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Reminder
How is the mean distributed under normal distribution?
Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables and X1 ∼ N(µ,σ2)
For the mean it holds X̄ = 1

n

∑n
i=1 Xi ∼ N(µ,σ2/n)

X̄ is also normally distributed
X̄ has expectation µX̄ = µ (equal to the expectation of Xi)
X̄ has standard deviation σX̄ = σ/

√
n (decrease of factor 1/

√
n)

Interpretation: the typical deviation of the mean from its expectation is
σ/
√

n
Standardization: X̄−µ

σ/
√

n ∼ N(0, 1)

−3 −1 1 2 3
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From the z-test to the t-test
How is the mean distributed under normal distribution?
Let X1, . . . , Xn be i.i.d. random variables and X1 ∼ N(µ,σ2)
For the mean it holds X̄ = 1

n

∑n
i=1 Xi ∼ N(µ,σ2/n)

X̄ is also normally distributed
X̄ has expectation µX̄ = µ (equal to the expectation of Xi)
X̄ has standard deviation σX̄ = σ/

√
n (decrease of factor 1/

√
n)

Interpretation: the typical deviation of the mean from its expectation is
σ/
√

n
Point of view in statistics: µ and σ are unknown population parameters
Concept in z-Test:

µ fixed via null hypothesis: H0 : µ = µ0 holds true
σ assumed as known. But unknown in practice (Problem!)
Way out: Estimate σ through the empirical standard deviation S

S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2

Plug in estimator S
X̄ − µ

S/
√

n
∼ t(n − 1)

t-distributed with n − 1 degrees of freedom. What is the t-distribution?



t-distribution
Let X1, . . . , Xn be i.d.d. random variables and X1 ∼ N(µ,σ2)

X̄ − µ

σ/
√

n
∼ N(0, 1) vs

X̄ − µ

S/
√

n
∼ t(n − 1)
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The t(n)-distribution (n ∈ {1, 2, . . .})

Definition: X ∼ t(n) :⇔ X has density f (x) = Γ((n+1)/2)√
nπ·Γ(n/2)

(
1 + x2

n

)−(n+1)/2
, x ∈ R

t(n) has a one parameter: degrees of freedom n, Γ denotes the Gamma function

t(n) symmetric around 0
t(n) has heavier tails (polynomial) than the N(0, 1)-distribution (exponential)

Intuition: estimation of σ via S increases the variability of the rescaled mean
the density of t(n) converges pointwise to the density of N(0, 1)

Intuition: the estimation of σ via S gets more precise (law of large numbers)
in R via rt(...,df=n), dt(...,df=n), etc. with df denoting ’degrees of freedom’

From what is said, it is (hopefully) plausible, but not rigorously proven, that X̄−µ
S/

√
n

∼ t(n − 1).

For details see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog, Springer Berlin



Example from last lecture

Reminder:
Runtimes of an algorithm implemented by n = 16 students that took a
certain programming class.

runtimes

time [seconds]
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Delicate assertion from a colleague of the lecturer: ” The course was held
by the lecturer a couple of times before. If all participants that have ever
taken the course had implemented this algorithm, then the mean runtime
would have been µ0 = 30



From z-test to the t-test

Assertion about a huge ’population’
the null hypothesis, that the mean runtime was µ0 = 30, was judged by
the z-test (and it was rejected)
now same procedure, but replace the z-statistic

Z =
X̄ − µ0

σ/
√

n

(σ assumed as known)
through the t-statistic

T :=
X̄ − µ0

S/
√

n

(unknown σ estimated via S→ practically applicable)

We then speak about the (one-sample) t-test

Note that T is a proper statistic in the sense that it is a bare function of the
random variables / the data. Particularly, it does not depend on unknown
parameters



The (one-sample) t-Test according to ’Student’(google: W.S. Gosset)

Set significance level: Choose (e.g.,) α = 5%
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ,σ2), µ ∈ R, σ > 0 (n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation µ and unknown variance σ2)
Null hypothesis: H0 : µ = 30
Describes the assertion: the claimed expectation is µ0 = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2

Distribution of the test statistic if H0 holds true

T =
X̄ − µ0

S/
√

n
H0
∼ t(15)

p-value: quantifies discrepancy (judge t according to the distribution of T)

p = PH0(|T| > |t|) ≈ 1.5 · 10−5

Probability to make an observation which is at least as extreme as in the data, if
H0 holds true (here: two-sided Test)
Decision: Reject the null hypothesis, because p 6 α⇔ t ∈ R
Say: the observed discrepancy was significant (p < 10−4)

Interpretation: If H0 holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with H0.

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

R R
qα 2 q1−α 2



t-test vs. z-test

’Result’, interpretation etc. are in the t-test the ’same’ as in the z-test.
Differences are only in the the test statistics and in the distributions
We take a closer look:

s = 8.7 (t-test) has underestimated σ = 11 (z-test)
Thus, t ≈ −6.2 more extreme than z ≈ −4.9 (as s and σ in the denominator)
However: p-value in t-test (≈ 1.5 · 10−5) larger than p in z-test (≈ 9 · 10−7)
No contradiction, because the tails of the t-distribution are heavier than
those of N(0, 1) (visually not observable in the graphics)
For the same reason: in the t-test slightly smaller rejection area R: for α = 5%
it holds first regarding t(15) that qα/2 = −2.13, and second regarding N(0, 1)
that qα/2 = −1.96 (while qα/2 denotes the α/2-quantiles)
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Under H0: T~t(15)

R R
qα 2 q1−α 2
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z

Under H0: Z~N(0,1)

R R
qα 2 q1−α 2

t =
x̄ − µ0

s/
√

n
≈ 16.5 − 30

8.7/4
≈ −6.2 z =

x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9



The standard error of the mean
Let X1, . . . , Xn be i.i.d. RVs and σ2 = Var(X1) ∈ (0,∞)

Mean X̄ = 1
n

∑n
i=1 Xi

Standard deviation of the mean

σX̄ =
σ√

n

In the context of statistics: σ unknown population parameter
Estimate σ via S

Definition: SEM :=
S√
n

Standard Error of the Mean
Meaning: the estimated variability of the mean
The t-statistic measures the discrepancy X̄ − µ0 in the units SEM

T =
X̄ − µ0

SEM



The standard error of the mean
Let X1, . . . , Xn be i.i.d. RVs and σ2 = Var(X1) ∈ (0,∞)

SEM =
S√
n

The t-statistic measures the discrepancy X̄ − µ0 in the units SEM

T =
X̄ − µ0

SEM
Under H0: T~t(n−1)

−6 −4 −2 0 2 4 6

t

Under H0: T~t(n−1)
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t

Intuition: If H0 : µ = µ0 holds true
|t| = 1⇔ |x̄ − µ0| = 1 · sem
it is not unlikely to observe a discrepancy of one sem
|t| = 5⇔ |x̄ − µ0| = 5 · sem
it is very unlikely to observe a discrepancy of five sem
’chance has a hard time realizing this’



From the standard error to the confidence interval
Let X1, . . . , Xn be i.i.d. RVs and X1 ∼ N(µ,σ2)

T =
X̄ − µ0

SEM
SEM =

S√
n

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

R R
qα 2 q1−α 2

In our example: t =
x̄ − µ0

sem
≈ 16.5 − 30

8.7/4
≈ −6.2

it is very unlikely to observe a discrepancy |x̄ − µ0| of 6.2 · sem under H0.



From the standard error to the confidence interval
Let X1, . . . , Xn be i.i.d. RVs and X1 ∼ N(µ,σ2) with µ ∈ R and σ2 > 0

T =
X̄ − µ0

SEM
SEM =

S√
n

−6 −4 −2 0 2 4 6

t

Under H0: T~t(15)

R R
qα 2 q1−α 2
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(∗) α = PH0(T ∈ R)
= PH0(|X̄ − µ0| > q1−α/2 · SEM)

= PH0((X̄ − q1−α/2 · SEM, X̄ + q1−α/2 · SEM) = µ0)

(q1−α/2 is the (1 − α/2)-quantile of t(n − 1))
Meaning: Under H0, the interval

I := (X̄ − q1−α/2 · SEM, X̄ + q1−α/2 · SEM)

overlaps the parameter µ0 with probability 1 − α

I is called a (1 − α)-confidence interval for µ (abbreviate: C.I.)



Confidence interval
Let X1, . . . , Xn be i.i.d. RVs and X1 ∼ N(µ,σ2),with µ ∈ R and σ2 > 0,
and let q1−α/2 be the (1 − α/2)-quantile of t(n − 1)

Under H0 : µ = µ0, the confidence interval

I :=
(
X̄ − q1−α/2 · SEM, X̄ + q1−α/2 · SEM

)
overlaps the parameter µ0 with probability 1 − α

Under H0: T~t(n−1)
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R R
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Under H0: T~t(n−1)
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t ∈ R⇔ i = µ0 (see (∗) in previous slide)
Reject H0 if and only if µ0 is not overlapped by the confidence interval i
Meaning: Equivalence of test and confidence interval (→ ’Student’s C.I.’)



Confidence interval
Let X1, . . . , Xn be i.i.d. RVs and X1 ∼ N(µ,σ2),with µ ∈ R and σ2 > 0,
and let q1−α/2 be the (1 − α/2)-quantile of t(n − 1)

Under H0 : µ = µ0, the confidence interval

I :=
(
X̄ − q1−α/2 · SEM, X̄ + q1−α/2 · SEM

)
overlaps the parameter µ0 with probability 1 − α

Under H0: T~t(n−1)

0.999
(α = 0.001)

R
q1−α 2

x C.I.

Decrease of α
↔ increase of q1−α/2
↔ increase of the width of the confidence interval
Plausible: ’If µ0 shall be overlapped with large probability, then I must be
large’



Interpretation

Delicate assertion from a colleague of the lecturer: ” The course was held by the
lecturer a couple of times before. If all participants that have ever taken the
course had implemented this algorithm, then the mean runtime would have been
µ0 = 30’

runtimes
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The 95% confidence interval (here α = 5%) does not overlap µ0

If the colleague is right, then the data describe an unlikely observation. In fact,
one of the those observations that appear only in 5% of cases, if he is right.

In that sense the data are barely compatible with the assertion

Intuitively: q1−α/2 ≈ 2.13→ the c.i. has a diameter of about 4sem→ the distance
|x̄ − µ0| is about 6sem. That is a large distance if we take in account that the typical
deviation of X̄ from µ0 is about 1SEM



Data not bell-shaped
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µ0

Here: n = 36 data
H0 : µ = µ0

but distribution of the data is asymmetric
Particularly, not approximately bell-shaped
Previous model assumption, that the data are sampled from the normal
distribution is not appropriate
Way out: asymptotic normality of the mean



Reminder
How is the mean distributed under normal distribution?
Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables and X1 ∼ N(µ,σ2)
For the mean it holds X̄ = 1

n

∑n
i=1 Xi ∼ N(µ,σ2/n)

X̄ is also normally distributed
X̄ has expectation µX̄ = µ (equal to the expectation of Xi)
X̄ has standard deviation σX̄ = σ/

√
n (decrease of factor 1/

√
n)

Interpretation: the typical deviation of the mean from its expectation is
σ/
√

n
Standardization: X̄−µ

σ/
√

n ∼ N(0, 1)

−3 −1 1 2 3

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ



Asymptotic normality of the mean
How is the mean distributed for a large sample size n?
Let X1, . . . , Xn i.i.d. random variables andVar(X1) ∈ (0,∞)
(not necessarily normally distributed!)

Then X̄ = 1
n

∑n
i=1 Xi

d≈ N(µ,σ2/n) approximately
X̄ is approximately normally distributed
X̄ has expectation µX̄ = µ
X̄ has standard deviation σX̄ = σ/

√
n

Standardization: X̄−µ
σ/
√

n
d−→ N(0, 1) for n→∞ (central limit theorem)

µxµx − 3σx µx + 3σx

−1 0 1



Asymptotic one-sample test and confidence interval
Let X1, . . . , Xn be i.i.d. RVs with µ ∈ R andVar(X1) ∈ (0,∞),
and let q1−α/2 be the (1 − α/2)-quantile of N(0, 1)

Under H0 : µ = µ0 it approximatively holds for large n

T =
X̄ − µ0

SEM
d≈ N(0, 1)

and equivalently: the confidence interval

I :=
(
X̄ − q1−α/2 · SEM, X̄ + q1−α/2 · SEM

)
overlaps the parameter µ0 with probability about 1 − α

i.e.,: test and confidence interval are constructed according to ’Student’.
Only difference: Use the quantiles of N(0, 1), instead of t(n − 1)



Approximate procedure
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Here: n = 36 data
H0 : µ = µ0

Approximate 95%-confidence interval does not overlap µ0
→ reject H0 on the 5% level



Question

Can H0 : µ = µ0 = 3 be rejected on the 5%-level?

● (n=100)

−2 0 2 4 6 8 10 12

µ0 x
x + sC.I.

Here t-test naively:
x̄ ≈ 5 (balance in equilibrium)
s ≈ 3 (bell-shaped distribution, 2/3 of the data captured)
sem ≈ 3/10 (100 data points)
q ≈ 2 (n large, 97.5%-quantile of N(0, 1) is ≈ 1.96)
Together: C.I. i ≈ (4.4, 5.6) (x̄± q · sem)
Hence: Reject H0 (C.I. does not overlap µ0)

Of course, this is not ’precise’, but the important message is that x̄ is further
than 6sem away from µ0. This is extremely far! More precise estimates would
have yielded the same massage!



t-test in R

# Enter data

x <- c(...)

# perform t-test

t.test(x,mu=3,...)

# Output

One Sample t-test

data: x

t = 8.3512, df = 99, p-value = 4.22e-13

alternative hypothesis: true mean is not equal to 3

95 percent confidence interval:

4.745578 5.833572

sample estimates:

mean of x

5.289575

Our naive estimates were plausible
Mean and C.I. fit well
x̄ is even further than 8sem apart from µ0



Multiple-choice questions

(1) In the latest issue of Consumer Reports, some data on the calorie content of beef
hot dogs is given. The sample mean of the numbers of calories in 20 different hot
dog brands was 156 and the sample standard deviation 23. Assume that the
calorie content of beef hot dogs follow a normal distribution (µ,σ2), with both µ

and σ unknown. Obtain a 90% confidence interval for the mean number of
calories µ.

a. (147.11, 164.89)
b. (146.90, 165.10)
c. (153.91, 158.09)
d. (149.17, 162.83)



Multiple-choice questions

(2) In the situation of a two-sided one-sample t-test we find x̄ = 10, s2 = 36
and n = 9. For a given significance level we find the rejection region
R = (−∞,−2.2] ∪ [2.2,∞). Then for the null hypothesis H0 : µ = 5 it holds

a. we reject H0, and we would also reject for any smaller significance level
b. we reject H0, and we would also reject for any larger significance level
c. we do not reject H0, but we would reject if only the significance level was

chosen large enough
d. we do not reject H0, but we would reject if only the significance level was

chosen small enough.



Multiple-choice questions

(3) A fast food chain advertises that their large bag of french fries has a weight of 150
grams. Some high school students, who enjoy french fries at every lunch, suspect
that they are getting less than the advertised amount. With a scale borrowed from
their physics teacher, they weigh a random sample of 15 bags. Assuming the level
of significance α = 10%, what would be the conclusion if the sample mean is
145.8 g and standard deviation is 12.81 g? (Assume that all conditions for
inference are met.) The values from the table of t-distribution should be used.

cum. prob.
t0.75 t0.90 t0.95 t0.975 t0.99 t0.995

14 0.692 1.345 1.761 2.145 2.624 2.977
df 15 0.691 1.341 1.753 2.145 2.602 2.947

16 0.691 1.337 1.746 2.145 2.583 2.921

t-Table

a. There is sufficient evidence to prove the fast food chain advertisement is true.
b. There is sufficient evidence to prove the fast food chain advertisement is

false.
c. The students have sufficient evidence to reject the fast food chain’s claim.
d. The students do not have sufficient evidence to reject the fast food chain’s

claim.



Multiple-choice questions

(4) A 90% confidence interval for a population mean based on a sample of size 500
was (35, 38). Which of the following is the best interpretation of the interval?

a. Across many samples, 90% of sample means should lie within an interval
made by this method.

b. 90% of data points should lie within this interval.
c. Across many samples, 90% of intervals created using this method would

capture the true population mean.
d. There is a 90% probability that the true value of the population mean is in

(35, 38).



Multiple-choice questions

(5) A company selling home appliances claims that the accompanying instruction
guides are written at a 6th grade reading level. An English teacher believes that
the true figure is higher and with the help of an AP Statistics student runs a
hypothesis test. The student randomly picks one page from each of 25 of the
company’s instruction guides, and the teacher subjects the pages to a standard
readability test. The reading levels of the 25 pages are given in the following
table:

Reading grade level 5 6 7 8 9 10
Number of pages 6 10 4 2 2 1

Assuming that the conditions for inference are met, is there statistical evidence to
support the English teacher’s belief?

a. No, because the p-value is greater than 0.10.
b. Yes, the p-value is between 0.05 and 0.10 indicating some evidence for the

teacher’s belief.
c. Yes, the p-value is between 0.01 and 0.05 indicating evidence for the

teacher’s belief.
d. Yes, the p-value is between 0.001 and 0.01 indicating strong evidence

for the teacher’s belief.

(10)



Thank you for your attention!


