Exercise 9

Discrete Mathematics

December 10, 2020

Theorem (Euler, Fermat):

$$\gcd(a, m) = 1 \implies a^{\varphi(m)} \equiv 1 \mod m$$
 (1)

Theorem (Fermat):

$$p \in \mathbb{P}, p \nmid a \implies a^{p-1} \equiv 1 \mod p$$
 (2)

Theorem (Chinese remainder theorem): Suppose $m_1, \ldots, m_k \in \mathbb{N}_+$ pairwisely coprime and $a_1, \ldots, a_k \in \mathbb{Z}$ then the solution of the system

$$x \equiv a_1 \mod m_1$$

 $x \equiv a_2 \mod m_2$
 \dots
 $x \equiv a_k \mod m_k$

of congruences is explicitly given by

$$x \equiv \sum_{i=1}^{k} \frac{m}{m_i} b_i a_i \mod m \tag{3}$$

where $m = m_1 \cdot m_2 \dots m_k$ and $b_i = \left(\frac{m}{m_i}\right)^{-1} \mod m_i$.

Exercise 81

https://math.stackexchange.com/a/34223

Accepted this way

What we want is to calculate $2^{1000} \mod 100$.

As $\varphi(25) = 20$ we get by Euler's theorem 1 that $2^{20} \equiv 1 \mod 25$ and therefore $2^{1000} \equiv (2^{20})^{50} \equiv 1^{50} \equiv 1 \mod 25$. Additionally, as $2^2 \equiv 0 \mod 4$ every multiple of

 2^2 is also congruent 0 mod 4, especially $2^{1000} \equiv 0 \mod 4.$ This gives us the system of congruences

$$x \equiv 1 \mod 25$$

 $x \equiv 0 \mod 4$.

Note that

1. 25 and 4 are coprime

2.
$$b_1 = \left(\frac{25 \cdot 4}{25}\right)^{-1} \mod 25$$
 is solved with $4z \equiv 1 \mod 25$. So $z = b_1 = 19$.

Therefore, by the chinese remainder theorem 3 we get

$$x \equiv \frac{25 \cdot 4}{25} \cdot 19 \cdot 1 + \frac{25 \cdot 4}{4} b_2 \cdot 0 \mod 25 \cdot 4$$

$$x \equiv 76 \mod 100$$

So the last two digits of 2^{1000} are 76.

Exercise 82

16 might be wrong, should be 13 maybe? Was too fast for me We know

$$\gcd(a, m) = 1 \implies a^{\varphi(m)} \equiv 1 \mod m$$

$$\varphi(m) = m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_r}\right) \quad \text{for } m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$$

Assume gcd(a,b) = 1. Then holds $a^{\varphi(b)} \equiv 1 \mod b$. By laws of exponents we get

$$a \cdot \underbrace{a^{\varphi(b)-1}}_{c} \equiv 1 \mod b.$$

For the example, take in mind that $55 = 5 \cdot 11$ and $34 = 2 \cdot 17$. We see that gcd(55, 34) = 1. Therefore,

$$55^{\varphi(34)} \equiv 1 \mod 34$$

and

$$\varphi(34) = 34\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{17}\right) = 16$$

It follows

$$55^{16} \equiv 55 \cdot 55^{15} \equiv 1 \mod 34$$

Exercise 83

(a) Presented was taking Bézouts theorem to the power of 4 and bringing it into the required form $a^2x^*aby^*b^2z=1$ for some integers xyz because something like that was on Stackexchange, but that did not really work out

We know Euclid's lemma

$$p \in \mathbb{P} \land p \mid xy \implies p \mid x \lor p \mid y \tag{4}$$

Proof by contraposition. Assume there is d>1 such that $\gcd(a^2,ab,b^2)$. We know that

$$\gcd(a^{2}, ab, b^{2}) = \prod_{p \in \mathbb{P}} p^{\min(\nu_{p}(a^{2}), \nu_{p}(ab), \nu_{p}(b^{2}))}$$

Therefore, at there exists at least one $q \in \mathbb{P}$ with $\nu_q(a^2) \geq 1$ or $\nu_q(ab) \geq 1$ or $\nu_q(b^2) \geq 1$. Then q is a factor of the $\gcd(a^2,ab,b^2)$. By the definition of gcd, it then divides all of them. By Euclid's lemma 4 holds $q \mid a^2 \implies q \mid a$ and $q \mid b^2 \implies q \mid b$ This means that q is a common divisor of a and b. Additionally, q is prime, it must hold q > 1. It follows $\gcd(a,b) > 1$ which concludes the proof by contraposition.

(b) Consider $a = 7^3, b = 7^2$. Then $a^2 = 7^6$ and $b^3 = 7^6$. $7^6 \mid 7^6$ is true. However, the only x for which $7^3x = 7^2$ holds is x = 1/7 which is not an integer. Hence, by definition $7^3 \nmid 7^2$ and $a \nmid b$. This disproves the statement.

Exercise 84

Tutor argued that if you take an element x to some power, then you certainly get another element. and that x^a and x^a will never be the same. Something like the the mapping stuff. There was also a nice proof using Bézouts Theorem first and then doing a case distinction.

- https://math.stackexchange.com/q/709249
- https://math.stackexchange.com/q/2842399
- https://math.stackexchange.com/q/1491103
- https://math.stackexchange.com/q/3631921
- https://mathoverflow.net/q/53677
- link

Copy & paste some definitions into Google: Some are from nice freely available PDFs (like definition of discrete logarithm)

Assume $p \in \mathbb{P}$ satisfies gcd(a, p - 1) = 1. Let $b \in \mathbb{Z}$ be arbitrary. We take the discrete logarithm wrt a primitive root g:

$$x^{a} \equiv b \mod p$$

$$ind_{g}(x^{a}) \equiv ind_{g}(b) \mod p - 1$$

$$a \cdot ind_{g}(x) \equiv ind_{g}(b) \mod p - 1$$

Theorem from lecture:

$$ax \equiv b \mod m \text{ solvable } \iff \gcd(a, m) \mid b$$
 (5)

The assumption gcd(a, p-1) = 1 and the fact $1 \mid ind_g(b)$ show that $x^a \equiv b \mod p$ admits a solution.

Background

- Every field is a ring. Every ring is a group.
- The set of (congruence classes of) integers modulo n with the operations of addition and multiplication is a ring. It is denoted $\mathbb{Z}/n\mathbb{Z}$ or $\mathbb{Z}/(n)$. wiki This is our \mathbb{Z}_m .
- For prime p holds $\mathbb{Z}/p\mathbb{Z}$ is a finite field (Galois field), denoted \mathbb{F}_p wiki
- The discrete logarithm over prime fields is defined as follows: Let p > 2 be a prime and x be a primitive root of p. We know that every $b \in \{1, 2, \dots, p-1\}$ can be expressed as a power of $x \mod p$. That is,

$$x^a \equiv b \mod p$$

for a unique a modulo p-1. Then a is called the discrete logarithm or index of b with respect of the base x modulo p.

• We see that the $\{1,2,\ldots,p-1\}$ of b are exactly the elements of \mathbb{Z}_p^* . a modulo p-1 means, that means $a\in\{\bar{0},\bar{1},\bar{2},\ldots,\overline{p-2}\}=\mathbb{Z}_{p-1}$ (no star!).

Example: 2 is a generator for p = 5: $\langle \bar{2} \rangle = \mathbb{Z}_5^* = \{\bar{1}, \bar{2}, \bar{3}, \bar{4}\}$

- $2^1 \equiv 2 \mod 5$
- $2^2 \equiv 4 \mod 5$
- $2^3 \equiv 3 \mod 5$
- $2^4 \equiv 1 \mod 5$

For the discrete logarithm we look for the exponents of the previous enumeration, by using the knowledge that \mathbb{Z}_5^* is cyclic. For example, we know that $\bar{3}$ is expressed as $(\bar{2})^a$ for some a. Note that we generated 1 by 2^4 , but by our previous definition the discrete logarithm of $\bar{1}$ with respect to the base $\bar{2}$ modulo 5 is $\bar{0}$. Note $\bar{0} \in \mathbb{Z}_{p-1}$ and $\bar{4} \notin \mathbb{Z}_{p-1}$. More generally, we do not necessarily know which element of \mathbb{Z}_5^* is its generator, but we know that there is some x with some a such that $x^a = b$.

We know from the lecture: \mathbb{Z}_p^* is cyclic. This means there is a generator g. It follows that each element of \mathbb{Z}_p^* can be expressed as g^a for some a. g is a primitive root m of m if g is a generator of \mathbb{Z}_m^* .

Different expressions for x,b

 \mathbb{Z}_p^* is cyclic as $p \in \mathbb{P}$. Then there is a generator x of \mathbb{Z}_p^* . We know that each element can be expressed with the generator, so let $b = x^s$ for some s. We try to find a number $1 \le e \le p-1$ such that $(x^e)^a = x^s$. That means we want is $x^{ea} \equiv x^s \mod p$. We can apply the discrete logarithm (index) as follows

$$x^{ea} \equiv x^s \mod p$$

$$ind_x(x^{ea}) \equiv ind_x(x^s) \mod p - 1$$

$$ea \equiv s \mod p - 1$$

We know from the lecture that such an equivalence is solvable if and only if $gcd(a, p-1) \mid s$. Our assumption was that gcd(a, p-1) = 1 and $1 \mid s$.

Mapping

As $p \in \mathbb{P} \gcd(a, p)$ can only be 1 or multiples of p for any $a \in \mathbb{Z}$.

Case 1 $b \equiv 0 \mod p$. Then $b \equiv 0^a \mod p$. Hence, $x^a \equiv b \mod p$ admits a solution.

Case 2 $b \not\equiv 0 \mod p$. Then $\gcd(b,p) = 1$. Since $\gcd(a,p-1) = 1$ there exist $u,v \in \mathbb{N}$ such that au = 1 + (p-1)v. Then $(b^u)^a = b^{au} = b^{1+(p-1)v} = b(b^{p-1})^v \equiv b \mod p$. This is because the Euler-Fermat theorem says $\gcd(b,p) = 1 \implies b^{\varphi(p)} \equiv 1 \mod p$ and it holds $\forall p \in \mathbb{P} : \varphi(p) = p - 1$

Therefore, the mapping $x \mapsto x^a$ on Z_p^* is surjective. As both domain and codomain of the map are equal, the mapping is even bijective. This means there is exactly one solution of $x^a \equiv b \mod p$. Hence, $x^a \equiv b \mod p$ admits a solution.

Subset

 $\{1^a, 2^a, \dots (p-1)^a, p^a\}$ is a subset of \mathbb{Z}_p^* for any a. For example

- $1^3 \equiv 1 \mod 5$
- $2^3 \equiv 3 \mod 5$

- $3^3 \equiv 2 \mod 5$
- $4^3 \equiv 4 \mod 5$
- $5^3 \equiv 0 \mod 5$

and

- $1^4 \equiv 1 \mod 5$
- $2^4 \equiv 1 \mod 5$
- $3^4 \equiv 1 \mod 5$
- $4^4 \equiv 1 \mod 5$
- $5^4 \equiv 0 \mod 5$

Case 1 $b \equiv 0 \mod p$. It holds $p^a \equiv 0 \mod p$, so x^a has a solution. This means $x^a \equiv b \mod p$ admits a solution.

Case 2 $b \not\equiv 0 \mod p$. If $x^a \equiv b \mod p$ has no solution (second example enumeration), then $x^a = x^y$ for some distinct elements of \mathbb{Z}_p . Then holds $z^a = 1$ for $z = x \cdot y^{-1}$. By applying the discrete logarithm on both sides we get

$$z^{a} \equiv 1 \mod p$$

$$ind_{g}(z^{a}) \equiv ind_{g}(1) \mod p - 1$$

$$a \cdot ind_{g}(z) \equiv 0 \mod p - 1$$

We can apply the definition of congruence to get $p-1\mid a\cdot ind_g\left(z\right)$. As p is prime, p-1 is even. Then $2\mid p-1\mid a\cdot ind_g\left(z\right)$. By assumption $\gcd(a,p-1)=1$. But t2>1. Contradiction.

Exercise 85

712 is correct according to tutor

We first have to solve each congruence equations to get only x in front. Note that

$$14x \equiv 2 \mod 22$$
$$14x = 2 + 22k$$
$$7x = 1 + 11k$$
$$7x \equiv 1 \mod 11$$

and similar for the other equations. So we seek such k that x is an integer.

$$5x \equiv 8 \mod 32 \implies x \equiv 8 \mod 32$$

 $14x \equiv 2 \mod 22 \implies x \equiv 8 \mod 11$
 $9x \equiv 3 \mod 15 \implies x \equiv 2 \mod 5$

Therefore, by 3 x is explicitly given by

$$x = \frac{32 \cdot 11 \cdot 5}{32} \cdot b_1 \cdot 8 + \frac{32 \cdot 11 \cdot 5}{11} \cdot b_2 \cdot 8 + \frac{32 \cdot 11 \cdot 5}{5} \cdot b_3 \cdot 2 \mod 32 \cdot 11 \cdot 5$$

= $55 \cdot 7 \cdot 8 + 160 \cdot 2 \cdot 8 + 352 \cdot 3 \cdot 2 \equiv 7752 \equiv 712 \mod 1760$

where

$$b_1 = \left(\frac{32 \cdot 11 \cdot 5}{32}\right)^{-1} \mod 32 \implies 55z \equiv 1 \mod 32 \implies z \equiv b_1 \equiv 7 \mod 32$$

$$b_2 = \left(\frac{32 \cdot 11 \cdot 5}{11}\right)^{-1} \mod 11 \implies 160z \equiv 1 \mod 11 \implies z \equiv b_2 \equiv 2 \mod 11$$

$$b_3 = \left(\frac{32 \cdot 11 \cdot 5}{5}\right)^{-1} \mod 5 \implies 352z \equiv 1 \mod 5 \implies z \equiv b_3 \equiv 3 \mod 5$$

Exercise 86

By prime factorization we get $172872 = 2^3 \cdot 3^2 \cdot 7^4$. We know from the lecture

$$\lambda \left(\prod_{i=1}^{r} p_i^{e_i} \right) = lcm \left(\lambda \left(p_1^{e_1} \right), \dots, \lambda \left(p_r^{e_r} \right) \right) \tag{6}$$

$$\lambda(p^{k}) = \varphi(p^{k}) \quad \text{for } p \in \mathbb{P}, p > 2$$

$$\lambda(2^{k}) = 2^{k-2} \quad \text{for } k \ge 3$$
(8)

$$\lambda\left(2^{k}\right) = 2^{k-2} \qquad \text{for } k \ge 3 \tag{8}$$

$$\varphi\left(p^{k}\right) = p^{k} \cdot \left(1 - \frac{1}{p}\right) \tag{9}$$

$$\varphi(m) = m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_r}\right) \quad \text{for } m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$$
 (10)

Therefore

$$\begin{split} \lambda \left(172872 \right) &= \lambda \left(2^3 \cdot 3^2 \cdot 7^4 \right) \\ &= lcm \left(\lambda \left(2^3 \right), \lambda \left(3^2 \right), \lambda \left(7^4 \right) \right) \\ &= lcm \left(2^{3-2}, \varphi \left(3^2 \right), \varphi \left(7^4 \right) \right) \\ &= lcm \left(2^{3-2}, 3^2 \cdot \left(1 - \frac{1}{3} \right), 7^4 \cdot \left(1 - \frac{1}{7} \right) \right) \\ &= lcm (2, 6, 2058) \\ &= 2058 \end{split}$$

as $2058 = 2 \cdot 3 \cdot 7^3$ and $6 = 2 \cdot 3$. And

$$\varphi(172872) = 172872 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{7}\right)$$
= 49392

Exercise 87

 $Presented\ proof\ was\ similar,\ just\ more\ verbose\ https://math.stackexchange.com/a/2569172$ We know from the lecture

$$\varphi(m) = m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_r}\right) \quad \text{for } m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$$

Let $d = \gcd(m, n)$. It follows

$$\frac{\varphi(mn)}{mn} = \prod_{p|mn} (1 - \frac{1}{p}) = \frac{\prod_{p|m} (1 - \frac{1}{p}) \prod_{p|n} (1 - \frac{1}{p})}{\prod_{p|d} (1 - \frac{1}{p})} = \frac{\frac{\varphi(m) \ \varphi(n)}{m \ n}}{\frac{\varphi(d)}{d}}$$

Hence,

$$\varphi(mn) = \varphi(m)\varphi(n)\frac{d}{\varphi(d)}$$

Example:

$$\frac{\varphi(12 \cdot 20)}{12 \cdot 20} = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = \frac{\left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)}{\left(1 - \frac{1}{2}\right)}$$

Exercise 88

Presented proof looked relatively similar and was generally accepted. Tutor mentioned that for p = 2 we might have to make a special case. We have to show that

$$\begin{split} \frac{lcm\left(b_{1},b_{2},\ldots,b_{k}\right)}{lcm\left(a_{1},a_{2},\ldots,a_{k}\right)} &= \frac{\prod_{p\in\mathbb{P}}p^{\max(\nu_{p}(b_{1}),\nu_{p}(b_{2}),\ldots,\nu_{p}(b_{k}))}}{\prod_{p\in\mathbb{P}}p^{\max(\nu_{p}(a_{1}),\nu_{p}(a_{2}),\ldots,\nu_{p}(a_{k}))}} \\ &= \prod_{p\in\mathbb{P}}p^{\max(\nu_{p}(b_{1}),\nu_{p}(b_{2}),\ldots,\nu_{p}(b_{k}))-\max(\nu_{p}(a_{1}),\nu_{p}(a_{2}),\ldots,\nu_{p}(a_{k}))} \end{split}$$

is an integer. From $a_i \mid b_i$ for $1 \leq i \leq k$ follows $\forall p \in \mathbb{P} : \nu_p(a_i) \leq \nu_p(b_i)$. As the relation holds componentwise, it holds also for the maximum $\max(\nu_p(a_1), \nu_p(a_2), \dots, \nu_p(a_k)) \leq \max(\nu_p(b_1), \nu_p(b_2), \dots, \nu_p(b_k))$. Consequently

$$\max(\nu_p(b_1), \nu_p(b_2), \dots, \nu_p(b_k)) - \max(\nu_p(a_1), \nu_p(a_2), \dots, \nu_p(a_k)) = \nu_p'$$

exists and $\nu'_p \geq 0$. Therefore

$$\frac{lcm\left(b_{1},b_{2},\ldots,b_{k}\right)}{lcm\left(a_{1},a_{2},\ldots,a_{k}\right)}=\prod_{p\in\mathbb{P}}p^{\nu_{p}'}$$

is an integer. Therefore we get the result

$$a_i \mid b_i \text{ for } 1 \leq i \leq k \implies lcm(a_1, a_2, \dots, a_k) \mid lcm(b_1, b_2, \dots, b_k)$$
 (11)

Example:

$$b_1 = 9, b_2 = 12, b_3 = 10 \qquad b_1 = 3^2, b_2 = 2^2 \cdot 3, b_3 = 2 \cdot 5$$

$$a_1 = 3, a_2 = 4, a_3 = 5 \qquad a_1 = 3, a_2 = 2^2, a_3 = 5$$

$$lcm(b_1, b_2, b_3) = 2^{\max(0, 2, 1)} \cdot 3^{\max(2, 1, 0)} \cdot 5^{\max(0, 0, 1)}$$

$$lcm(a_1, a_2, a_3) = 2^{\max(0, 2, 0)} \cdot 3^{\max(1, 0, 0)} \cdot 5^{\max(0, 0, 1)}$$

We know

$$\lambda \left(\prod_{i=1}^{r} p_i^{e_i} \right) = lcm \left(\lambda \left(p_1^{e_1} \right), \dots, \lambda \left(p_r^{e_r} \right) \right)$$
 (12)

$$\lambda\left(p^{k}\right) = p^{k-1}(p-1) \text{ for } p \in \mathbb{P}, p > 2 \tag{13}$$

$$m \mid n \Leftrightarrow \forall p \in \mathbb{P} : \nu_p(m) \le \nu_p(n)$$
 (14)

Assume $m \mid n$. Then $\forall p \in \mathbb{P} : \nu_p(m) \leq \nu_p(n)$. From this follows

$$\forall p \in \mathbb{P} : p^{\nu_p(m)} \mid p^{\nu_p(n)}. \tag{15}$$

Take in mind that $p_i^{e_i} = p^{\nu_p(m)}$ and $e_i = \nu_p(m)$ for some $p \in \mathbb{P}$. We also know that

$$\lambda(m) = lcm \left((p_1 - 1)p_1^{e_1 - 1}, (p_2 - 1)p_2^{e_2 - 1}, \dots, (p_r - 1)p^{e_r - 1} \right)$$
$$\lambda(n) = lcm \left((p_1 - 1)p_1^{f_1 - 1}, (p_2 - 1)p_2^{f_2 - 1}, \dots, (p_s - 1)p^{f_r - 1} \right)$$

Consequently, $(p_i-1)p_1^{f_i-1} \mid (p_i-1)p_1^{e_i-1}$ for $1 \leq i \leq r$. By our previous result 11 we get $\lambda(m) \mid \lambda(n)$.

Exercise 89

Calculate 3233/p for $p \in \mathbb{P}$ until you get an integer as result. We find $53 \cdot 61 = 3233$. With prime factorization we calculate $v = lcm(52, 60) = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 13 = 780$. We now look for a solution for $d \cdot 49 \equiv 1 \mod 780$. We then try different x in $\frac{1+780x}{49}$ until we get an integer as result. At x = 37 we get d = 589.

Exercise 90

After some discussion during the presentation it seemed that really taking CO, MP, UT, ER together is asked for. Using WolframAlpha was OK.

$$CO = 0315 \implies 315^{49} \mod 3233 = 2701$$
 $MP = 1316 \implies 1316^{49} \mod 3233 = 2593$
 $UT = 2120 \implies 2120^{49} \mod 3233 = 371$
 $ER = 0518 \implies 518^{49} \mod 3233 = 1002$