Exercise 9

Discrete Mathematics

December 10, 2020

Theorem (Euler, Fermat):

$$
\begin{equation*}
\operatorname{gcd}(a, m)=1 \Longrightarrow a^{\varphi(m)} \equiv 1 \quad \bmod m \tag{1}
\end{equation*}
$$

Theorem (Fermat):

$$
\begin{equation*}
p \in \mathbb{P}, p \nmid a \Longrightarrow a^{p-1} \equiv 1 \quad \bmod p \tag{2}
\end{equation*}
$$

Theorem (Chinese remainder theorem): Suppose $m_{1}, \ldots, m_{k} \in \mathbb{N}_{+}$pairwisely coprime and $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ then the solution of the system

$$
\begin{array}{cc}
x \equiv a_{1} & \bmod m_{1} \\
x \equiv a_{2} & \bmod m_{2} \\
\ldots & \\
x \equiv a_{k} & \bmod m_{k}
\end{array}
$$

of congruences is explicitly given by

$$
\begin{equation*}
x \equiv \sum_{i=1}^{k} \frac{m}{m_{i}} b_{i} a_{i} \quad \bmod m \tag{3}
\end{equation*}
$$

where $m=m_{1} \cdot m_{2} \ldots m_{k}$ and $b_{i}=\left(\frac{m}{m_{i}}\right)^{-1} \bmod m_{i}$.

Exercise 81

https://math.stackexchange.com/a/34223
Accepted this way
What we want is to calculate $2^{1000} \bmod 100$.
As $\varphi(25)=20$ we get by Euler's theorem 1 that $2^{20} \equiv 1 \bmod 25$ and therefore $2^{1000} \equiv\left(2^{20}\right)^{50} \equiv 1^{50} \equiv 1 \bmod 25$. Additionally, as $2^{2} \equiv 0 \bmod 4$ every multiple of
2^{2} is also congruent $0 \bmod 4$, especially $2^{1000} \equiv 0 \bmod 4$. This gives us the system of congruences

$$
\begin{array}{ll}
x \equiv 1 & \bmod 25 \\
x \equiv 0 & \bmod 4
\end{array}
$$

Note that

1. 25 and 4 are coprime
2. $b_{1}=\left(\frac{25 \cdot 4}{25}\right)^{-1} \bmod 25$ is solved with $4 z \equiv 1 \bmod 25$. So $z=b_{1}=19$.

Therefore, by the chinese remainder theorem 3 we get

$$
\begin{aligned}
& x \equiv \frac{25 \cdot 4}{25} 19 \cdot 1+\frac{25 \cdot 4}{4} b_{2} \cdot 0 \quad \bmod 25 \cdot 4 \\
& x \equiv 76 \bmod 100
\end{aligned}
$$

So the last two digits of 2^{1000} are 76 .

Exercise 82

16 might be wrong, should be 13 maybe? Was too fast for me We know

$$
\begin{gathered}
\operatorname{gcd}(a, m)=1 \Longrightarrow a^{\varphi(m)} \equiv 1 \bmod m \\
\varphi(m)=m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \quad \text { for } m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}
\end{gathered}
$$

Assume $\operatorname{gcd}(a, b)=1$. Then holds $a^{\varphi(b)} \equiv 1 \bmod b$. By laws of exponents we get

$$
a \cdot \underbrace{a^{\varphi(b)-1}}_{c} \equiv 1 \quad \bmod b .
$$

For the example, take in mind that $55=5 \cdot 11$ and $34=2 \cdot 17$. We see that $\operatorname{gcd}(55,34)=1$. Therefore,

$$
55^{\varphi(34)} \equiv 1 \quad \bmod 34
$$

and

$$
\varphi(34)=34\left(1-\frac{1}{2}\right)\left(1-\frac{1}{17}\right)=16
$$

It follows

$$
55^{16} \equiv 55 \cdot 55^{15} \equiv 1 \quad \bmod 34
$$

Exercise 83

(a) Presented was taking Bézouts theorem to the power of 4 and bringing it into the required form $a^{2} x^{*} a b y^{*} b^{2} z=1$ for some integers xyz because something like that was on Stackexchange, but that did not really work out
We know Euclid's lemma

$$
\begin{equation*}
p \in \mathbb{P} \wedge p|x y \Longrightarrow p| x \vee p \mid y \tag{4}
\end{equation*}
$$

Proof by contraposition. Assume there is $d>1$ such that $\operatorname{gcd}\left(a^{2}, a b, b^{2}\right)$. We know that

$$
\operatorname{gcd}\left(a^{2}, a b, b^{2}\right)=\prod_{p \in \mathbb{P}} p^{\min \left(\nu_{p}\left(a^{2}\right), \nu_{p}(a b), \nu_{p}\left(b^{2}\right)\right)}
$$

Therefore, at there exists at least one $q \in \mathbb{P}$ with $\nu_{q}\left(a^{2}\right) \geq 1$ or $\nu_{q}(a b) \geq 1$ or $\nu_{q}\left(b^{2}\right) \geq 1$. Then q is a factor of the $\operatorname{gcd}\left(a^{2}, a b, b^{2}\right)$. By the definition of gcd, it then divides all of them. By Euclid's lemma 4 holds $q\left|a^{2} \Longrightarrow q\right| a$ and $q\left|b^{2} \Longrightarrow q\right| b$ This means that q is a common divisor of a and b. Additionally, q is prime, it must hold $q>1$. It follows $\operatorname{gcd}(a, b)>1$ which concludes the proof by contraposition.
(b) Consider $a=7^{3}, b=7^{2}$. Then $a^{2}=7^{6}$ and $b^{3}=7^{6} .7^{6} \mid 7^{6}$ is true. However, the only x for which $7^{3} x=7^{2}$ holds is $x=1 / 7$ which is not an integer. Hence, by definition $7^{3} \nmid 7^{2}$ and $a \nmid b$. This disproves the statement.

Exercise 84

Tutor argued that if you take an element x to some power, then you certainly get another element. and that x^{a} and x^{a} will never be the same. Something like the the mapping stuff. There was also a nice proof using Bézouts Theorem first and then doing a case distinction.

- https://math.stackexchange.com/q/709249
- https://math.stackexchange.com/q/2842399
- https://math.stackexchange.com/q/1491103
- https://math.stackexchange.com/q/3631921
- https://mathoverflow.net/q/53677
- link

Copy \mathcal{E} paste some definitions into Google: Some are from nice freely available PDFs (like definition of discrete logarithm)

Assume $p \in \mathbb{P}$ satisfies $\operatorname{gcd}(a, p-1)=1$. Let $b \in \mathbb{Z}$ be arbitrary. We take the discrete logarithm wrt a primitive root g :

$$
\begin{aligned}
x^{a} & \equiv b \quad \bmod p \\
\operatorname{ind}_{g}\left(x^{a}\right) & \equiv \operatorname{ind}_{g}(b) \quad \bmod p-1 \\
a \cdot \operatorname{ind}_{g}(x) & \equiv \operatorname{ind}_{g}(b) \quad \bmod p-1
\end{aligned}
$$

Theorem from lecture:

$$
\begin{equation*}
a x \equiv b \quad \bmod m \text { solvable } \Longleftrightarrow \operatorname{gcd}(a, m) \mid b \tag{5}
\end{equation*}
$$

The assumption $\operatorname{gcd}(a, p-1)=1$ and the fact $1 \mid \operatorname{ind}_{g}(b)$ show that $x^{a} \equiv b \bmod p$ admits a solution.

Background

- Every field is a ring. Every ring is a group.
- The set of (congruence classes of) integers modulo n with the operations of addition and multiplication is a ring. It is denoted $\mathbb{Z} / n \mathbb{Z}$ or $\mathbb{Z} /(n)$. wiki This is our \mathbb{Z}_{m}.
- For prime p holds $\mathbb{Z} / p \mathbb{Z}$ is a finite field (Galois field), denoted \mathbb{F}_{p} wiki
- The discrete logarithm over prime fields is defined as follows: Let $p>2$ be a prime and x be a primitive root of p. We know that every $b \in\{1,2, \ldots, p-1\}$ can be expressed as a power of $x \bmod p$. That is,

$$
x^{a} \equiv b \quad \bmod p
$$

for a unique a modulo $p-1$. Then a is called the discrete logarithm or index of b with respect ot the base x modulo p.

- We see that the $\{1,2, \ldots, p-1\}$ of b are exactly the elements of \mathbb{Z}_{p}^{*}. a modulo $p-1$ means, that means $a \in\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{p-2}\}=\mathbb{Z}_{p-1}$ (no star!).

Example: 2 is a generator for $p=5:<\overline{2}>=\mathbb{Z}_{5}^{*}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

- $2^{1} \equiv 2 \bmod 5$
- $2^{2} \equiv 4 \bmod 5$
- $2^{3} \equiv 3 \bmod 5$
- $2^{4} \equiv 1 \bmod 5$

For the discrete logarithm we look for the exponents of the previous enumeration, by using the knowledge that \mathbb{Z}_{5}^{*} is cyclic. For example, we know that $\overline{3}$ is expressed as $(\overline{2})^{a}$ for some a. Note that we generated 1 by 2^{4}, but by our previous definition the discrete logarithm of $\overline{1}$ with respect to the base $\overline{2}$ modulo 5 is $\overline{0}$. Note $\overline{0} \in \mathbb{Z}_{p-1}$ and $\overline{4} \notin \mathbb{Z}_{p-1}$. More generally, we do not necessarily know which element of \mathbb{Z}_{5}^{*} is its generator, but we know that there is some x with some a such that $x^{a}=b$.
We know from the lecture: \mathbb{Z}_{p}^{*} is cyclic. This means there is a generator g. It follows that each element of \mathbb{Z}_{p}^{*} can be expressed as g^{a} for some $a . g$ is a primitive root $\bmod m$ if g is a generator of \mathbb{Z}_{m}^{*}.

Different expressions for $\mathbf{x , b}$

\mathbb{Z}_{p}^{*} is cyclic as $p \in \mathbb{P}$. Then there is a generator x of \mathbb{Z}_{p}^{*}. We know that each element can be expressed with the generator, so let $b=x^{s}$ for some s. We try to find a number $1 \leq e \leq p-1$ such that $\left(x^{e}\right)^{a}=x^{s}$. That means we want is $x^{e a} \equiv x^{s} \bmod p$. We can apply the discrete logarithm (index) as follows

$$
\begin{aligned}
x^{e a} & \equiv x^{s} \quad \bmod p \\
i n d_{x}\left(x^{e a}\right) & \equiv \operatorname{ind}_{x}\left(x^{s}\right) \quad \bmod p-1 \\
e a & \equiv s \quad \bmod p-1
\end{aligned}
$$

We know from the lecture that such an equivalence is solvable if and only if $\operatorname{gcd}(a, p-$ 1) $\mid s$. Our assumption was that $\operatorname{gcd}(a, p-1)=1$ and $1 \mid s$.

Mapping

As $p \in \mathbb{P} \operatorname{gcd}(a, p)$ can only be 1 or multiples of p for any $a \in \mathbb{Z}$.
Case $1 b \equiv 0 \bmod p$. Then $b \equiv 0^{a} \bmod p$. Hence, $x^{a} \equiv b \bmod p$ admits a solution.
Case $2 b \not \equiv 0 \bmod p$. Then $\operatorname{gcd}(b, p)=1$. Since $\operatorname{gcd}(a, p-1)=1$ there exist $u, v \in \mathbb{N}$ such that $a u=1+(p-1) v$. Then $\left(b^{u}\right)^{a}=b^{a u}=b^{1+(p-1) v}=b\left(b^{p-1}\right)^{v} \equiv b \bmod p$. This is because the Euler-Fermat theorem says $\operatorname{gcd}(b, p)=1 \Longrightarrow b^{\varphi(p)} \equiv 1$ $\bmod p$ and it holds $\forall p \in \mathbb{P}: \varphi(p)=p-1$
Therefore, the mapping $x \mapsto x^{a}$ on Z_{p}^{*} is surjective. As both domain and codomain of the map are equal, the mapping is even bijective. This means there is exactly one solution of $x^{a} \equiv b \bmod p$. Hence, $x^{a} \equiv b \bmod p$ admits a solution.

Subset

$\left\{1^{a}, 2^{a}, \ldots(p-1)^{a}, p^{a}\right\}$ is a subset of \mathbb{Z}_{p}^{*} for any a. For example

- $1^{3} \equiv 1 \bmod 5$
- $2^{3} \equiv 3 \bmod 5$
- $3^{3} \equiv 2 \bmod 5$
- $4^{3} \equiv 4 \bmod 5$
- $5^{3} \equiv 0 \bmod 5$
and
- $1^{4} \equiv 1 \bmod 5$
- $2^{4} \equiv 1 \bmod 5$
- $3^{4} \equiv 1 \bmod 5$
- $4^{4} \equiv 1 \bmod 5$
- $5^{4} \equiv 0 \bmod 5$

Case $1 b \equiv 0 \bmod p$. It holds $p^{a} \equiv 0 \bmod p$, so x^{a} has a solution. This means $x^{a} \equiv b \bmod p$ admits a solution.

Case $2 b \not \equiv 0 \bmod p$. If $x^{a} \equiv b \bmod p$ has no solution (second example enumeration), then $x^{a}=x^{y}$ for some distinct elements of \mathbb{Z}_{p}. Then holds $z^{a}=1$ for $z=x \cdot y^{-1}$. By applying the discrete logarithm on both sides we get

$$
\begin{aligned}
z^{a} & \equiv 1 \quad \bmod p \\
i n d_{g}\left(z^{a}\right) & \equiv \operatorname{ind}_{g}(1) \quad \bmod p-1 \\
a \cdot i n d_{g}(z) & \equiv 0 \quad \bmod p-1
\end{aligned}
$$

We can apply the definition of congruence to get $p-1 \mid a \cdot \operatorname{ind} d_{g}(z)$. As p is prime, $p-1$ is even. Then $2|p-1| a \cdot \operatorname{ind}_{g}(z)$. By assumption $\operatorname{gcd}(a, p-1)=1$. But $\mathrm{t} 2>1$. Contradiction.

Exercise 85

712 is correct according to tutor
We first have to solve each congruence equations to get only x in front. Note that

$$
\begin{array}{r}
14 x \equiv 2 \quad \bmod 22 \\
14 x=2+22 k \\
7 x=1+11 k \\
7 x \equiv 1 \quad \bmod 11
\end{array}
$$

and similar for the other equations. So we seek such k that x is an integer.

$$
\begin{array}{rll}
5 x \equiv 8 & \bmod 32 & \Longrightarrow x \equiv 8 \\
\bmod 32 \\
14 x \equiv 2 & \bmod 22 & \Longrightarrow x \equiv 8 \\
\bmod 11 \\
9 x \equiv 3 & \bmod 15 & \Longrightarrow x \equiv 2
\end{array} \bmod 54
$$

Therefore, by 3 x is explicitly given by

$$
\begin{aligned}
x & =\frac{32 \cdot 11 \cdot 5}{32} \cdot b_{1} \cdot 8+\frac{32 \cdot 11 \cdot 5}{11} \cdot b_{2} \cdot 8+\frac{32 \cdot 11 \cdot 5}{5} \cdot b_{3} \cdot 2 \bmod 32 \cdot 11 \cdot 5 \\
& =55 \cdot 7 \cdot 8+160 \cdot 2 \cdot 8+352 \cdot 3 \cdot 2 \equiv 7752 \equiv 712 \quad \bmod 1760
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=\left(\frac{32 \cdot 11 \cdot 5}{32}\right)^{-1} \bmod 32 \Longrightarrow 55 z \equiv 1 \bmod 32 \Longrightarrow z \equiv b_{1} \equiv 7 \bmod 32 \\
& b_{2}=\left(\frac{32 \cdot 11 \cdot 5}{11}\right)^{-1} \bmod 11 \Longrightarrow 160 z \equiv 1 \bmod 11 \Longrightarrow z \equiv b_{2} \equiv 2 \bmod 11 \\
& b_{3}=\left(\frac{32 \cdot 11 \cdot 5}{5}\right)^{-1} \bmod 5 \Longrightarrow 352 z \equiv 1 \bmod 5 \Longrightarrow z \equiv b_{3} \equiv 3 \bmod 5
\end{aligned}
$$

Exercise 86

By prime factorization we get $172872=2^{3} \cdot 3^{2} \cdot 7^{4}$. We know from the lecture

$$
\begin{gather*}
\lambda\left(\prod_{i=1}^{r} p_{i}^{e_{i}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{r}^{e_{r}}\right)\right) \tag{6}\\
\lambda\left(p^{k}\right)=\varphi\left(p^{k}\right) \quad \text { for } p \in \mathbb{P}, p>2 \tag{7}\\
\lambda\left(2^{k}\right)=2^{k-2} \quad \text { for } k \geq 3 \tag{8}\\
\varphi\left(p^{k}\right)=p^{k} \cdot\left(1-\frac{1}{p}\right) \tag{9}\\
\varphi(m)=m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \quad \text { for } m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}} \tag{10}
\end{gather*}
$$

Therefore

$$
\begin{aligned}
\lambda(172872) & =\lambda\left(2^{3} \cdot 3^{2} \cdot 7^{4}\right) \\
& =\operatorname{lcm}\left(\lambda\left(2^{3}\right), \lambda\left(3^{2}\right), \lambda\left(7^{4}\right)\right) \\
& =\operatorname{lcm}\left(2^{3-2}, \varphi\left(3^{2}\right), \varphi\left(7^{4}\right)\right) \\
& =\operatorname{lcm}\left(2^{3-2}, 3^{2} \cdot\left(1-\frac{1}{3}\right), 7^{4} \cdot\left(1-\frac{1}{7}\right)\right) \\
& =\operatorname{lcm}(2,6,2058) \\
& =2058
\end{aligned}
$$

as $2058=2 \cdot 3 \cdot 7^{3}$ and $6=2 \cdot 3$. And

$$
\begin{aligned}
\varphi(172872) & =172872 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{7}\right) \\
& =49392
\end{aligned}
$$

Exercise 87

Presented proof was similar, just more verbose https://math.stackexchange.com/a/2569172
We know from the lecture

$$
\varphi(m)=m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdots \cdot\left(1-\frac{1}{p_{r}}\right) \quad \text { for } m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}
$$

Let $d=\operatorname{gcd}(m, n)$. It follows

$$
\frac{\varphi(m n)}{m n}=\prod_{p \mid m n}\left(1-\frac{1}{p}\right)=\frac{\prod_{p \mid m}\left(1-\frac{1}{p}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right)}{\prod_{p \mid d}\left(1-\frac{1}{p}\right)}=\frac{\frac{\varphi(m)}{m} \frac{\varphi(n)}{n}}{\frac{\varphi(d)}{d}}
$$

Hence,

$$
\varphi(m n)=\varphi(m) \varphi(n) \frac{d}{\varphi(d)}
$$

Example:

$$
\frac{\varphi(12 \cdot 20)}{12 \cdot 20}=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=\frac{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)}{\left(1-\frac{1}{2}\right)}
$$

Exercise 88

Presented proof looked relatively similar and was generally accepted. Tutor mentioned that for $p=2$ we might have to make a special case. We have to show that

$$
\begin{aligned}
\frac{\operatorname{lcm}\left(b_{1}, b_{2}, \ldots, b_{k}\right)}{\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)} & =\frac{\prod_{p \in \mathbb{P}} p^{\max \left(\nu_{p}\left(b_{1}\right), \nu_{p}\left(b_{2}\right), \ldots, \nu_{p}\left(b_{k}\right)\right)}}{\prod_{p \in \mathbb{P}} p^{\max \left(\nu_{p}\left(a_{1}\right), \nu_{p}\left(a_{2}\right), \ldots, \nu_{p}\left(a_{k}\right)\right)}} \\
& =\prod_{p \in \mathbb{P}} p^{\max \left(\nu_{p}\left(b_{1}\right), \nu_{p}\left(b_{2}\right), \ldots, \nu_{p}\left(b_{k}\right)\right)-\max \left(\nu_{p}\left(a_{1}\right), \nu_{p}\left(a_{2}\right), \ldots, \nu_{p}\left(a_{k}\right)\right)}
\end{aligned}
$$

is an integer. From $a_{i} \mid b_{i}$ for $1 \leq i \leq k$ follows $\forall p \in \mathbb{P}: \nu_{p}\left(a_{i}\right) \leq \nu_{p}\left(b_{i}\right)$. As the relation holds componentwise, it holds also for the maximum $\max \left(\nu_{p}\left(a_{1}\right), \nu_{p}\left(a_{2}\right), \ldots, \nu_{p}\left(a_{k}\right)\right) \leq$ $\max \left(\nu_{p}\left(b_{1}\right), \nu_{p}\left(b_{2}\right), \ldots, \nu_{p}\left(b_{k}\right)\right)$. Consequently

$$
\max \left(\nu_{p}\left(b_{1}\right), \nu_{p}\left(b_{2}\right), \ldots, \nu_{p}\left(b_{k}\right)\right)-\max \left(\nu_{p}\left(a_{1}\right), \nu_{p}\left(a_{2}\right), \ldots, \nu_{p}\left(a_{k}\right)\right)=\nu_{p}^{\prime}
$$

exists and $\nu_{p}^{\prime} \geq 0$. Therefore

$$
\frac{l c m\left(b_{1}, b_{2}, \ldots, b_{k}\right)}{\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)}=\prod_{p \in \mathbb{P}} p^{\nu_{p}^{\prime}}
$$

is an integer. Therefore we get the result

$$
\begin{equation*}
a_{i} \mid b_{i} \text { for } 1 \leq i \leq k \Longrightarrow \operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid \operatorname{lcm}\left(b_{1}, b_{2}, \ldots, b_{k}\right) \tag{11}
\end{equation*}
$$

Example:

$$
\begin{array}{rlrl}
b_{1}=9, b_{2}=12, b_{3}=10 & b_{1} & =3^{2}, b_{2}=2^{2} \cdot 3, b_{3}=2 \cdot 5 \\
a_{1}=3, a_{2}=4, a_{3}=5 & a_{1} & =3, a_{2}=2^{2}, a_{3}=5 \\
l c m\left(b_{1}, b_{2}, b_{3}\right) & =2^{\max (0,2,1)} \cdot 3^{\max (2,1,0)} \cdot 5^{\max (0,0,1)} \\
l c m\left(a_{1}, a_{2}, a_{3}\right) & =2^{\max (0,2,0)} \cdot 3^{\max (1,0,0)} \cdot 5^{\max (0,0,1)}
\end{array}
$$

We know

$$
\begin{gather*}
\lambda\left(\prod_{i=1}^{r} p_{i}^{e_{i}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{r}^{e_{r}}\right)\right) \tag{12}\\
\lambda\left(p^{k}\right)=p^{k-1}(p-1) \text { for } p \in \mathbb{P}, p>2 \tag{13}\\
m \mid n \Leftrightarrow \forall p \in \mathbb{P}: \nu_{p}(m) \leq \nu_{p}(n) \tag{14}
\end{gather*}
$$

Assume $m \mid n$. Then $\forall p \in \mathbb{P}: \nu_{p}(m) \leq \nu_{p}(n)$. From this follows

$$
\begin{equation*}
\forall p \in \mathbb{P}: p^{\nu_{p}(m)} \mid p^{\nu_{p}(n)} \tag{15}
\end{equation*}
$$

Take in mind that $p_{i}^{e_{i}}=p^{\nu_{p}(m)}$ and $e_{i}=\nu_{p}(m)$ for some $p \in \mathbb{P}$.
We also know that

$$
\begin{aligned}
\lambda(m) & =\operatorname{lcm}\left(\left(p_{1}-1\right) p_{1}^{e_{1}-1},\left(p_{2}-1\right) p_{2}^{e_{2}-1}, \ldots,\left(p_{r}-1\right) p^{e_{r}-1}\right) \\
\lambda(n) & =\operatorname{lcm}\left(\left(p_{1}-1\right) p_{1}^{f_{1}-1},\left(p_{2}-1\right) p_{2}^{f_{2}-1}, \ldots,\left(p_{s}-1\right) p^{f_{r}-1}\right)
\end{aligned}
$$

Consequently, $\left(p_{i}-1\right) p_{1}^{f_{i}-1} \mid\left(p_{i}-1\right) p_{1}^{e_{i}-1}$ for $1 \leq i \leq r$.
By our previous result 11 we get $\lambda(m) \mid \lambda(n)$.

Exercise 89

Calculate $3233 / p$ for $p \in \mathbb{P}$ until you get an integer as result. We find $53 \cdot 61=3233$. With prime factorization we calculate $v=\operatorname{lcm}(52,60)=2 \cdot 2 \cdot 3 \cdot 5 \cdot 13=780$. We now look for a solution for $d \cdot 49 \equiv 1 \bmod 780$. We then try different x in $\frac{1+780 x}{49}$ until we get an integer as result. At $x=37$ we get $d=589$.

Exercise 90

After some discussion during the presentation it seemed that really taking CO, MP, UT, ER together is asked for. Using WolframAlpha was OK.

$$
\begin{gathered}
C O=0315 \Longrightarrow 315^{49} \quad \bmod 3233=2701 \\
M P=1316 \Longrightarrow 1316^{49} \quad \bmod 3233=2593 \\
U T=2120 \Longrightarrow 2120^{49} \quad \bmod 3233=371 \\
E R=0518 \Longrightarrow 518^{49} \quad \bmod 3233=1002
\end{gathered}
$$

