Status Finished Started Tuesday, 29 April 2025, 6:36 PM Completed Tuesday, 29 April 2025, 7:01 PM **Duration** 25 mins Grade 10.00 out of 10.00 (100%) Ouestion 1

Correct

Mark 1.00 out of 1.00

Assume that $l(d) \land \forall i(m(j(i), e(d, i)) \lor o(d))$ is a well-formed formula. Classify each symbol as either a function or a predicate by drag-anddropping it to the correct location.

Important: The symbols should be specified in alphabetical order. For instance, in $a(b) \wedge c(d)$, the predicate symbols should be specified as a,cand the function symbols as b,d. Furthermore, note that constants are 0-ary functions.

Question 2

Correct

Mark 1.00 out of 1.00

 $\text{Consider the signature } \mathcal{S} \text{ with } \{P \ (arity \ 2), Q \ (arity \ 2)\} \subseteq \mathcal{P}, \{a \ (arity \ 0), b \ (arity \ 0), f \ (arity \ 2), g \ (arity \ 1)\} \subseteq \mathcal{F} \text{ and } \{x,y\} \subseteq \mathcal{V} \}$ predicates, functions and variables, respectively. Which formulas are **not** well-formed formulas in First-Order Logic?

Important: Note that there can be more than one correct answer.

- lacksquare a. $(P(a,a) \wedge Q(g(b)))
 ightarrow orall (x \wedge y) P(f(x,b),g(f(x,b)))$ igotimes
- lacksquare b. $(P(f(a),a) o Q(g(a))) o \exists x Q(f(x,b),g(x))$ \odot
- lacksquare c. $\exists x Q(f(x,b),g(x)) \land \lnot(f(a,b)
 ightarrow Q(g(b))) ext{ } ext{\oslash}$
- igspace d. P(f(a,b),g(a))ee orall x(Q(a,b)
 ightarrow P(x,b))

Question 3

Mark 1.00 out of 1.00

Consider the signature \mathcal{S} with $\{P\ (arity\ 2), Q\ (arity\ 2)\}\subseteq \mathcal{P}$, $\{f\ (arity\ 2), a\ (arity\ 0), b\ (arity\ 0)\}\subseteq \mathcal{F}$ and $\{x\}\subseteq \mathcal{V}$ predicates, functions and variables, respectively. How many **different terms** occur in the formula $P(f(a,b),f(a,a)) \lor \exists x (P(a,x) o Q(a,x))$? Note that if a term occurs twice, it only counts as one.

Example: The formula P(f(x),g(x),f(a)) contains 4 unique terms - x, f(x), g(x), f(a).

Question 4		
Correct		
Mark 1.00 out of 1.00		
Consider the signature $\mathcal S$ with $\{P\ (arity\ 2),Q\ (arity\ 2)\}\subseteq \mathcal P$, $\{f\ (arity\ 2)\}\subseteq \mathcal F$ and $\{z,x,y\}\subseteq \mathcal V$ predicates, functions and variables, respectively. Which variables have free occurrences in the formula $\forall x(P(f(x,x),f(x,y))\land\exists yQ(f(y,z),f(x,y)))$? Note that variables that have both free and bound occurrences should also be listed. Important: In order for your answer to be properly validated, input your variables comma-separated and with no white-spaces in between. For instance, for the formula $\forall yP(x,y)\land P(x,y)$ your answer should be: x,y		
Question 5		
Correct		
Mark 1.00 out of 1.00		
Consider the signature $\mathcal S$ with $\{P\ (arity\ 2), Q\ (arity\ 2)\}\subseteq \mathcal P$, $\{a\ (arity\ 0), f\ (arity\ 2), b\ (arity\ 0), g\ (arity\ 1)\}\subseteq \mathcal F$ and $\{x\}\subseteq \mathcal V$ predicates, functions and variables, respectively. How many subformulas does the formula $(\forall x P(a, f(x, b)) \to P(f(a, b), f(a, a))) \land Q(f(a, b), g(a))$ have? Note that if a subformula occurs twice, it only counts as one. Answer:		
Question 6 Correct Mark 1.00 out of 1.00		
How is the correct formalization of the natural language sentence "All Viennese people are friendly."?		
\bigcirc a. $orall x(\mathit{Viennese}(x) \wedge \mathit{Friendly}(x))$		
\bigcirc b. $orall x \; Viennese(x) ightarrow Friendly(x)$		
\bigcirc c. $Viennese(x) ightarrow Friendly(x)$		
$lacktriangledown$ d. $orall x(Viennese(x) o Friendly(x))$ $loodsymbol{egin{align*} igotimes } \end{array}}$		
Question 7 Correct Mark 1.00 out of 1.00		
Which formula is equivalent to the negation of $\neg orall x \ P(x)$?		
\bigcirc a. $\exists x P(x)$		
\bigcirc b. $\exists x \neg P(x)$		
\bigcirc c. $ eg\exists x P(x)$		
$lacksquare$ d. $ eg\exists x \neg P(x) \odot$		

Question 8		
Correct		
Mark 1.00 out of 1.00		
Which one of the following entailments holds?		
\bigcirc a. $orall x(P(x) o Q(x)), P(a)\models orall yQ(y)$		
$lacktriangledown$ b. $orall xP(x)\models\exists yP(y)$ \odot		
\bigcirc c. $\exists x (P(x) \land Q(x)), orall y \ P(y) \models Q(b)$		
\bigcirc d. $orall x(P(x) o Q(x)), Q(a) \models orall x\ P(x)$		
Question 9		
Correct		
Mark 1.00 out of 1.00		
Consider the formula $\varphi:=\exists x\forall y(\neg P(x,y)\vee P(y,y))\land\exists x\neg P(x,x)$. Given the structure $\mathcal{M}=(D_{\mathcal{M}},I_{\mathcal{M}})$ with domain $D_{\mathcal{M}}=\{a,b\}$, your task is to specify the relation $P^{\mathcal{M}}$ associated to the predicate symbol P by $I_{\mathcal{M}}$, such that the formula φ is satisfied by \mathcal{M} . Note: List the tuples in $P^{\mathcal{M}}$ comma-separated, with no spaces in between. In case $P^{\mathcal{M}}$ should not contain any elements, input "empty" (without the quotes) in the field below. Furthermore, note that multiple correct answers may be possible.		
<i>Example</i> : For $\exists x P(x,x)$ and $\mathcal{M}=(\{a,b\},I_{\mathcal{M}})$, a possible input could be: $\emph{(a,a),(a,b)}$		
Answer: (b,b)	○	
Question 10		
Correct		
Mark 1.00 out of 1.00		

Which of the following interpretations is a model of the formula $\forall x \exists y P(x,y)$? Note that more than one answer may be correct.

a.
$$\mathcal{M}=(D_{\mathcal{M}},I_{\mathcal{M}})$$
 with $D_{\mathcal{M}}=\{a,b,c\}$ and $P^{\mathcal{M}}=\{(a,a),(a,b),(a,c)\}$
b. $\mathcal{M}=(D_{\mathcal{M}},I_{\mathcal{M}})$ with $D_{\mathcal{M}}=\{a,b,c\}$ and $P^{\mathcal{M}}=\emptyset$
c. $\mathcal{M}=(D_{\mathcal{M}},I_{\mathcal{M}})$ with $D_{\mathcal{M}}=\{a,b,c\}$ and $P^{\mathcal{M}}=\{(b,a),(a,b)\}$
d. $\mathcal{M}=(D_{\mathcal{M}},I_{\mathcal{M}})$ with $D_{\mathcal{M}}=\{a,b,c\}$ and $P^{\mathcal{M}}=\{(a,a),(b,b),(c,c)\}$