
1. 1.1. ∀x(¬P (x) → (P (x) ∧Q(x))) |= ∀xP (x)
The formula has an easy counterexample. To show this find an Interpretation
I ⟨U, I, {}⟩ with I ̸|= ∀xP (x).
U = N, I(P) = (x == x), I(Q) = (x == x)

It is easy to see, that under I ¬P (x) becomes true and (P (x) ∧Q(x)) false.

1.2. p→ q |= ¬q → ¬p
Lets assume I = ⟨U, I, {}⟩ is a arbitrary model of the left side. This means
I |= p → q. The only way for the entailment to not hold is if I ̸|= ¬q → ¬p,
which requires I ̸|= q and I |= p. But, if this were to be true,the left side
would not be modeled by I, so the entailment always holds.

1.3. (p ∧ q) → (p ∨ q) |= ¬q
Lets assume I = ⟨U, I, {}⟩ is a arbitrary model of the left side. This means
I |= (p∧ q) → (p∨ q). This is always the case. If p or q are not modeled by I,
the implication becomes true, and, if they are both modeled by I, I |= (p∨ q).
Now its easy to find the counterexample I |= q.

1.4. (p→ q) ∧ (p ∨ r) |= q ∨ r
Lets assume I = ⟨U, I, {}⟩ is a arbitrary model of the left side. This means
I |= (p → q) ∧ (p ∨ r). The only way for the entailment to not hold is if
I ̸|= q ∨ r, which requires either I ̸|= q or I ̸|= r or both. For I |= (p → q),
I ̸|= p is necessary. This means that I ̸|= (p ∨ r). So it is impossible for I to
be a model of the left side, while it is not one of the right.

2. 2.1. ψ → ϕ

(i) tautological: ψ is a contradiction and stands on the left side of the impli-
cation. This makes the whole implication a tautology.

2.2. χ→ (ψ → ϕ)

(i) tautological: The right side is a tautology. The only way for an implication
to be false is for the left side to be true and the right to be false, which is
impossible here.

2.3. ϕ ∧ χ
(iii) contingent and (iv) logical equivalent to χ: ϕ is a tautology, so the whole
statement depends solely on χ.

2.4. ¬ψ ∨ χ
(i) tautological: ¬ϕ is a negated contradiction, which makes it a tautology.
Because there is always one true value, the or statement is alwys true.
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2.5. ϕ→ ψ

(ii) contradictory: The only way for an implication to be false, is for the
left side to be true and the right to be false. Which happens exactly in this
example.

2.6. ¬χ→ (¬χ→ ψ)

(iii) contingent and (iv) logical equivalent to χ: If χ is true, the ¬ makes
it false and because it stands on the left side of an implication, the whole
formula becomes true. If χ is false, the ¬ makes it true. The right side of
the implication is false, because ψ is a contradiction. So the whole formula
becomes false.

3. 3.1. Show the contraposition theorem directly from the definition of |=
Contraposition theorem: W ∪ {ϕ} |= ¬ψ iff W ∪ {ψ} |= ¬ϕ
Definition of |= : Let W be a set of closed formulas. Then W entails ϕ,
W |= ϕ, if and only if Mod(W) ⊆ Mod(ϕ)

We have to show that (W ∪ {ψ} |= ¬ϕ) |= (W ∪ {ϕ} |= ¬ψ)
Lets take a arbitrary model I ⟨U, I, {}⟩ for W ∪ {ψ} |= ¬ϕ. Every model
that entails the left side should also entail the right. In order for I to entail
W ∪ {ψ} |= ¬ϕ either

I ̸|= W, in this case, the left side of the entailment is always false, which makes
it so that I entails W ∪ {ψ} |= ¬ϕ and W ∪ {ϕ} |= ¬ψ, regardless if I entails
ψ and ϕ

For brevity I |= W for the next cases, W is going to be excluded

Now we have to show that (ψ |= ¬ϕ) |= (ϕ |= ¬ψ)
There are 3 possibilities:

I |= ψ and I ̸|= ϕ, through the negation (ψ |= ¬ϕ) is true, and because I does
not entail ϕ, the right side is true by default

I ̸|= ψ and I ̸|= ϕ, two false propositions mean, that anything can be followed
from them, which makes the entailment hold true

I ̸|= ψ and I |= ϕ, (ψ |= ¬ϕ) is true, because of the false proposition. (ϕ |=
¬ψ) is also true because through the negation, follows that I |= ϕ and I |= ψ.

Everytime I |= (ψ |= ¬ϕ), I also entails (ϕ |= ¬ψ), which proofs the contra-
position theorem.

4. 4.1. Γ ∪ {ϕ} |= r implies Γ ∪ {ϕ ∧ ψ} |= r

Lets examine the statement under the arbitrary model I ⟨U, I, {}⟩.
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If I ̸|= Γ, the left side of both entailments is false, therefore the whole becomes
true. Next we examine the statement if |= Γ. This acts like an ∧, so we can
omit the Γ.

ϕ |= r implies (ϕ ∧ ψ) |= r

Now a counterexample is easy to see. If I |= ϕ and I ̸|= ψ, the left side

The only way for an imply-statement to be not true, is for the left side to be
true, while the right is false. In this example, this can only be achieved, if
I |= ϕ and r. But if r has to be true, the right can never be false. Therefore,
the statement holds.

5. 5.1. (∀xP (x) → ∃yQ(y)) → ∃x∀y(P (x) → Q(y))

Is equal to (∀xP (x) → ∃yQ(y)) → (∃xP (x) → ∀yQ(y))

The formula is no tautology. To show this find an Interpretation I ⟨U, I, {}⟩
with I |= (∀xP (x) → ∃yQ(y)) and I ̸|= (∃xP (x) → ∀yQ(y)).

U = N, I(P) = (x is a Natural Number), I(Q) = (x is a prime number)

For P we chose something that is always true and for Q something that can
sometimes be true, but is not true for every number. This way, it is easy to
see that we can make the left side true (e.g. y = 3). Then, let’s examine the
right side (∃xP (x) → ∀yQ(y)). A natural number that is a natrual number
exists, but not every natural number is prime. Therefore, the statement is no
tautology.

5.2. ∀x∃y R(x, y) → ∀y∃x R(x, y)

The formula is no tautology. To show this find an Interpretation I ⟨U, I, {}⟩
with I |= ∀x∃y R(x, y) and I ̸|= ∀y∃x(P (x) → Q(y)).

U = N, I(R) = (x < y)

I |= ∀x∃y R(x, y) is fullfilled, because every natural number has a successor.

I ̸|= ∀y∃x(P (x) → Q(y)) is the case, because y could be 0 and there is no
natural number smaller than 0.

Therefore, the formula is no tautology.
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1. ∀x(P (x) ∨R(x)), 1

∀x(¬Q(x) → R(x)), 2

P (a) ∧R(b), 3

¬Q(a), 4

i)

P(a): T |= P (a) because 3.

P(b): T ̸|= P (b) because 1 is an or statement and it could be true because
T |= R(b)

Q(a): T ̸|= Q(a) because of 4.

Q(b): T ̸|= Q(b) because if T ̸|= Q(b) would be not possible, R(b) in 2 would
not be entailed by T, which can not be, because of 3.

R(a): T |= R(a) because 2 and 4 makes ¬Q(x) true.

R(b): T |= R(b) because 3.

¬Q(b),¬P (b), R(b) are in CWA(T).

ii)

CWA(T) is the logical closure of all assumptions (explicit and implicit ones).

CWA(T) = ∀x(P (x)∨R(x)), ∀x(¬Q(x) → R(x)), P (a)∧R(b),¬Q(a),¬Q(b),¬P (b), R(b), P (a), R(a)

The only disjunction is ∀x(P (x) ∨R(x)).

P(a) and R(a) are in CWA(T), P(b) is not, but R(b) is. Therefore, CWA(T)
is consistent.

iii)

(P (a) ∧ P (b)) /∈ CWA(T ) because P(b) is not in CWA(T).

(∃x(P (x) ∧R(x))) ∈ CWA(T ) because P(a) and R(a) are in CWA(a).

(¬Q(a) → R(a)) ∈ CWA(T ) because of 2.
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