
Exercise 9
Discrete Mathematics

December 10, 2020

Theorem (Euler, Fermat):

gcd(a,m) = 1 =⇒ aϕ(m) ≡ 1 mod m (1)

Theorem (Fermat):

p ∈ P, p - a =⇒ ap−1 ≡ 1 mod p (2)

Theorem (Chinese remainder theorem): Suppose m1, . . . ,mk ∈ N+ pairwisely co-
prime and a1, . . . , ak ∈ Z then the solution of the system

x ≡ a1 mod m1

x ≡ a2 mod m2

. . .

x ≡ ak mod mk

of congruences is explicitly given by

x ≡
k∑

i=1

m

mi
biai mod m (3)

where m = m1 ·m2 . . .mk and bi =
(

m
mi

)−1

mod mi.

Exercise 81
https://math.stackexchange.com/a/34223
Accepted this way
What we want is to calculate 21000 mod 100.
As ϕ(25) = 20 we get by Euler’s theorem 1 that 220 ≡ 1 mod 25 and therefore

21000 ≡
(
220
)50 ≡ 150 ≡ 1 mod 25. Additionally, as 22 ≡ 0 mod 4 every multiple of
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22 is also congruent 0 mod 4, especially 21000 ≡ 0 mod 4. This gives us the system of
congruences

x ≡ 1 mod 25

x ≡ 0 mod 4.

Note that

1. 25 and 4 are coprime

2. b1 =
(
25·4
25

)−1
mod 25 is solved with 4z ≡ 1 mod 25. So z = b1 = 19.

Therefore, by the chinese remainder theorem 3 we get

x ≡ 25 · 4
25

19 · 1 + 25 · 4
4

b2 · 0 mod 25 · 4

x ≡ 76 mod 100

So the last two digits of 21000 are 76.

Exercise 82
16 might be wrong, should be 13 maybe? Was too fast for me We know

gcd(a,m) = 1 =⇒ aϕ(m) ≡ 1 mod m

ϕ(m) = m ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· · · · ·

(
1− 1

pr

)
for m = pk1

1 pk2
2 . . . pkr

r

Assume gcd(a, b) = 1. Then holds aϕ(b) ≡ 1 mod b. By laws of exponents we get

a · aϕ(b)−1︸ ︷︷ ︸
c

≡ 1 mod b.

For the example, take in mind that 55 = 5 · 11 and 34 = 2 · 17. We see that
gcd(55, 34) = 1. Therefore,

55ϕ(34) ≡ 1 mod 34

and
ϕ(34) = 34

(
1− 1

2

)(
1− 1

17

)
= 16

It follows
5516 ≡ 55 · 5515 ≡ 1 mod 34
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Exercise 83
(a) Presented was taking Bézouts theorem to the power of 4 and bringing it into the

required form a²x*aby*b²z=1 for some integers xyz because something like that was
on Stackexchange, but that did not really work out
We know Euclid’s lemma

p ∈ P ∧ p | xy =⇒ p | x ∨ p | y (4)

Proof by contraposition. Assume there is d > 1 such that gcd(a2, ab, b2). We know
that

gcd(a2, ab, b2) =
∏
p∈P

pmin
(
νp(a

2),νp(ab),νp(b
2)

)

Therefore, at there exists at least one q ∈ P with νq(a
2) ≥ 1 or νq(ab) ≥ 1 or

νq(b
2) ≥ 1. Then q is a factor of the gcd(a2, ab, b2). By the definition of gcd,

it then divides all of them. By Euclid’s lemma 4 holds q | a2 =⇒ q | a and
q | b2 =⇒ q | b This means that q is a common divisor of a and b. Additionally,
q is prime, it must hold q > 1. It follows gcd(a, b) > 1 which concludes the proof
by contraposition.

(b) Consider a = 73, b = 72. Then a2 = 76 and b3 = 76. 76 | 76 is true. However,
the only x for which 73x = 72 holds is x = 1/7 which is not an integer. Hence, by
definition 73 - 72 and a - b. This disproves the statement.

Exercise 84
Tutor argued that if you take an element x to some power, then you certainly get
another element. and that xa and xa will never be the same. Something like the the
mapping stuff. There was also a nice proof using Bézouts Theorem first and then doing
a case distinction.

• https://math.stackexchange.com/q/709249

• https://math.stackexchange.com/q/2842399

• https://math.stackexchange.com/q/1491103

• https://math.stackexchange.com/q/3631921

• https://mathoverflow.net/q/53677

• link

Copy & paste some definitions into Google: Some are from nice freely available
PDFs (like definition of discrete logarithm)
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Assume p ∈ P satisfies gcd(a, p − 1) = 1. Let b ∈ Z be arbitrary. We take the
discrete logarithm wrt a primitive root g:

xa ≡ b mod p

indg (x
a) ≡ indg (b) mod p− 1

a · indg (x) ≡ indg (b) mod p− 1

Theorem from lecture:

ax ≡ b mod m solvable ⇐⇒ gcd(a,m) | b (5)

The assumption gcd(a, p− 1) = 1 and the fact 1 | indg(b) show that xa ≡ b mod p
admits a solution.

Background
• Every field is a ring. Every ring is a group.

• The set of (congruence classes of) integers modulo n with the operations of
addition and multiplication is a ring. It is denoted Z/nZ or Z/(n). wiki This is
our Zm.

• For prime p holds Z/pZ is a finite field (Galois field), denoted Fp wiki

• The discrete logarithm over prime fields is defined as follows: Let p > 2 be a
prime and x be a primitive root of p. We know that every b ∈ {1, 2, . . . , p − 1}
can be expressed as a power of x mod p. That is,

xa ≡ b mod p

for a unique a modulo p− 1. Then a is called the discrete logarithm or index of
b with respect ot the base x modulo p.

• We see that the {1, 2, . . . , p − 1} of b are exactly the elements of Z∗
p. a modulo

p− 1 means, that means a ∈ {0̄, 1̄, 2̄, . . . , p− 2} = Zp−1 (no star!).

Example: 2 is a generator for p = 5: < 2̄ >= Z∗
5 = {1̄, 2̄, 3̄, 4̄}

• 21 ≡ 2 mod 5

• 22 ≡ 4 mod 5

• 23 ≡ 3 mod 5

• 24 ≡ 1 mod 5
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For the discrete logarithm we look for the exponents of the previous enumeration, by
using the knowledge that Z∗

5 is cyclic. For example, we know that 3̄ is expressed as (2̄)a

for some a. Note that we generated 1 by 24, but by our previous definition the discrete
logarithm of 1̄ with respect to the base 2̄ modulo 5 is 0̄. Note 0̄ ∈ Zp−1 and 4̄ /∈ Zp−1.
More generally, we do not necessarily know which element of Z∗

5 is its generator, but
we know that there is some x with some a such that xa = b.

We know from the lecture: Z∗
p is cyclic. This means there is a generator g. It

follows that each element of Z∗
p can be expressed as ga for some a. g is a primitive

root mod m if g is a generator of Z∗
m.

Different expressions for x,b
Z∗
p is cyclic as p ∈ P. Then there is a generator x of Z∗

p. We know that each element
can be expressed with the generator, so let b = xs for some s. We try to find a number
1 ≤ e ≤ p− 1 such that (xe)

a
= xs. That means we want is xea ≡ xs mod p. We can

apply the discrete logarithm (index) as follows

xea ≡ xs mod p

indx (x
ea) ≡ indx (x

s) mod p− 1

ea ≡ s mod p− 1

We know from the lecture that such an equivalence is solvable if and only if gcd(a, p−
1) | s. Our assumption was that gcd(a, p− 1) = 1 and 1 | s.

Mapping
As p ∈ P gcd(a, p) can only be 1 or multiples of p for any a ∈ Z.

Case 1 b ≡ 0 mod p. Then b ≡ 0a mod p. Hence, xa ≡ b mod p admits a solution.

Case 2 b 6≡ 0 mod p. Then gcd(b, p) = 1. Since gcd(a, p− 1) = 1 there exist u, v ∈ N
such that au = 1+(p−1)v. Then (bu)

a
= bau = b1+(p−1)v = b(bp−1)v ≡ b mod p.

This is because the Euler-Fermat theorem says gcd(b, p) = 1 =⇒ bϕ(p) ≡ 1
mod p and it holds ∀p ∈ P : ϕ(p) = p− 1

Therefore, the mapping x � xa on Z∗
p is surjective. As both domain and

codomain of the map are equal, the mapping is even bijective. This means
there is exactly one solution of xa ≡ b mod p. Hence, xa ≡ b mod p admits a
solution.

Subset
{1a, 2a, . . . (p− 1)a, pa} is a subset of Z∗

p for any a. For example

• 13 ≡ 1 mod 5

• 23 ≡ 3 mod 5
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• 33 ≡ 2 mod 5

• 43 ≡ 4 mod 5

• 53 ≡ 0 mod 5

and

• 14 ≡ 1 mod 5

• 24 ≡ 1 mod 5

• 34 ≡ 1 mod 5

• 44 ≡ 1 mod 5

• 54 ≡ 0 mod 5

Case 1 b ≡ 0 mod p. It holds pa ≡ 0 mod p, so xa has a solution. This means
xa ≡ b mod p admits a solution.

Case 2 b 6≡ 0 mod p. If xa ≡ b mod p has no solution (second example enumeration),
then xa = xy for some distinct elements of Zp. Then holds za = 1 for z = x ·y−1.
By applying the discrete logarithm on both sides we get

za ≡ 1 mod p

indg (z
a) ≡ indg(1) mod p− 1

a · indg (z) ≡ 0 mod p− 1

We can apply the definition of congruence to get p−1 | a ·indg (z). As p is prime,
p− 1 is even. Then 2 | p− 1 | a · indg (z). By assumption gcd(a, p− 1) = 1. But
t2 > 1. Contradiction.

Exercise 85
712 is correct according to tutor

We first have to solve each congruence equations to get only x in front. Note that

14x ≡ 2 mod 22

14x = 2 + 22k

7x = 1 + 11k

7x ≡ 1 mod 11

and similar for the other equations. So we seek such k that x is an integer.

5x ≡ 8 mod 32 =⇒ x ≡ 8 mod 32

14x ≡ 2 mod 22 =⇒ x ≡ 8 mod 11

9x ≡ 3 mod 15 =⇒ x ≡ 2 mod 5
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Therefore, by 3 x is explicitly given by

x =
32 · 11 · 5

32
· b1 · 8 +

32 · 11 · 5
11

· b2 · 8 +
32 · 11 · 5

5
· b3 · 2 mod 32 · 11 · 5

= 55 · 7 · 8 + 160 · 2 · 8 + 352 · 3 · 2 ≡ 7752 ≡ 712 mod 1760

where

b1 =

(
32 · 11 · 5

32

)−1

mod 32 =⇒ 55z ≡ 1 mod 32 =⇒ z ≡ b1 ≡ 7 mod 32

b2 =

(
32 · 11 · 5

11

)−1

mod 11 =⇒ 160z ≡ 1 mod 11 =⇒ z ≡ b2 ≡ 2 mod 11

b3 =

(
32 · 11 · 5

5

)−1

mod 5 =⇒ 352z ≡ 1 mod 5 =⇒ z ≡ b3 ≡ 3 mod 5

Exercise 86
By prime factorization we get 172872 = 23 · 32 · 74. We know from the lecture

λ

(
r∏

i=1

peii

)
= lcm (λ (pe11 ) , . . . , λ (perr )) (6)

λ
(
pk
)
= ϕ

(
pk
)

for p ∈ P, p > 2 (7)

λ
(
2k
)
= 2k−2 for k ≥ 3 (8)

ϕ
(
pk
)
= pk ·

(
1− 1

p

)
(9)

ϕ(m) = m ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· · · · ·

(
1− 1

pr

)
for m = pk1

1 pk2
2 . . . pkr

r (10)

Therefore

λ (172872) = λ
(
23 · 32 · 74

)
= lcm

(
λ
(
23
)
, λ
(
32
)
, λ
(
74
))

= lcm
(
23−2, ϕ

(
32
)
, ϕ
(
74
))

= lcm

(
23−2, 32 ·

(
1− 1

3

)
, 74 ·

(
1− 1

7

))
= lcm(2, 6, 2058)

= 2058
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as 2058 = 2 · 3 · 73 and 6 = 2 · 3. And

ϕ(172872) = 172872 ·
(
1− 1

2

)
·
(
1− 1

3

)
·
(
1− 1

7

)
= 49392

Exercise 87
Presented proof was similar, just more verbose https://math.stackexchange.com/a/2569172

We know from the lecture

ϕ(m) = m ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· · · · ·

(
1− 1

pr

)
for m = pk1

1 pk2
2 . . . pkr

r

Let d = gcd(m,n). It follows

ϕ(mn)

mn
=
∏
p|mn

(1− 1

p
) =

∏
p|m(1− 1

p )
∏

p|n(1−
1
p )∏

p|d(1−
1
p )

=
ϕ(m)
m

ϕ(n)
n

ϕ(d)
d

Hence,

ϕ(mn) = ϕ(m)ϕ(n)
d

ϕ(d)

Example:

ϕ(12 · 20)
12 · 20

=

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
=

(
1− 1

2

) (
1− 1

3

)
·
(
1− 1

2

) (
1− 1

5

)(
1− 1

2

)
Exercise 88
Presented proof looked relatively similar and was generally accepted. Tutor mentioned
that for p = 2 we might have to make a special case. We have to show that

lcm (b1, b2, . . . , bk)

lcm (a1, a2, . . . , ak)
=

∏
p∈P p

max(νp(b1),νp(b2),...,νp(bk))∏
p∈P p

max(νp(a1),νp(a2),...,νp(ak))

=
∏
p∈P

pmax(νp(b1),νp(b2),...,νp(bk))−max(νp(a1),νp(a2),...,νp(ak))

is an integer. From ai | bi for 1 ≤ i ≤ k follows ∀p ∈ P : νp(ai) ≤ νp(bi). As the relation
holds componentwise, it holds also for the maximum max (νp(a1), νp(a2), . . . , νp(ak)) ≤
max (νp(b1), νp(b2), . . . , νp(bk)). Consequently

max (νp(b1), νp(b2), . . . , νp(bk))−max (νp(a1), νp(a2), . . . , νp(ak)) = ν′p
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exists and ν′p ≥ 0. Therefore

lcm (b1, b2, . . . , bk)

lcm (a1, a2, . . . , ak)
=
∏
p∈P

pν
′
p

is an integer. Therefore we get the result

ai | bi for 1 ≤ i ≤ k =⇒ lcm (a1, a2, . . . , ak) | lcm (b1, b2, . . . , bk) (11)

Example:

b1 = 9, b2 = 12, b3 = 10 b1 = 32, b2 = 22 · 3, b3 = 2 · 5
a1 = 3, a2 = 4, a3 = 5 a1 = 3, a2 = 22, a3 = 5

lcm (b1, b2, b3) = 2max(0,2,1) · 3max(2,1,0) · 5max(0,0,1)

lcm (a1, a2, a3) = 2max(0,2,0) · 3max(1,0,0) · 5max(0,0,1)

We know

λ

(
r∏

i=1

peii

)
= lcm (λ (pe11 ) , . . . , λ (perr )) (12)

λ
(
pk
)
= pk−1(p− 1) for p ∈ P, p > 2 (13)

m | n ⇔ ∀p ∈ P : νp(m) ≤ νp(n) (14)

Assume m | n. Then ∀p ∈ P : νp(m) ≤ νp(n). From this follows

∀p ∈ P : pνp(m) | pνp(n). (15)

Take in mind that peii = pνp(m) and ei = νp(m) for some p ∈ P.
We also know that

λ(m) = lcm
(
(p1 − 1)pe1−1

1 , (p2 − 1)pe2−1
2 , . . . , (pr − 1)per−1

)
λ(n) = lcm

(
(p1 − 1)pf1−1

1 , (p2 − 1)pf2−1
2 , . . . , (ps − 1)pfr−1

)
Consequently, (pi − 1)pfi−1

1 | (pi − 1)pei−1
1 for 1 ≤ i ≤ r.

By our previous result 11 we get λ(m) | λ(n).

Exercise 89
Calculate 3233/p for p ∈ P until you get an integer as result. We find 53 · 61 = 3233.
With prime factorization we calculate v = lcm(52, 60) = 2 · 2 · 3 · 5 · 13 = 780. We now
look for a solution for d · 49 ≡ 1 mod 780. We then try different x in 1+780x

49 until we
get an integer as result. At x = 37 we get d = 589.
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Exercise 90
After some discussion during the presentation it seemed that really taking CO, MP,
UT, ER together is asked for. Using WolframAlpha was OK.

CO = 0315 =⇒ 31549 mod 3233 = 2701

MP = 1316 =⇒ 131649 mod 3233 = 2593

UT = 2120 =⇒ 212049 mod 3233 = 371

ER = 0518 =⇒ 51849 mod 3233 = 1002
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