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The χ2- test (goodness of fit)



Motivation

Is the die fair?
Given a six-sided die
with sides red, orange, green, yellow, bue and white
Somebody: ’the die is fair!’
What to do?
Roll the die! (collect data)
roll the die 120 times
the outcome was

red, blue, blue, white , red, green, orange, green, . . . , orange
Once again: hard to ’understand’ anything,
→ thus graphical representation, e.g., in the barplot
→ categorial data
6 catagories (red, orange, green, yelllow, blue, white)
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Motivation

120 throws
Question:
Are the observed frequencies far away from each other?
’Answer’ 1:

relative frequencies and standard error→ rather close?!
Intuitively rather fair

21 22 16 17 19 2521 22 16 17 19 25
0

20

0

Intuitively rather unfair
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’Answer’ 2:
meaning of ’fair’: no side is preferred, probability 1/6
per category 120 · 1/6 = 20 occupations expected, if the die is fair
in every category the observed frequencies should then typically be ’close’ to
the expected frequencies
a statistic, that quantifies this discrepancy over all categories, is the
χ2-statistic
→ in the following we construct the so-called χ2-test



Observed and expected frequencies
Notation

n data (here: n = 120)
fall in d categories (here: d = 6)
xk denotes the number of occupations (number of data) in the k-th
category→ observed frequencies
these are compared to the expected frequencies, assuming that the die is
fair
in order to talk about expectations we need a model

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120
expected frequencies, if ’fair’ 20 20 20 20 20 20 120

observed frequencies
vs. expected frequencies under H0
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From the binomial to the multinomial distribution
Which model could we choose with d = 2 categories?
categories ’success’ and ’failure’
Reminder: A random variable X is called binomial distributed with
parameters n and p, short X ∼ b(n, p), if

P(X = x) =
(

n
x

)
· px · (1 − p)n−x (∗)

while x ∈ {0, 1, . . . , n} (number of successes)
p ∈ (0, 1) (success probability)
and binomial coefficient (

n
x

)
=

n!
x!(n − x)!

read (∗): in n independent ’coin flips’ observe x times a success, each with
probability p. The binomial coefficient states in how many ways the x
successes may have appeared.

it is E[X] = n · p → expected number of successes

extension to d categories→multinomial distribution...



Multinomial distribution
Definition: A random vector X = (X1, . . . , Xd)

t is called multinomial
distributed with parameters n and p = (p1, . . . , pd)

t, short X ∼ mult(n, p), if

P(X = (x1, . . . , xd)
t) =

(
n

x1, x2, . . . , xd

) d∏
k=1

pxk
k (∗)

while (x1, . . . , xd)
t ∈Nd with

∑d
k=1 xk = n (number of occupations)

p = (p1, . . . , pd)
t ∈ (0, 1)d with

∑d
k=1 pk = 1 (probabilities for occupations)

with multinomial coefficient(
n

x1, x2, . . . , xd

)
:=

n!
x1! · · · xd!

=

(
n
x1

)(
n − x1

x2

)(
n − x1 − x2

x3

)
· · ·

(
n − x1 − · · ·− xd−1

xd

)
(∗)

read (∗): in n independent ’occupations’ of d categories in which the k-th
category is chosen with probability pk, the k-th category was occupied xk
times. The multinomial coefficient states in how many ways the observed
occupations of all categories may have appeared (→ order)
For d = 2 the weights equal the binomial weights
→multinomial distribution is ’extension’ to d categories.
For the k-th component it holds Xk ∼ b(n, pk),
thus particularly E[Xk] = n · pk → ’expected frequencies’



Model and null hypothesis
n data in d categories (here: n = 120, d = 6)
observed frequencies: x1, · · · , xd

model: let X = (X1, . . . , Xd)
t ∼ mult(n, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

null hypothesis: H0 : p = p0 := (p0,1, . . . , p0,d)
t

claimed occupation probs (here: p0 = (1/d, 1/d, . . . , 1/d)t ↔ ’fair’)
Under H0 expected occupations: EH0 [Xk] = n · p0,k

here EH0 [Xk] = 20, i.e.,. under H0 there are 20 expected per category

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120
EH0 [Xk] 20 20 20 20 20 20 120

observed frequencies
vs. expected frequencies under H0
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The χ2-statistic
n data in d categories
observed frequencies x1, · · · , xd

model: X = (X1, . . . , Xd)
t ∼ mult(n, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

H0 : p = (p0,1, . . . , p0,d)
t

EH0 [Xk] = n · p0,k

the χ2-statistic

x2 :=

d∑
k=1

(xk − EH0 [Xk])
2

EH0 [Xk]
=

(21 − 20)2

20
+· · ·+(25 − 20)2

20
=

1
20

+· · ·+25
20

=
56
20

= 2.8

measures the discrepancy of the observed frequencies from the expected
frequencies under the null hypothesis
A large positive value of x2 means a large discrepancy (’positive’ due to
squares)
Is x2 = 2.8 a large value?

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120
EH0 [Xk] 20 20 20 20 20 20 120



The χ2-distribution
Definition: Let Z1, . . . , Zd be i.i.d. RVs, with Z1 ∼ N(0, 1).
A random variable X is called χ2-distributed with d degrees of freedom, short
X ∼ χ2(d), if

X ∼ Z2
1 + · · ·+ Z2

d

In words: a χ2(d)-distributed random variable is distributed like the sum
of d squares of independent N(0, 1)-distributed random variables
properties: for X ∼ χ2(d) it holds

X > 0
E[X] = d ’linearity of the expectation, and E(Z2

1) = Var(Z1) = 1’

Var(X) = 2d ’independence, andVar(Z2
1) = E(Z4

1)− E(Z2
1)

2 = 3 − 1 = 2

R knows it well: rchisq(), pchisq() etc.

χ2(d) − distribution
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The χ2-test (goodness of fit)
Let X = (X1, . . . , Xd)

t ∼ mult(n, p), with p ∈ (0, 1)d and
∑d

k=1 pk = 1

Under H0 : p = (p0,1, . . . , p0,d)
t it holds (approximately)

X2 :=

d∑
k=1

(Xk − EH0 [Xk])
2

EH0 [Xk]

d≈ χ2(d − 1)

in fact, it holds that X2 d−→ χ2(d − 1) as n→∞
here: n = 120 and d = 6, as well as p0 = (1/6, . . . , 1/6)t

for α = 5% the (1 − α)-quantile of the χ2(5)-distribution is q1−α ≈ 11.1
rejection area: R = [q1−α,∞) (one-sided, x2 large speaks against H0)
data: x2 = 2.8 < R→ can not reject H0
p ≈ 0.73. If the null hypothesis holds true, then we observe in about 7 of
10 cases a discrepancy, which is at least as extreme as in the data. The
observed discrepancy is not at all unlikely

observed frequencies
vs. expected frequencies under H0
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Under H0: X
2 ≈ χ2(d−1)
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The χ2-test, goodness of fit (example 2)
Let X = (X1, . . . , Xd)

t ∼ mult(n, p), with p ∈ (0, 1)d and
∑d

k=1 pk = 1

Under H0 : p = (p0,1, . . . , p0,d)
t it holds (approximately)

X2 :=

d∑
k=1

(Xk − EH0 [Xk])
2

EH0 [Xk]
≈ χ2(d − 1)

Here: n = 120 and d = 6, as well as p0 = (1/6, . . . , 1/6)t

For α = 5% the (1 − α)-quantile of the χ2(5)-distribution is q1−α ≈ 11.1
Rejection area: R = [q1−α,∞)
data: x2 = 35.2 ∈ R,→we can reject H0
p < 10−5. If H0 holds true, then we observe in less than 1 of 100000 cases a
discrepancy which is at least as extreme as in the data. The data are not at
all compatible with the null hypothesis

Intuitively rather unfair
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Loaded die (example 3)
Somebody claims: ’I loaded the die’ , in a way that

1.: the three sides rot, yellow and white appear with the same frequency
2.: orange appears twice as often as these three
3.: the sides green and blue each half as often as the upper three

Model: X = (X1, . . . , X6)
t ∼ mult(120, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

H0 : p = (1/6, 1/3, 1/12, 1/6, 1/12, 1/6)t (’loaded die’)
k 1 2 3 4 5 6

∑
xk 17 39 10 17 8 29 120

EH0 [Xk] 20 40 10 20 10 20 120
assertion: loaded die
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Under H0: X
2 ≈ χ2(5)

R

q1−α

x2

p

x2 :=

d∑
k=1

(xk − EH0 [Xk])
2

EH0 [Xk]
=

(17 − 20)2

20
+

(39 − 40)2

40
+ · · · = 9

20
+

1
40

+ · · · = 5.375

for α = 5% we obtain the rejection area R ≈ [11.1,∞)

data: x2 = 5.375 < R,→ can not reject H0 (p ≈ 0.37)



Remarks

Initial question:
How good do the observed frequencies fit to the frequencies expected
under the null hypothesis?
→ the χ2-test is also known as goodness of fit test

the χ2-statistic is asymptotically χ2(d − 1)-distributed (n→∞)
1. The approximation gets better the more data are found in the categories
2. Why are the degrees of freedom d − 1 (and not d)?

Intuition: if we know that the first d − 1 categories are occupied with
S =

∑d−1
k=1 Xi data, then it follows that the last category is occupied with n − S

data
→ only d − 1 categories are ’free’

3. Why is the χ2-distribution reasonable?
Intuition: the summands of the χ2-statistic are squares of rescaled sums
(frequencies). Thus, according to the central limit theorem, each of the d
summands is approximately distributed as the square of a
N(0, 1)-distributed random variable. Under independence we would
approximately obtain the χ2(d)-distribution. But the ’slight dependence’ of
the d summands (see. 2) results in the reduction of a degree of freedom.



χ2-test in R
# Enter data

die <- c("red","blue","blue","yellow",...)

# Calculate frequencies , e.g., via

x <- table(die)

# Enter claimed probabilities

p0 <- c(1/6,1/3,1/12,1/6,1/12,1/6)

# Perform chiˆ2-test

chisq.test(x,p=p0,...)

# Output

Chi-squared test for given probabilities

data: x

X-squared = 5.375, df = 5, p-value = 0.3718

If p=p0 is not set (default), then equal probabilities are assumed (’fair’), i.e.,
p0 = (1/d, . . . , 1/d)
For few data (n small) a so-called ’continuity correction’ (according to Yates) is
performed. For that, in the χ2-statistic the numerator of every summand is
(before squaring) replaced by its absolute value, then subtracted by 1/2 and then
squared. Idea: conservative behavior (reject less easily)→ ’counteract a bad
approximation through the χ2-distribution’.
The continuity correction can be controlled through the logical argument correct.



Overview

So long:
χ2-test, good of fit:
One feature (here: outcome of the rolling die)
→ in d categories (here: colors)
data: frequencies / occupations
Question: How good do the observed frequencies fit the claimed
occupation probabilities?
Statistic: χ2-statistic

In the following:
χ2-test for independence:
Two features (e.g.,: 1. outcome of the die, and 2. underground used)
data: frequencies / occupations→ as above
Question: Is the first feature independent from the second feature?
Statistic: χ2-statistic→ as above

Message: On the one hand there is a different question (and setup)...
...on the other hand we will ’technically’ work with the same statistics



The χ2- test (for independence)



Motivation

A game designer develops a four sided die
(sides: red, orange, green and blue)
She presents the cube to a broad audience (n = 230 people)...
...and claims that the outcome depends on the underground used: soft
underground systematically yielded different outcomes than solid
underground – a magic cube!
Are we skeptical? (→What do the data say?)
Each person from the audience is allowed to roll the die once:

first the underground has to be chosen, solid or soft (feature 1)...
...then on this underground the die is rolled and the outcome noted (feature 2)

The observed frequencies were as follows
xj,k side red orange green blue xj,·

underground solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230
For example, 22 people chose the solid underground and then the die
showed the orange side
Also, we obtain the column frequencies x·,k, the row frequencies xj,·, as well as
the total number n = 230



Graphically

solid (nsolid=80) soft (nsoft=150)

relative frequencies

0.0
0.1
0.2
0.3
0.4

and standard error (groupwise)

xj,k side red orange green blue xj,·

underground solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

Question: what does ’independence of the features’ mean intuitively?
If the color did not depend on the underground, then the outcomes of
both undergrounds should show about the same distribution.
Here: at ’solid’ all colors show about the same frequency, while at ’soft’
e.g., the color blue appeared more than thrice as orange
Can this difference be explained easily by chance under independence?
Not really, when considering the standard errors
→more precisely: χ2-test for independence



Model
n = 230 data in d = d1 · d2 = 8 categories
feature 1 (underground) has d1 = 2 categories
and feature 2 (color) has d2 = 4 categories
observed frequencies: x1,1, x1,2, · · · , x2,4 (xj,k → row j, column k)
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)
with p = (p1,1, . . . , pd1,d2)

t ∈ (0, 1)d1·d2 and
∑

j,k pj,k = 1

xj,k side red orange green blue xj,·

underground solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

occupation probabilities red orange grün blue pj,·

solid p1,1 p1,2 p1,3 p1,4 p1,·
soft p2,1 p2,2 p2,3 p2,4 p2,·

p·,k p·,1 p·,2 p·,3 p·,4
∑

= 1

while pj,k denotes the probability to fall into row j and column k
and the row sums pj,·, the column sums p·,k, and total sum

∑
j,k pj,k = 1

Independence means, that (e.g., p1,2 = p1,· · p·,2)
pj,k = P(row j and column k) = P(row j) · P(column k) = pj,· · p·,k



Model and null hypothesis
observed frequencies: x1,1, x1,2, · · · , x2,4
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)
with p = (p1,1, . . . , pd1,d2)

t ∈ (0, 1)d1·d2 and
∑

j,k pj,k = 1
Null hypothesis:
H0 : p = p0 := (p1,· · p·,1, . . . , pd1,· · p·,d2)

t ∈ (0, 1)d1·d2

and
∑d1

j=1 pj,· =
∑d2

k=1 p·,k = 1

xj,k red orange green blue xj,·

solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

PH0 red orange green blue pj,·

solid p1,· · p·,1 p1,· · p·,2 p1,· · p·,3 p1,· · p·,4 p1,·
soft p2,· · p·,1 p2,· · p·,2 p2,· · p·,3 p2,· · p·,4 p2,·

p·,k p·,1 p·,2 p·,3 p·,4
∑

= 1

Independence means that

pj,k = P(row j and column k) = P(row j) · P(column k) = pj,· · p·,k

Expectations in the categories under H0: EH0 [·] = n · pj,· · p·,k



Observed and expected frequencies
xj,k red orange green blue xj,·

solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

EH0 [·] red orange green blue

solid n · p1,· · p·,1 n · p1,· · p·,2 n · p1,· · p·,3 n · p1,· · p·,4
soft n · p2,· · p·,1 n · p2,· · p·,2 n · p2,· · p·,3 n · p2,· · p·,4

Now we can compare ’observed’ and ’expected under H0’∑
j,k

(xj,k − n · pj,· · p·,k)2

n · pj,· · p·,k
(∗)

Problem: products pj,· · p·,k unknown in practice
Solution: Estimate marginal probabilities via marginal frequencies
More precisely: row proportions xj,·/n estimate row probabilities pj,· and
column proportions x·,k/n estimates column probabilities p·,k
i.e., (xj,· · x·,k)/n estimates n · pj,· · p·,k

plugging into (∗) yields the χ2-statistic

x2 =
∑

j,k

(
xj,k −

xj,··x·,k
n

)2

xj,··x·,k
n



Observed and expected frequencies
xj,k red orange green blue xj,·

hard 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230
ÊH0 [·] rot orange green blue

hard (80 · 52)/n (80 · 41)/n (80 · 63)/n (80 · 74)/n
soft (150 · 52)/n (150 · 41)/n (150 · 63)/n (150 · 74)/n

Now we can compare ’observed’ and ’expected under H0’∑
j,k

(xj,k − n · pj,· · p·,k)2

n · pj,· · p·,k
(∗)

Estimate marginal probabilities via marginal frequencies
i.e., (xj,· · x·,k)/n estimates n · pj,· · p·,k
plugging the estimator into (∗) yields the χ2-statistic

x2 =
∑

j,k

(
xj,k −

xj,··x·,k
n

)2

xj,··x·,k
n

≈ 19.3 ...is this a large value?

yes, as the comparison with the χ2-distribution reveals...



The χ2-test for independence
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)
with p = (p1,1, . . . , pd1,d2)

t ∈ (0, 1)d1·d2 and
∑

j,k pj,k = 1

Under H0 : p = p0 := (p1,· · p·,1, . . . , pd1,· · p·,d2)
t ∈ (0, 1)d1·d2

and
∑d1

j=1 pj,· =
∑d2

k=1 p·,k = 1it holds (approximately)

X2 :=
∑

j,k

(
Xj,k −

Xj,··X·,k
n

)2

Xj,··X·,k
n

d≈ χ2((d1 − 1) · (d2 − 1))

in fact, it holds that X2 d−→ χ2((d1 − 1)(d2 − 1)) as n→∞
Here: d1 = 2, d2 = 4, i.e., X2 H0

∼ χ2(3) (approx)
for α = 5% the (1 − α)-quantile of the χ2(3)-distribution is q1−α ≈ 7.8
rejection area: R = [q1−α,∞) (one-sided, x2 large speaks against H0)
data: x2 = 19.3 ∈ R,→ reject H0
p ≈ 2.4 · 10−4. If the features are independent, then in less than one of 4000
cases we observe a discrepancy, which is at least as extreme as in the data

solid (nsolid=80) soft (nsoft=150)

frequencies of colors
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Nutshell
xj,k

x1,1 · · · x1,d2 x1,·
...

. . .
...

...
xd1 ,1 · · · xd1 ,d2 xd1 ,·

x·,1 · · · x·,d2 n
ÊH0 [·]

(x1,· · x·,1)/n · · · (x1,· · x·,d2)/n
...

. . .
...

(xd1 ,· · x·,1)/n · · · (xd1 ,· · x·,d2)/n

2 features, with d1 and d2 categories,→ d1 · d2 ’cells’
observed frequencies are compared to the
expected frequencies under the null hypothesis (estimated from the
marginal frequencies)
Comparison (’over all cells’) through the χ2-statistic

x2 =
∑

j,k

(
xj,k −

xj,··x·,k
n

)2

xj,··x·,k
n

Judgment of the discrepancy according to the χ2((d1 − 1) · (d2 − 1))-dist.

0 5 10 15 20 25

Under H0: X
2 ≈ χ2(3)

R

q1−α

x2
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Remarks

It holds: X2 d−→ χ2((d1 − 1) · (d2 − 1)) under H0 as n→∞
Why (d1 − 1) · (d2 − 1) degrees of freedom?
Intuition: only (d1 − 1) · (d2 − 1) probabilities can be chosen ’freely’
The marginal probabilities already fix the other probabilities e.g.,

pj,d2 = pj,· −

d2−1∑
k=1

pj,k

pj,k

p1,1 · · · p1,d2−1 p1,d2 p1,·
...

. . .
...

...
...

pd1−1,1 · · · pd1−1,d2−1 pd1−1,d2 pd1−1,·
pd1 ,1 · · · pd1 ,d2−1 pd1 ,d2 pd1 ,·

p·,1 · · · p·,d2−1 p·,d2 1

The convergence of X2 to the χ2-distribution is again reasonable, as
according to the central limit theorem we find every summand approx
distributed like a square of a N(0, 1)-distributed random variable (and
just (d1 − 1) · (d2 − 1) summands are ’free’).



χ2-test in R
# Enter data

die_solid <- c("red","blue","blue",...)

die_soft <- c("blue","green","blue",...)

# Compute frequencies , e.g., via

x_solid <- table(die_solid)

x_soft <- table(die_soft)

# Combine frequencies , e.g., as a matrix

x <- rbind(x_solid,x_soft)

x

1 2 3 4

[1,] 25 22 19 14

[2,] 27 19 44 60

# Perform chiˆ2-test

chisq.test(x)

# Output

Pearson‘s Chi-squared test

data: x

X-squared = 19.295, df = 3, p-value = 0.0002376



Multiple-choice questions

(1) On which test could you think?
Between the majors math, physics and computer science, is there a difference in
the proportions of students that regularly drink coffee?

a. χ2-goodness of fit test with one category

b. χ2-goodness of fit test with two categories

c. χ2-test for independence

d. t-test for proportions



Multiple-choice questions

(2) For a project, Anna randomly picks 100 fellow VO Statistics students to survey
on whether each has either a PC or Apple at home (all students have a home
computer) and what score (1, 2, 3, 4, 5) each expects to receive on the exam. She
applied a χ2- test of independence. How many degrees of freedom are there?

a. 1

b. 4

c. 7

d. 9



Multiple-choice questions

(3) For a project, Anna randomly picks 150 fellow VO Statistics students to survey on
whether each has either a PC or an Apple computer at home (all students have a
computer at home) and what score (1, 2, 3, 4, 5) each expects to receive on the VO
Statistics exam. A χ2-test of independence results in a test statistic of 11. What is
the p-value of this test?

a. 0.001

b. 0.025

c. 0.15

d. 0.05



Multiple-choice questions

(4) To test the claim that dogs bite more or less depending upon the phase of the
moon, a university hospital counts admissions for dog bites and classifies with
moon phase.

New moon First quarter Full moon Last quarter
Dog bite admissions 32 27 47 38

Which of the following is the proper conclusion?

a. The data prove that dog bites occur equally during all moon phases.

b. The data give evidence that dog bites occur equally during all moon phases.

c. The data give evidence that dog bites do not occur equally during all
moon phases.

d. The data do not give sufficient evidence to conclude that dog bites are
related to moon phases.



Multiple-choice questions

(5) A geneticist claims that four species of fruit flies should appear in the ratio
1 : 3 : 3 : 9. Suppose that a sample of 2000 flies contained 110, 345, 360 and
1185 flies of each species, respectively.

Is there sufficient evidence to reject the geneticist’s claim?

a. The data prove the geneticist’s claim.

b. The data prove the geneticist’s claim is false.

c. The data do not give sufficient evidence to reject the geneticist’s claim.

d. The data give sufficient evidence to reject the geneticist’s claim.



Multiple-choice questions

(6) Anna performs a χ2-test for independence in R using chisq.test().

A sufficient input is

a. the matrix of absolute cell-frequencies

b. the matrix of relative cell-frequencies

c. the total number of observations

d. the vector of all observations



Multiple-choice questions

(7) In crosses between two types of maize four distinct types of plants were found in
the second generation. In a sample of 1301 plants there were 773 green, 231
golden, 238 green-striped and 59 golden-green-striped. According to a simple
theory of genetical inheritance the probabilities of obtaining these four plants are
9

16 , 3
16 , 3

16 , 1
16 respectively. Is the theory acceptable as a model for this experiment?

a. Yes and the test statistic is 9.272.

b. No because the p-value is 0.026.

c. Yes at 5% level of significance.

d. The model is not specified.



Multiple-choice questions

(8) In the context of the goodness of fit χ2-test for four categories let the observed
frequencies be 5, 10, 10 und 15. Let the null hypothesis be that no category is
preferred. Further let the rejection region be R = [7,∞). Then,

a. we reject the null hypothesis

b. we do not reject the null hypothesis
c. we can not say of whether we reject the null hypothesis

d. due to the data type we should have performed another test



Multiple-choice questions

(9) A dice is tossed 120 times with the following results

number turned up 1 2 3 4 5 6
frequancy 30 25 18 10 22 15

Anna tests the hypothesis that the dice is unbiased. If the rejection region is
R = [11.7,+∞), which one of the following statements is correct?

a. the χ2-statistic is 11.3 and she should reject the null.

b. the χ2-statistic is 12.9 and she should reject the null.

c. the χ2-statistic is 10.9 and she should not reject the null.

d. the χ2-statistic is 12.3 she should not reject the null.



Multiple-choice questions

(10) The null hypothesis is rejected in a χ2-test for independence with the level of
significance α when

a. the p-value is larger than α.

b. the p-value is larger than 1 − α.

c. the χ2-statistic is larger than the critical value for the given α.

d. the χ2-statistic is smaller than the critical value for the given α.



Thank you for your attention!


