  
 

  

 
156 



PEF_6-8 
 

 
 
 VaR calculation using the portfolio volatility 
 
 ( ) PPPpPVaR µ⋅δ−aΦ⋅σ⋅δ−=  
 
with 
 
 δP Total exposure of the portfolio (sum of the delta-equivalents of all 

market risk factors) 

 σP Volatility of the portfolio (of risk factors) 

 µP Expected return of the portfolio (of risk factors) 
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 For a portfolio of two risk factors we get: 
 
 122121

2
2

2
2

2
1

2
1P ww2ww ρ⋅σ⋅σ⋅⋅⋅+σ⋅+σ⋅=σ  

 
 2211P ww µ⋅+µ⋅=µ  
 

 with   
P

2
2

P

1
1 w;w

δ
δ

=
δ
δ

=  

 
 wk weight of market risk factor k (k = 1, 2) 
 δk Delta-equivalent (exposure) against risk factor k (k = 1, 2) 
 σk Volatility (standard deviation) of risk factor k (k = 1, 2) 
 ρ1,2 Correlation between risk factor 1 and 2 
 µk Expected returns of risk factor k (k = 1, 2) 
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Example: 
 
Coupon bond: 
Time to maturity = 2 years, face value = €10 Mio, coupon = 5.5%p.a. 
 
Market data: Discount factors (=risk factors): P(1) = 0.96, P(2) = 0.915, 
 µ1 = µ2 = 0, σ1 = 0.10% p.d., σ2 = 0.13% p.d., ρ12 = 0.96 
 
 Calculate the VaR for α = 5% 
 
Step 1: Valuation 
 

  The coupon bond consist of two zerobonds: 
 

 time 
 1 year 2 years 
Zerobond 1 (long position) 550,000  
Zerobond 2 (long position)  10,550,000 
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• VaR of zerobond 1: 
 
 ( ) ( ) 56.8681.645-0010.096.0000,55005.0V 1 =⋅⋅⋅-= € 
 
 
• VaR of zerobond 2: 
 
 ( ) ( ) 48.643,201.645-1300.0915.0000,550,1005.0V 2 =⋅⋅⋅-= € 
 
 
• VaR of the coupon bond: 
 

( ) ( )[ ] ( )[ ] ( ) ( )212,1
2

2
2

1 05.0V05.0V205.0V05.0V05.0VaR ⋅⋅ρ⋅++=  
 

( ) [ ] [ ] 48.643,2056.86896.0248.643,2056.86805.0VaR 22 ⋅⋅⋅++=  = 21,478.67 € 
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 General concept: Representation of the total portfolio in a risk matrix 

(matrix of all Delta-equivalents): 
 

 Risk factors (RF) 
 RF 1 RF 2 ... RF K 

Position 1 δ11 δ12 ... δ1K 
Position 2 δ21 δ22 ... δ2K 

⁞ ⁞ ⁞ ... ⁞ 
Position N δN1 δN2 ... δNK 

Total δ1 δ2 ... δK 
 
 

 Advantage: • Reduction of the risk measurement problem to a few risk fac-
tors 

 • Exposure netting at the risk factor level (before the VaR is 
calculated)  
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Example 
 
A portfolio consists of 3 government bonds (10.10.2003): 
 

7%-Bond, face value: €2 Mio, time to maturity: 2 years 
4%-Bond, face value: €4 Mio, time to maturity: 5 years 
5%-Bond, face value: €3 Mio, time to maturity: 3 years 

 
Market data for the risk factors (5.11.2001 to 10.10.2003): 
 

 3M 6M 9M 1Y 2Y 3Y 4Y 
σP(T) 0.01314% 0.01823% 0.02737% 0.03880% 0.11065% 0.17735% 0.23335% 
P(T) 0.99438 0.98891 0.9833 0.97722 0.9473 0.91221 0.87425 

 5Y 6Y 7Y 8Y 9Y 10Y  
σP(T) 0.28809% 0.32649% 0.36201% 0.41095% 0.44715% 0.48645%  
P(T) 0.83519 0.79583 0.75625 0.71758 0.68034 0.64582  
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Correlation matrix 
 

 3M 6M 9M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 
3M 1.000 0.614 0.445 0.358 0.158 0.195 0.186 0.165 0.118 0.110 0.096 0.084 0.090 
6M 0.614 1.000 0.706 0.616 0.351 0.361 0.364 0.319 0.272 0.271 0.246 0.234 0.218 
9M 0.445 0.706 1.000 0.861 0.477 0.479 0.475 0.440 0.377 0.377 0.371 0.353 0.329 
1Y 0.358 0.616 0.861 1.000 0.537 0.549 0.530 0.513 0.451 0.462 0.443 0.425 0.401 
2Y 0.158 0.351 0.477 0.537 1.000 0.944 0.913 0.912 0.880 0.852 0.835 0.807 0.804 
3Y 0.195 0.361 0.479 0.549 0.944 1.000 0.950 0.950 0.889 0.892 0.869 0.851 0.846 
4Y 0.186 0.364 0.475 0.530 0.913 0.950 1.000 0.969 0.893 0.896 0.873 0.857 0.854 
5Y 0.165 0.319 0.440 0.513 0.912 0.950 0.969 1.000 0.902 0.910 0.882 0.868 0.873 
6Y 0.118 0.272 0.377 0.451 0.880 0.889 0.893 0.902 1.000 0.958 0.953 0.945 0.938 
7Y 0.110 0.271 0.377 0.462 0.852 0.892 0.896 0.910 0.958 1.000 0.974 0.969 0.976 
8Y 0.096 0.246 0.371 0.443 0.835 0.869 0.873 0.882 0.953 0.974 1.000 0.974 0.966 
9Y 0.084 0.234 0.353 0.425 0.807 0.851 0.857 0.868 0.945 0.969 0.974 1.000 0.973 

10Y 0.090 0.218 0.329 0.401 0.804 0.846 0.854 0.873 0.938 0.976 0.966 0.973 1.000 
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 How large is the VaR(0.05) of this portfolio? 
 
 
Solution: 
 

 Risk factors and Cash Flows 
Positions 1Y 2Y 3Y 4Y 5Y 
7%-Bond 140,000 2,140,000    
4%-Bond 160,000 160,000 160,000 160,000 4,160,000 
5%-Bond 150,000 150,000 3,150,000   
Sum (face value, €) 450,000 2,450,000 3,310,000 160,000 4,160,000 
P(T) 0.97722 0.9473 0.91221 0.87425 0.83519 
Delta-equivalent (€) 439,749.00 2,320,885.00 3,019,415.10 139,880.0 3,474,390.4 
σP(T) 0.00038796 0.00110648 0.00177354 0.00233349 0.00288093 
V(0.05) in € 280.65 4,224.37 8,809.04 536.94 16,465.59 
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VCV)05.0(VaR T
P ⋅⋅=  

 
[ ]59.465,1694.53604.809,837.224,465.280VT =  

 
 























=

000.10.9690.9500.9120.513
969.0000.10.9500.9130.530
950.00.950000.10.9440.549

0.9120.9130.944000.10.537
0.5130.5300.549  0.537000.1

C  

 
 
VaR(0.05)P = 29,646.25 € 
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5. Market Model 
 
5.1 Basics 
 
The market model describes the relationship between the return of an indi-
vidual stock i and a market index M: 
 
 imiii RR ε+⋅β+α=  
 
Ri = Return of stock i (in period t) 
Rm = Return of market index m (in period t) (e.g. DAX, S&P500, FT100) 
αi = Alpha, intercept 
βi = Beta, slope 
εi = Residual return, random variable, E[εi] = 0, 

iεσ , ρε,m = 0, is not explained 
by general market movements, Covariance(εi, εj) = 0  
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• Only one factor explains stock returns (single-index model). 
 
• The market index functions as a proxy for potential general factors influ-

encing the economy (e.g., interest rates and changes in the form of the 
term structure, commodities and currencies, inflation, unemployment rate, 
general economic growth, ...) 

 
• Three return components: 
 
 (i) αi:  Expected performance if E[Rm] = 0 
 
 (ii) βi ⋅ Rm,t: Systematic return component 
 
 (iii) εi:  Unsystematic, firm specific return component; cannot be ex-

plained by the index (the market) 
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The market model in expected return formulation: 
 

[ ] [ ]miii RERE ⋅β+α=  
 
 
Example: 
 
• For a stock i with:   αi = 2%, βi = 1.2 

• Market model equation:  imi R2.1%2R ε+⋅+=  
 
 
If the market rises by +10%:  [ ] %14%102.1%2RE i =⋅+=  
 
 
If the realized return is only 11%: [ ] %3%14%11RER iiM,i −=−=−=ε  
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εi = 3% 

βi⋅Rm = 12% 

αi = 2% 

Rm 

Ri 

14% 

11% 

2% 

10% 

Actual 
realization 

Model expectations 
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• Beta βi is defined as: 2
m

m,i
i

σ

σ
=β  

 
 σi,m: Covariance between stock i and market index m 
 

 
2
mσ : Variance of market index returns. 
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Example: OMV and ATX 
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Example: Market model parameter estimation for Siemens AG 
 
Use the data in the MS-Excel file MPT2019_PEF.xlsx to estimate αi and βi for 
Siemens AG using the DAX as market index. 
 
 
You get: 
 
Regression line: 

RSiemens = 0.0131% + 1.0295 RDAX 
 
 
Beta: βSiemens = 1.0295 
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 Beta-Estimation: Regression Analysis 
 
Step 1: We can use the Excel function LINEST() to estimate a regression of the 
form 
 

Ri = αi + βi Rm 
 
 
As an output from this function, you get estimated values for βi, a constant term 
(αi), as well as additional regression statistics. 
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Annex: LINEST() 
 
 Array function 
 
Array functions are functions that produce results that fill several cells. 
 
Step A: Type in your data in two columns, one for variable x and one for varia-
ble y: 
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Step B: Select the area that will hold the output of the array formula. For "LIN-
EST" you should drag to form a 5 row by 2 column data array. 
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Step C: Press the wizard button ("fx"; formula section); Select "Statistical" + 
"LINEST": 
 
 
 
 
 
 
 
 
 
 
 
 
Select y and x values; type in "TRUE" in the last two dialog boxes. 
 
Step D: Click on "Finish." 
  
 

  

 
176 



PEF_6-8 
 

 
 
Step E: Now here is the important step. LINEST is an array function, which 
means that when you enter the formula in one cell, multiple cells will be used for 
the output of the function. 
 
To specify that LINEST is an array function do the following. Highlight the en-
tire formula, including the "=" sign, hold down the “Ctrl” and “Shift” keys and 
press “Enter.” Excel adds "{ }" brackets around the formula, to show that it is 
an array. Note that you cannot type in the "{ }" characters yourself. 
 
Output: 
 

slope 2.6286 -3.3286 intercept 
se(slope) 0.084997 0.409106 se(intercept) 

R2 0.9958 0.35557 s(y) 
F 956.38 4 degrees of freedom 

regression ss 120.91429 0.50571 residual ss 
 

se: standard error 
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926.30
084997.0

6286.2
)slope(se

slope)slope(statistict ===−  

 

136.8
409106.0

3286.3
)ercept(intse

erceptint)ercept(intstatistict −=
−

==−  

 
The t-statistic follows a t-distribution with n-2 degrees of freedom. P-values can 
be calculated using TDIST and/or NORMSDIST in excel: 
 
 P-value(slope) = TDIST(t-statistic, degrees of freedom, tail) 
 

 P-value(slope) = TDIST(30.926, 4, 2) = 0.000 
 

2-sided test: tail = 2 
1-sided test: tail = 1 

 
or under normal approximation (2-sided test): 
 
 P-value(slope) = 2(1 - NORMSDIST(t-statistic))  
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 Beta-Estimation: Regression Analysis (2) 
 
Step 2: We can now analyze how reliable the Beta estimate for Siemens (pro-
vided above) is. 
 
From the regression statistics, the coefficient of determination (R2) is of spe-
cial interest. It measures the proportion of a security’s total variability ex-
plained by the market index. 
 
Values of R2 range between 0 and 1, where 0 represents the least explanatory 
power and 1 shows full correlation between the security and the index. 
 
The closer to 1, the more the estimated Beta should be trusted and vice-versa. 
 
  

 

  

 
179 



PEF_6-8 
 

 
 
Example: 
 
• R2 of the Siemens Beta estimate is 0.5647.  Quite good!! 
 
 
• This implies that DAX returns explain 56.47% of the movements in the Sie-

mens return series. 
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5.2 Systematic and unsystematic risk 
 
• The total risk of an asset or portfolio can be divided into two parts: 
 
 (1) Market risk (systematic risk) and (2) residual risk (unsystematic risk): 
 

22
m

2
i

2
i iε

σ+σ⋅β=σ  

 
 2

m
2
i σ⋅β    =   market risk,     2

iε
σ    =   residual risk 

 
• Portfolio of N assets: 
 

 ∑ ⋅=
=

N

1i
iiP RxR  
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When Ri is replaced by its market model equation, we get for the portfolio: 
 

( )

PmPP

N

1i
iim

N

1i
iii

N

1i
i

imii
N

1i
iP

R

xRxx

RxR

ε+⋅β+α=

∑ ε⋅+⋅







∑ β⋅+α⋅∑=

ε+⋅β+α⋅∑=

===

=

 

 
The total risk of a portfolio: 22

m
2
P

2
P Pε

σ+σ⋅β=σ  

 
2N

1i
ii

2
P x 








∑ β⋅=β
=

 

 ∑ σ⋅=σ
=

εε

N

1i

22
i

2
iP

x ,   as Cov(εi, εj) = 0  ∀ i ≠ j 

 

 σP
2  =  systematic risk ( 2

m
2
P σ⋅β )  +  unsystematic risk ( 2

Pεσ )  
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 Unsystematic risk: 
 
• Unsystematic risk of firm i  =  company specific 
 
• Affects only firm i 
 
• Portfolio:  Firms with good news (e.g. discovery of a new oil field, 

development of a new product) 
 

   Firms with bad news (e.g. strike, fire, loss of production) 
 
 
• With growing N: Firm specific good and bad news will cancel out. 
 
  The more a portfolio is diversified, the lower is the unsystematic risk 
 
• Thus, this kind of risk can be diversified. 
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• If we invest in each stock the same amount of money with  
N
1xi = , 

  Unsystematic risk of the portfolio: 
 

 

2

222

2N

1i

2
2

Average

N21

iP

N
1

N

...

N
1

N
1

e

eee

e
=

e

σ⋅=













 σ++σ+σ
⋅=

σ⋅∑ 





=σ

 

 

 
 Systematic risk: 
 
• Economy-wide sources of risk that affects the overall stock market. Also 

called “market risk”. This risk is not diversifiable.  

   with N : Unsystematic risk becomes unimportant 
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 Number of firms 

unsystematic risk 

systematic risk 

Risk (σ) 

Total risk 


