Exercise 9

Discrete Mathematics

December 10, 2020

Theorem (Euler, Fermat):

ged(a,m) =1 = a?™ =1 mod m

Theorem (Fermat):

pEPpta = a’ ' =1 mod p

Theorem (Chinese remainder theorem): Suppose my, .
prime and a1, ...,a; € Z then the solution of the system

z=a; mod my

T =ay mod mao

T =ar modmy

of congruences is explicitly given by
"om
T = E —b;a; mod m

i=1 "

-1
where m = mq -mso...my and b; = (mﬂ) mod m;.

Exercise 81

https://math.stackexchange.com/a /34223
Accepted this way
What we want is to calculate 2'1°°° mod 100.

(1)

(2)

..,mg € Ny pairwisely co-

As ¢(25) = 20 we get by Euler’s theorem [1] that 220 = 1 mod 25 and therefore
21000 = (220)50 = 1°0 = 1 mod 25. Additionally, as 22 = 0 mod 4 every multiple of


https://math.stackexchange.com/a/34223/844881

22 is also congruent 0 mod 4, especially 2!°°° = 0 mod 4. This gives us the system of
congruences

z=1 mod 25
=0 mod 4.

Note that
1. 25 and 4 are coprime

2. b = (24)™" mod 25 is solved with 42 = 1 mod 25. So z = by = 19.

Therefore, by the chinese remainder theorem |3| we get

925. 4 925. 4
=22"%9.1
T="95 T

by-0 mod 25-4
=76 mod 100

So the last two digits of 21990 are 76.

Exercise 82
16 might be wrong, should be 13 maybe? Was too fast for me We know

ged(a,m) =1 = a®™ =1 mod m

1 1 1
w(m)=m'<1—)'<1_>”m(1_> for m = py'py*...p
P1 D2 Pr

Assume ged(a,b) = 1. Then holds a?® =1 mod b. By laws of exponents we get

a-a?®1=1 modb.

c

For the example, take in mind that 55 = 511 and 34 = 2 -17. We see that
ged(55,34) = 1. Therefore,
55¢G4 =1 mod 34

o(34) = 34 (1 - ;) <1 - 117) =16

5516 =55-55 =1 mod 34

and

It follows



Exercise 83

(a)

Presented was taking Bézouts theorem to the power of 4 and bringing it into the
required form a”r*aby*b%=1 for some integers xyz because something like that was
on Stackexchange, but that did not really work out

We know Euclid’s lemma

pEPAplay = plaVply (4)

Proof by contraposition. Assume there is d > 1 such that ged(a?, ab, b?). We know
that
ged(a?, ab,p?) = [ ] prin(etvwlab)vp ()
p€EP

Therefore, at there exists at least one ¢ € P with v,(a?) > 1 or y,(ab) > 1 or
vg(b?) > 1. Then q is a factor of the ged(a?,ab,b?). By the definition of ged,
it then divides all of them. By Euclid’s lemma {4| holds ¢ | a> = ¢ | a and
q | b> = ¢ | b This means that ¢ is a common divisor of a and b. Additionally,
q is prime, it must hold ¢ > 1. It follows ged(a,b) > 1 which concludes the proof
by contraposition.

Consider a = 73,b = 72. Then a? = 7% and b* = 75. 7% | 76 is true. However,
the only z for which 73z = 72 holds is = 1/7 which is not an integer. Hence, by
definition 73 {72 and a 1 b. This disproves the statement.

Exercise 84

Tutor argued that if you take an element x to some power, then you certainly get
another element. and that x* and x* will never be the same. Something like the the
mapping stuff. There was also a nice proof using Bézouts Theorem first and then doing
a case distinction.

https://math.stackexchange.com/q/709249
https://math.stackexchange.com/q/2842399
https://math.stackexchange.com/q/1491103
https://math.stackexchange.com/q/3631921
https://mathoverflow.net/q/53677

link

Copy & paste some definitions into Google: Some are from nice freely available
PDFs (like definition of discrete logarithm)


https://math.stackexchange.com/q/709249/844881
https://math.stackexchange.com/q/2842399/844881
https://math.stackexchange.com/q/1491103/844881
https://math.stackexchange.com/q/3631921/844881
https://mathoverflow.net/q/53677
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

Assume p € P satisfies ged(a,p — 1) = 1. Let b € Z be arbitrary. We take the
discrete logarithm wrt a primitive root g:

a

z*=b modp
indg (z%) = indy (b) mod p—1
a-indg (z) =indy (b)) mod p—1

Theorem from lecture:

ax =b mod m solvable <= gcd(a,m) | b (5)

The assumption ged(a,p — 1) =1 and the fact 1 | indy(b) show that z* =b mod p
admits a solution.

Background

Every field is a ring. Every ring is a group.

The set of (congruence classes of) integers modulo n with the operations of
addition and multiplication is a ring. It is denoted Z/nZ or Z/(n). jwiki This is
our Zy,.

For prime p holds Z/pZ is a finite field (Galois field), denoted F,, jwiki

The discrete logarithm over prime fields is defined as follows: Let p > 2 be a
prime and x be a primitive root of p. We know that every b € {1,2,...,p — 1}
can be expressed as a power of x mod p. That is,

z*=b modp

for a unique @ modulo p — 1. Then « is called the discrete logarithm or index of
b with respect ot the base x modulo p.

We see that the {1,2,...,p — 1} of b are exactly the elements of Zy,. a modulo
p — 1 means, that means a € {0,1,2,...,p—2} = Z,_1 (no star!).

Example: 2 is a generator for p =5: <2 >=Z& = {1,2, 3,4}

2! =2 mod 5
22=4 mod 5
23 =3 mod 5
22 =1 mod 5


https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n#Notation
https://en.wikipedia.org/wiki/Cyclic_group#Integer_and_modular_addition

For the discrete logarithm we look for the exponents of the previous enumeration, by
using the knowledge that Z} is cyclic. For example, we know that 3 is expressed as (2)”
for some a. Note that we generated 1 by 24, but by our previous definition the discrete
logarithm of 1 with respect to the base 2 modulo 5 is 0. Note 0 € Z,—; and 4 ¢ Z,,_;.
More generally, we do not necessarily know which element of Zf is its generator, but
we know that there is some z with some a such that x® = b.

We know from the lecture: Zj is cyclic. This means there is a generator g. It
follows that each element of Z; can be expressed as g for some a. g is a primitive
root mod m if g is a generator of Z,.

Different expressions for x,b

Zy is cyclic as p € P. Then there is a generator x of Z;. We know that each element
can be expressed with the generator, so let b = x° for some s. We try to find a number

ea —

1 < e < p—1such that (2¢)" = 2°. That means we want is z°* = x* mod p. We can
apply the discrete logarithm (index) as follows

2**=2° mod p

indy (z°*) = indy (%) mod p—1
ea=s modp—1

We know from the lecture that such an equivalence is solvable if and only if ged(a, p —
1) | s. Our assumption was that gcd(a,p—1) =1 and 1] s.

Mapping
As p € P ged(a, p) can only be 1 or multiples of p for any a € Z.
Case 1 b =0 mod p. Then b = 0% mod p. Hence, z* = b mod p admits a solution.

Case 2 b #0 mod p. Then ged(b,p) = 1. Since ged(a,p — 1) = 1 there exist u,v € N
such that au = 14-(p—1)v. Then (b*)* = b** = p1+P=Dv = p(p»~1)" = mod p.
This is because the Euler-Fermat theorem says ged(b,p) = 1 = b)) =1
mod p and it holds Vp € P: p(p) =p—1

Therefore, the mapping x ~— z% on Z is surjective. As both domain and
codomain of the map are equal, the mapping is even bijective. This means
there is exactly one solution of x* = b mod p. Hence, z* = b mod p admits a
solution.
Subset
{1¢,2¢,...(p—1)%,p?} is a subset of Zy for any a. For example
e 13=1 mod 5

e 22=3 mod5



e 33=2 mod5
e 42=4 mod5
e 53=0 mod 5

e 1*=1 mod 5
e 22=1 mod5
e 3=1 mod5
e 44=1 mod5
e 5*=0 mod5

Case 1 b = 0 mod p. It holds p* = 0 mod p, so % has a solution. This means
% =b mod p admits a solution.

Case 2 b #0 mod p. If z* =b mod p has no solution (second example enumeration),

then 2% = 2V for some distinct elements of Z,. Then holds 2% = 1 for z = z-y .

By applying the discrete logarithm on both sides we get
z*=1 modp
indg (2%) =indy(1) modp—1
a-indg(2) =0 modp—1
We can apply the definition of congruence to get p—1 | a-ind, (z). As p is prime,

p—1liseven. Then 2 |p—1]a-ind, (z). By assumption ged(a,p—1) = 1. But
t2 > 1. Contradiction.

Exercise 85

712 is correct according to tutor
We first have to solve each congruence equations to get only x in front. Note that
14z =2 mod 22
14x =2 4 22k
Tr =1+ 11k
7r=1 mod 11

and similar for the other equations. So we seek such k that z is an integer.

5r=8 mod32 — x=8 mod 32
14z =2 mod 22 — =8 mod 11
9r=3 mod 15 =— =2 mod5



Therefore, by [3] x is explicitly given by

32 N 11 '5 32 N 11 * 5 32 N 11 * 5
- . . - . . P .92 2.11-
x 32 b1 8 + 11 bg 8 + 5 bg mod 3 5

=55-7-84160-2-8+352-3-2=7752="T712 mod 1760

where
by = (32'3121'5>_1 mod 32 = 55z2=1 mod32 = z=b; =7 mod 32
by = (3211115> - mod 11 = 160z=1 mod 1l = z=0by =2 mod 11
b3=(32é1.5>_1 modb = 352z2=1 modb = z=b3=3 mod?H

Exercise 86

By prime factorization we get 172872 = 23 . 32 . 74, We know from the lecture

A (m) lem @) A ) ©)

A (") = ¢ () forpeP,p>2 (7)

A(@2M) =282 fork>3 (8)

e (p*) =p"- (1 — ;) (9)

pom =m- (1= L) (1= ) (1 L) form= gl (10)

Therefore

A(172872) = A (28 32 74)
=lem (A (2°), A (3%) A (7))
=lem (2372, () (32) y P (74))

1 1
=lem (23—2732. 1—3) JTh. <1—7>)

= lem(2,6,2058)
= 2058



as 2058 =2-3-73and 6 =2-3. And

s - (1-2)3) ()

= 49392

Exercise 87

Presented proof was similar, just more verbose https: //math.stackexchange.com/a/2569172
We know from the lecture

1 1 1
w(m)=m'<1—)'<1_>”m(1_> for m = py'py* ... p)
P1 D2 Pr

Let d = ged(m,n). It follows

mn L M- 4
Hence,
d
p(mn) = w(m)w(n)m
Example:

1220 2

I P O O L RS S LS

Exercise 88

Presented proof looked relatively similar and was generally accepted. Tutor mentioned
that for p = 2 we might have to make a special case. We have to show that

lem (b17 bo, ..., bk) B Hpeppmax(l’p(bl)ﬂ’p(bﬁ »»»»» vp(bi))

lem (al, as, ..., ak) HpE]P’ pmaX(Vp(al)pr(a2)7"~7Vp(ak))
— Hpmax(’/p(bl)7’/p(b2)7---7Vp(bk))_max(’/p(a1)7’/p(a2)v~~-7”p(ak))
peEP

is an integer. From a; | b; for 1 < ¢ < k follows Vp € P : vp(a;) < vp(b;). As the relation
holds componentwise, it holds also for the maximum max (vp(a1), vp(asz), ..., vplax)) <
max (vp(b1),vp(b2), ..., vp(bx)). Consequently

max (vp(b1), vp(b2), - ., vp(br)) — max (vp(a1), vp(az), ..., vp(ax)) = v,


https://math.stackexchange.com/a/2569172/844881

exists and 1/]’) > 0. Therefore

lcm(bl,bg,...7bk) :pré
lem (a1, az,...,ax) ke

is an integer. Therefore we get the result

a; | by for 1 <i<k = lem(ay,azg,...,a) | lem (b, ba, ... bg) (11)
Example:
by =9,by =12,b3 =10 b1 =32, =22.3,b3=2-5
a1:3,a2:4,a3:5 a1:3,a2:22,a3:5

lem (bh b27 b3) _ 2max(0,2,1) . 3max(2,1,0) . 5max(0,0,1)

lem (al’ as, a3) _ 2max(0,270) . 3max(1,070) . 5max(0,0,1)

We know
A <pri> =lem (A (p1"), .., A(pi7)) (12)
)\(pk) =p"tp—1)forpeP,p>2 (13)
m|n<V¥pelP:y,(m) <wyy(n) (14)

Assume m | n. Then Vp € P : vp(m) < vp(n). From this follows
VpeP: prr(m | pr () (15)

Take in mind that pj’ = p’?(™) and e; = vp(m) for some p € P.
We also know that

Am) = lem ((p1 = D)p? ™, (p2 = Dpg* o, (pr = Dpr )
A(n) =lem ((pl - l)pfl_l, (p2 — l)pgz_l7 ey (ps — l)pfrfl)

Consequently, (p; — 1)p{i71 | (pi — 1)p?_1 for1<i<r.
By our previous result 11| we get A(m) | A(n).

Exercise 89

Calculate 3233/p for p € P until you get an integer as result. We find 53 - 61 = 3233.
With prime factorization we calculate v = lem/(52,60) =2-2-3-5-13 = 780. We now
look for a solution for d-49 =1 mod 780. We then try different = in % until we
get an integer as result. At x = 37 we get d = 589.



Exercise 90

After some discussion during the presentation it seemed that really taking CO, MP,
UT, ER together is asked for. Using WolframAlpha was OK.
CO = 0315 = 315" mod 3233 = 2701
MP =1316 = 1316* mod 3233 = 2593
UT =2120 = 2120* mod 3233 = 371
ER=0518 = 518" mod 3233 = 1002

10



