
Networks – Introduction and Application Layer

Computer Systems

Gernot Steindl

03.06.2024

Sources

2

• Literature: „Computer Networking – A Top-Down Approach“, written by James F. Kurose and Keith W. Ross
• https://www.pearson.de/computer-networking-global-edition
• https://gaia.cs.umass.edu/kurose_ross/index.php (Includes resources for students!)
• They also provide slideshows – the basis for ours! You can investigate extended version at their website.

• Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma21140332460003336

Computer Systems

https://www.pearson.de/computer-networking-global-edition
https://gaia.cs.umass.edu/kurose_ross/index.php
https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma21140332460003336

Content

• Introduction to the Internet

• What is the Internet and a protocol?

• Network edge: hosts, access network

• Network core: packet/circuit switching, internet structure

• Protocol layers, service models

• Application Layer
• Process Communication (Sockets)

• HTTP

• DNS

3Computer Systems

4

An Introduction to the Internet

Computer Systems

Introduction: roadmap

Introduction: 1-5

• What is the Internet?

• What is a protocol?

• Network edge: hosts, access
network

• Network core: packet/circuit
switching, internet structure

• Protocol layers, service models

Computer Systems

The Internet: a “nuts and bolts” view

6

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Billions of devices are
connected to the Internet

Packet switches forward
packets (chunks of data)

Communication Links
allow transmitting data

Networks are a collection of
devices, packet switches and links
(managed by an organization)

Computer Systems

The Internet: a “nuts and bolts” view

7

• The Internet is a “network of networks”
• Interconnected ISPs

• Protocols are everywhere
• Sending and receiving messages
• For example: HTTP, video streaming, TCP, IP,

Ethernet, …

• Internet Standards
• RFC: Request for Comments
• IETF: Internet Engineering Task Force

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Skype

HTTP

4G

Streaming
video

IP

TCP

WiFi
Computer Systems

The Internet: a “services” view

8

• Infrastructure that provides services to
applications
• Web, streaming video, multimedia

teleconferencing, email, games, e-commerce,
social media, inter-connected appliances, …

• Provides programming interface to
distributed applications:
• “hooks” allowing sending/receiving apps to
“connect” to, use Internet transport service

• provides service options, analogous to postal
service

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Skype

HTTP

Streaming
video

Computer Systems

What’s a protocol?

9

Human protocols
• “What’s the time?”
• “I have a question”
• Introductions

Network protocols
• “What’s the time?”
• “I have a question”
• Introductions

Protocols define the format, order of messages sent
and received among network entities, and actions

taken on message transmission, receipt

Rules for:
• … specific messages sent
• … specific actions taken when message received
• … specific actions taken on other events

Computer Systems

What’s a protocol?

10

A human protocol and a computer network protocol:

Hi

Hi

Got the
time?

2:00

time

TCP connection
response

<file>

TCP connection
request

GET https://www.tuwien.at/

Computer Systems

Introduction : roadmap

Introduction: 1-11

• What is the Internet?

• What is a protocol?

• Network edge: hosts, access
network

• Network core: packet/circuit
switching

• Protocol layers, service models

Computer Systems

A closer look at Internet structure

Network Edge
• Hosts: clients and servers

• Servers often in data centers

12

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Computer Systems

A closer look at Internet structure

Network Edge
• Hosts: clients and servers

• Servers often in data centers

Access networks, physical media
• Wired, wireless communication links

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

13Computer Systems

A closer look at Internet structure

Network Edge
• Hosts: clients and servers

• Servers often in data centers

Access networks, physical media
• Wired, wireless communication links

Network core
• Interconnected routers

• Network of networks

14

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Computer Systems

Introduction : roadmap

Introduction: 1-15

• What is the Internet?

• What is a protocol?

• Network edge: hosts, access
network

• Network core: packet/circuit
switching

• Protocol layers, service models

Computer Systems

The network core

• mesh of interconnected routers

• packet-switching: hosts break application-
layer messages into packets

• network forwards packets from one
router to the next, across links on
path from source to destination

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Introduction: 1-16Computer Systems

Two key network-core functions

1

23

destination address in arriving
packet’s header

routing algorithm

header value output link

0100

0101

0111

1001

3

2

2

1

local forwarding tableForwarding:

• aka “switching”

• local action: move
arriving packets
from router’s input
link to appropriate
router output link

local forwarding table

Routing:

▪ global action:
determine source-
destination paths
taken by packets

▪ routing algorithms

routing algorithm

Introduction: 1-17Computer Systems

Packet-switching: store-and-forward

• packet transmission delay: takes L/R seconds to
transmit (push out) L-bit packet into link at R bps

• store and forward: entire packet must arrive at
router before it can be transmitted on next link

source
R bps

destination
123

L bits
per packet

R bps

One-hop numerical example:
▪ L = 10 Kbits
▪ R = 100 Mbps
▪ one-hop transmission delay

= 0.1 msec

Introduction: 1-18Computer Systems

Packet-switching: queueing

A

B

C
R = 100 Mb/s

R = 1.5 Mb/s
D

E

queue of packets
waiting for transmission

over output link

Queueing occurs when work arrives faster than it can be serviced:

Introduction: 1-19Computer Systems

Packet-switching: queueing

A

B

C
R = 100 Mb/s

R = 1.5 Mb/s
D

E

queue of packets
waiting for transmission

over output link

Packet queuing and loss: if arrival rate (in bps) to link exceeds
transmission rate (bps) of link for some period of time:

• packets will queue, waiting to be transmitted on output link

• packets can be dropped (lost) if memory (buffer) in router fills up

Introduction: 1-20Computer Systems

Alternative to packet switching: circuit switching

end-end resources allocated to, reserved for
“call” between source and destination

• in diagram, each link has four circuits.
• call gets 2nd circuit in top link and 1st circuit in

right link.

• dedicated resources: no sharing
• circuit-like (guaranteed) performance

• circuit segment idle if not used by call (no
sharing)

▪ commonly used in traditional telephone networks

Introduction: 1-21Computer Systems

Circuit switching: FDM and TDM

fr
eq

u
en

cy

time

fr
eq

u
en

cy

time

4 users
Frequency Division Multiplexing (FDM)
• optical, electromagnetic frequencies

divided into (narrow) frequency bands

Time Division Multiplexing (TDM)

▪ time divided into slots

▪ each call allocated its own band, can
transmit at max rate of that narrow
band

▪ each call allocated periodic slot(s), can
transmit at maximum rate of (wider)
frequency band (only) during its time
slot(s)

Introduction: 1-22Computer Systems

Packet switching versus circuit switching

example:
▪ 1 Gb/s link
▪ each user:

• 100 Mb/s when “active”

• active 10% of time

Q: how many users can use this network under circuit-switching and packet switching?

N
users 1 Gbps link

▪ circuit-switching: 10 users

▪ packet switching: with 35 users,
probability > 10 active at same time
is less than .0004

Introduction: 1-23Computer Systems

Packet switching versus circuit switching

▪ great for “bursty” data – sometimes has data to send, but at other times not

• resource sharing

• simpler, no call setup

▪ excessive congestion possible: packet delay and loss due to buffer overflow

• protocols needed for reliable data transfer, congestion control

▪ Q: How to provide circuit-like behavior with packet-switching?

• “It’s complicated.” We’ll study various techniques that try to make packet
switching as “circuit-like” as possible.

Is packet switching a “slam dunk winner”?

Introduction: 1-24Computer Systems

Introduction: roadmap

Introduction: 1-25

• What is the Internet?

• What is a protocol?

• Network edge: hosts, access
network

• Network core: packet/circuit
switching

• Protocol layers, service models

Computer Systems

Layered Internet Protocol Stack

Networks are complex with many “pieces”
• Hosts

• Routers

• Links over various media (e.g., Wi-Fi)

• Applications

• Protocols

• Hardware, software

26

Question: Is there any
hope of organizing the
structure of the network?

• And/or our discussions
on networks?

Computer Systems

Why Layering?

Approach to designing/discussing complex systems:

• Explicit structure allows identification, relationship of system’s pieces
• Layered reference model for discussions

• Modularization eases maintenance, updating of system
• Change in layer’s service implementation is transparent to the rest of the system

• For example, change in gate procedure doesn’t affect rest of the system

29Computer Systems

Layered Internet Protocol Stack

• Application: supporting network applications
• HTTP, IMAP, SMTP, DNS

• Transport: process-process data transfer
• TCP, UDP

• Network: routing of datagrams from source to destination
• IP, routing protocols

• Link: data transfer between neighboring network elements
• Ethernet, 802.11 (Wi-Fi), PPP

• Physical: bits “on the wire”

30

link

application

network

transport

physical

Application

Transport

Network

Link

Physical

Computer Systems

Introduction: 1-31

• Presentation: allow applications to interpret meaning
of data, e.g., encryption, compression, machine-
specific conventions

• Session: synchronization, checkpointing, recovery of
data exchange

• Internet stack “missing” these layers!

• These services, if needed, must be implemented
in application

Application

Presentation

Session

Transport

Network

Link

Physical

The seven-layer ISO/OSI
reference model

ISO/OSI Reference Model

Computer Systems

source

• transport-layer protocol encapsulates
application-layer message, M, with
transport layer-layer header Ht to create a
transport-layer segment
• Ht used by transport layer protocol to

implement its service

Application

Transport

Network

Link

Physical

destination

Application

Transport

Network

Link

Physical

Transport-layer protocol transfers M (e.g., reliably) from
one process to another, using services of network layer

Ht M

Application exchanges messages to implement some
application service using services of transport layer

M

Introduction: 1-32

Services, Layering, and EncapsulationServices, Layering, and Encapsulation

Computer Systems

source

Transport-layer protocol transfers M (e.g., reliably) from
one process to another, using services of network layer

Ht M

• network-layer protocol encapsulates
transport-layer segment [Ht | M] with
network layer-layer header Hn to create a
network-layer datagram
• Hn used by network layer protocol to

implement its service

Application

Transport

Network

Link

Physical

destination

M

Application

Transport

Network

Link

Physical

MHtHn

Network-layer protocol transfers transport-layer segment
[Ht | M] from one host to another, using link layer services

Introduction: 1-33

Services, Layering, and EncapsulationServices, Layering, and Encapsulation

Computer Systems

source

Ht M

• link-layer protocol encapsulates network
datagram [Hn| [Ht |M], with link-layer
header Hl to create a link-layer frame

Application

Transport

Network

Link

Physical

destination

M

Application

Transport

Network

Link

Physical

MHtHn

Link-layer protocol transfers datagram [Hn| [Ht |M] from
host to neighboring host, using network-layer services

MHtHnHl

Network-layer protocol transfers transport-layer segment
[Ht | M] from one host to another, using link layer services

Introduction: 1-34

EncapsulationServices, Layering, and Encapsulation

Computer Systems

Services, Layering, and Encapsulation

Introduction: 1-35

message segment datagram frame

Matryoshka dolls (stacking dolls)

Credit: https://dribbble.com/shots/7182188-Babushka-Boi Computer Systems

https://dribbble.com/shots/7182188-Babushka-Boi

source

Application

Transport

Network

Link

Physical

destination

Application

Transport

Network

Link

Physical

MHtHnHl

MHtHn

Ht M

MMmessage

Ht Msegment

MHtHndatagram

frame MHtHnHl

Introduction: 1-36

Services, Layering, and Encapsulation

Computer Systems

Network

Link

Physical
Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

source

HtHn M

segment Ht

datagram

destination

HtHnHl M

HtHn M

Ht M

M HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

message M

Ht M

Hn

frame

Link

Physical

Introduction: 1-37

Services, Layering, and Encapsulation

Computer Systems

38

Application Layer

Computer Systems

Some Network Apps

• Social networks

• Web

• Text messaging

• E-mail

• Online games

• Streaming stored video

• …

39Computer Systems

Creating a Network App

Write programs that:
• Run on different end systems

• Communicate over the network

• For example, web server software communicates with
your browser software

No need to write software for network-core devices
• Network-core devices do not run user applications

• Applications on end systems allows for rapid app
development, propagation

40

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Computer Systems

Client-Server Paradigm

Server
• Always-on host

• Permanent IP address

• Often in data centers, for scaling

Clients
• Contact, communicate with server

• May be intermittently connected

• May have dynamic IP addresses

• Do not communicate directly with each other

Examples: HTTP, IMAP, FTP

41

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Computer Systems

Peer-Peer Architecture (not further discussed in this lecture)

• No always-on server
• Arbitrary end systems directly

communicate
• Peers request service from other peers,

provide service in return to other peers
• Self scalability – new peers bring new service

capacity, as well as new service demands

• Peers are intermittently connected and
change IP addresses
• Complex management

Example: P2P file sharing [BitTorrent]

42

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Computer Systems

Process Communication

Process: program running within a host

• Within same host, two processes
communicate using inter-process
communication (defined by OS)

• Processes in different hosts
communicate by exchanging messages

43

Client process: process that
initiates communication

Server process: process that
waits to be contacted

clients, servers

Computer Systems

Sockets

• Process sends/receives messages to/from its socket

• Socket analogous to door

• Sending process shoves message out of the door

• Sending process relies on transport infrastructure on other side of door to deliver
message to socket at receiving process

• Two sockets involved: one on each side

44

Internet

controlled

by OS

controlled by
app developer

Transport

Application

Physical

Link

Network

process

Transport

Application

Physical

Link

Network

process
socket

Computer Systems

Addressing Processes

• To receive messages, process must have
identifier

• Host device has unique 32-bit IP address

• Q: Does IP address of host on which
process runs suffice for identifying the
process?

• A: No, many processes can be running on
same host

45

• Identifier includes both IP address and
port numbers associated with process
on host.

• Example port numbers:
• HTTP server: 80

• Mail server: 25

• To send HTTP message to
www.tuwien.at web server:
• IP address: 128.130.35.76

• port number: 80

• More shortly…

Computer Systems

An Application-Layer Protocol Defines

Types of messages exchanged
• e.g., request, response

Message syntax
• what fields in messages & how fields are

delineated

Message semantics
• meaning of information in fields

Rules for when and how processes send &
respond to messages

Open protocols

• defined in RFCs, everyone has access to
protocol definition

• allows for interoperability

• e.g., HTTP, SMTP

Proprietary protocols

• e.g., Skype, Zoom

46Computer Systems

What Transport Service does an App Need?

Data integrity
• Some apps (e.g., file transfer, web transactions)

require 100% reliable data transfer
• Other apps (e.g., audio) can tolerate some loss

Timing
• Some apps (e.g., Internet telephony, interactive

games) require low delay to be “effective”

Throughput
• Some apps (e.g., multimedia) require minimum

amount of throughput to be “effective”

• Other apps (“elastic apps”) make use of whatever
throughput they get

Security
• Confidentially, integrity, availability, ...

47Computer Systems

Transport Service Requirements: Common Apps

48

Application Data Loss Throughput Time Sensitive

File transfer / download No loss Elastic No

E-mail No loss Elastic No

Web documents No loss Elastic No

Real-time audio / video Loss-tolerant
Audio: 5 Kbps – 1 Mbps

Video: 10 Kbps – 5 Mbps
Yes, 10’s msec

Streaming audio / video Loss-tolerant Same as above Yes, few secs

Interactive games Loss-tolerant Kbps+ Yes, 10’s msec

Text messaging No loss Elastic Yes and no

Computer Systems

Internet Transport Protocols Services

TCP service

• Reliable transport between sending and
receiving process

• Flow control: sender won’t overwhelm receiver

• Congestion control: throttle sender when
network overloaded

• Connection-oriented: setup required between
client and server processes

• Does not provide timing, minimum throughput
guarantee, security

UDP service

• Unreliable data transfer between sending and
receiving process

• Does not provide reliability, flow control,
congestion control, timing, throughput guarantee,
security, or connection setup.

49Computer Systems

Internet Applications, and Transport Protocols

50

Application Application Layer Protocol Transport Protocol

File transfer / download FTP [RFC 959] TCP

E-mail SMTP [RFC 5321] TCP

Web documents HTTP [RFC 7230, 9110] TCP

Internet telephony
SIP [RFC 3261], RTP [RFC 3550],

 or proprietary
TCP or UDP

Streaming audio / video HTTP [RFC 7230], DASH TCP

Interactive games WOW, FPS (proprietary) UDP or TCP

Computer Systems

51

The Web and HTTP

Computer Systems

The Web

• One of the most prominent Internet applications

• A Web pages consists of objects, each of which can be stored on different Web servers

• An object can be an HTML file, JPEG image, Java applet, audio file, …

• A Web page consists of a base HTML-file which includes several referenced objects, each
addressable by a URL, e.g.,

52

https://informatics.tuwien.ac.at/orgs/e191-03

host name path name

Computer Systems

HTTP Overview

Hyper Text Transfer Protocol

• The Web‘s application-layer protocol

• Client/server model
• Client: browser that requests, receives (using

HTTP) and displays Web objects

• Server: Web server sends (using HTTP) objects
in response to requests

53

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Computer Systems

HTTP Overview

HTTP uses TCP
• Client initiates TCP connection (creates

socket) to server, port 80

• Server accepts TCP connection from client

• HTTP messages (application-layer protocol
messages) exchanged between browser (HTTP
client) and Web server (HTTP server)

• TCP connection closed

HTTP is “stateless”
• server maintains no information about past

client requests

54

Protocols that maintain “state” are complex!
• History (state) must be maintained

• If server/client crashes, their views of “state” may be inconsistent, must be reconciled

Computer Systems

HTTP Example

55

User enters URL: https://informatics.tuwien.ac.at/orgs/e191-03

Computer Systems

HTTP Example

56

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

• Use your browser to examine, for example, requests for linked images

• We will explore some of these aspects shortly

• Note that the actual server redirects you to the https:// URL for security reasons, we
will ignore this for now and assume that the http:// URL directly hosts the Web page

Response Status Codes HTTP Method Requested Object

Computer Systems

HTTP Example

57

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

• You can also view the details for requests …

Computer Systems

HTTP Example

58

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

• … and the corresponding responses

• If this piques your interest: 188.951 Web Engineering

Computer Systems

HTTP Example

59

1a. HTTP client initiates TCP connection
to HTTP server (process) at
informatics.tuwien.ac.at
on port 80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Message
indicates that client wants
object orgs/e191-03

1b. HTTP server at host
informatics.tuwien.ac.at waiting
for TCP connection at port 80 “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message into
its socket

time

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

Computer Systems

HTTP Example

60

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds referenced objects (e.g.,
images)

4. HTTP server closes TCP connection

time

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

6. Repeat steps 1-5 for referenced
objects

Computer Systems

HTTP Example – Some Additional Notes (not relevant for the exam)

61

User enters URL: http://informatics.tuwien.ac.at/orgs/e191-03

• The HTTP URL often redirects you to an HTTPS (HTTP Secure) URL on modern Web pages

Computer Systems

Non-persistent HTTP – Response Time

RTT (definition): time for a small packet to
travel from client to server and back

HTTP response time (per object):
• one RTT to initiate TCP connection

• one RTT for HTTP request and first few bytes of
HTTP response to return

• object/file transmission time

62

Non−persistent HTTP response time = 2 ∗ RTT + file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Computer Systems

Non-persistent HTTP – Response Time

• Browsers may use multiple TCP connections to issue parallel requests

• Example loading a web page:
• Maximum number of parallel connections: 2

• 𝑅𝑇𝑇 is 100 𝑚𝑠

• Web page references 3 images

• File transmission time and Web page parsing time can be ignored

• Issued requests:
• Loading initial page (200 𝑚𝑠)

• Loading the first two images (200 𝑚𝑠)

• Loading the third image (200 𝑚𝑠)

• 600 𝑚𝑠 are required to load the entire web page

• Again, Persistent HTTP and later HTTP versions can improve this performance

63Computer Systems

HTTP Request Message

• Two types of HTTP messages: requests and responses

• HTTP request message:
• ASCII (human-readable format)

• Each line is terminated with \r\n (carriage return, line feed)

• An empty line with only \r\n marks the end of HTTP headers

• Simple example from a request to the informatics Web page:

64

GET /orgs/e191-03 HTTP/1.1
Host: informatics.tuwien.ac.at
User-Agent: Mozilla/5.0 Firefox/121.0
Accept: text/html
Accept-Language: de-AT

Computer Systems

HTTP Request Message – General Format

65

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Computer Systems

Other HTTP Request Methods

POST Method
• Web page often includes inputs

• user input sent from client to server in entity
body of HTTP POST request message

GET Method (for sending data to server)
• include user data in URL field of HTTP GET

request message (following a ‘?’):
https://tuwel.tuwien.ac.at/search/i

ndex.php?q=computersysteme

HEAD Method
• requests headers (only) that would be

returned if specified URL were requested
with an HTTP GET method

PUT Method
• uploads new file (object) to server

• completely replaces file that exists at
specified URL with content in entity body of
the HTTP request message

66

See https://www.rfc-editor.org/rfc/rfc9110.html for a full list of HTTP methods.

Computer Systems

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Response Message

• Similar structure to request message

• Instead of path the response specifies a status code

• Simplified example of a response from the informatics Web server:

67

HTTP/1.1 200 OK
Server: nginx
Date: Mon, 22 Jan 2024 16:55:43 GMT
Content-Type: text/html; charset=utf-8

<!DOCTYPE html>
...

Computer Systems

HTTP Response Status Codes

• Status code appears in 1st line in server-to-client response message

• Some examples:
• 200 OK

• Request succeeded, requested object later in this message

• 301 Moved Permanently

• Requested object moved, new location specified later in this message (in Location: field)

• 400 Bad Request

• Request msg not understood by server

• 404 Not Found

• Requested document not found on this server

• 505 HTTP Version Not Supported

• Fun status codes in the Hyper Text Coffee Pot Control Protocol (HTCPCP, not relevant for tests)

• 418 I'm a teapot

• https://www.rfc-editor.org/rfc/rfc2324 ☺

68Computer Systems

https://www.rfc-editor.org/rfc/rfc2324

HTTP Versions

• 1991 – HTTP/0.9: only GET and HTML

• 1996 – HTTP/1.0: Non-persistent

• 1999 – HTTP/1.1: persistent
(keep alive)

• 2015 – HTTP/2: multiplexing avoid head-of-line blocking
(supported by most browsers)

• 2021 – HTTP/3: Using UDP; adds security and pipelining -error and congestion control
per object
(implementing reliable transfer within the application layer)

69Computer Systems

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 Transport Layer: 3-70Computer Systems

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Transport Layer: 3-71Computer Systems

72

Domain Name System

Computer Systems

Domain Name System (DNS)

People have many identifiers
• SSN, name, passport number, …

Internet hosts and routers
• IP address (32 bit) – used for addressing

datagrams

• “name”, e.g., “informatics.tuwien.ac.at” used
by humans

How do we map between the names and
the IP addresses?

Domain Name System (DNS)
• Distributed database implemented in

hierarchy of many name servers

• Application-layer protocol: hosts, DNS servers
communicate to resolve names
(address/name translation)

• Note: core Internet function,
implemented as application-layer
protocol

• Complexity at network’s “edge”

73Computer Systems

DNS: Services and Structure

DNS services
• Hostname-to-IP-address translation

• Host aliasing

• Canonical, alias names

• Mail server aliasing

• Load distribution

• Replicated Web servers: many IP addresses
correspond to one name

Why not centralize DNS?
• Single point of failure

• Traffic volume

• Distant centralized database

Because it doesn’t scale!
• Comcast DNS server: 600 billion DNS queries

per day

• Akamai DNS server: 2.2 trillion DNS queries
per day

74Computer Systems

Thinking About the DNS

Humongous distributed database
• ~ billions of records, each simple

Handles many trillions of queries per day
• Many more reads than writes

• Performance matters: almost every Internet
transaction interacts with DNS - msecs count!

Organizationally, physically decentralized
• Millions of different organizations responsible for

their records

Must be “bulletproof”: reliability and security

75Computer Systems

DNS: A Distributed, Hierarchical Database

Client wants IP address for www.tuwien.at; 1st approximation:
• client queries root server to find .at DNS server

• client queries .at DNS server to get tuwien.at DNS server

• client queries tuwien.at DNS server to get IP address for www.tuwien.at

76

.com DNS servers .org DNS servers .at DNS servers

… …

Top-Level Domain

Root DNS Servers Root

orf.at

DNS servers

tuwien.at

DNS servers

yahoo.com

DNS servers

amazon.com

DNS servers

ietf.org

DNS servers Authoritative

…… … …

Computer Systems

DNS Root Name Servers

• Official, contact-of-last-resort by name servers
that can not resolve name

• Incredibly important Internet function
• Internet couldn’t function without it!

• ICANN (Internet Corporation for Assigned Names
and Numbers) manages root DNS domain

77

.com DNS servers .org DNS servers .at DNS servers

… …

Root DNS Servers

orf.at

DNS servers

tuwien.at

DNS servers

yahoo.com

DNS servers

amazon.com

DNS servers

ietf.org

DNS servers

…… … …

Computer Systems

Top-Level Domain and Authoritative Servers

78

.com DNS servers .org DNS servers .at DNS servers

… …

Root DNS Servers

orf.at

DNS servers

tuwien.at

DNS servers

yahoo.com

DNS servers

amazon.com

DNS servers

ietf.org

DNS servers

…… … …

Top-Level Domain (TLD) Servers
• Responsible for .at, .com, .net, .org, …
• nic.at GmbH manages the .at domain

Authoritative Servers
• organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
• can be maintained by organization or service provider

Computer Systems

Local DNS Name Servers

• When host makes DNS query, it is sent to its local DNS server
• Local DNS server returns reply, answering:

• From its local cache of recent name-to-address translation pairs (possibly out of date!)

• Forwarding request into DNS hierarchy for resolution

• Each ISP has local DNS name server; to find yours:

• MacOS: % scutil --dns

• Windows: >ipconfig /all

• Linux: e.g., nmcli device show <interfacename> | grep IP4.DNS

• Local DNS server doesn’t strictly belong to hierarchy

79Computer Systems

DNS Name Resolution: Iterated Query

• Example: host wants IP address of
informatics.tuwien.ac.at

Iterated query
• contacted server replies with name of

server to contact

• “I don’t know this name, but ask this
server”

There is also a recursive query
approach that we will not discuss
further

80

requesting host

informatics.tuwien.ac.at

root DNS server

local DNS server

1

2 3
4

5
6

DNS server for
tuwien.ac.at

7
10

DNS server for .at

DNS server for .ac.at

9

8

Computer Systems

Caching DNS Information

• Once (any) name server learns mapping, it caches mapping, and immediately returns a
cached mapping in response to a query
• Caching improves response time

• Cache entries timeout (disappear) after some time (TTL)

• TLD servers typically cached in local name servers

• Cached entries may be out-of-date
• If named host changes IP address, may not be known Internet-wide until all TTLs expire!

• Best-effort name-to-address translation!

81Computer Systems

DNS Records

type=A
• name is hostname

• value is IP address

type=NS
• name is domain (e.g., tuwien.ac.at)

• value is IP address is hostname of
authoritative name server for this domain
(e.g., tunamed.tuwien.ac.at.)

82

DNS: Distributed database storing resource records (RR)
RR format: (name, value, type, ttl)

type=CNAME
• name is alias name for some “canonical”

(the real) name

• value is the canonical name

• For example, www.tuwien.at is an
alias for www.tuwien.ac.at

type=MX
• value is name of SMTP mail server

associated with name

Computer Systems

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol messages

DNS query and reply messages, both have same format:

message header:
▪ identification: 16 bit # for query,

reply to query uses same #
▪ flags:
• query or reply
• recursion desired
• recursion available
• reply is authoritative

Application Layer: 2-83Computer Systems

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS query and reply messages, both have same format:

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Application Layer: 2-84Computer Systems

Getting your info into the DNS

example: new startup “Network Utopia”

▪ register name networkuptopia.at DNS registrar (e.g., nic.at GmbH)
• provide names, IP addresses of authoritative name server (primary and

secondary)

• registrar inserts NS, A RRs into .com TLD server:
 (networkutopia.at, dns1.networkutopia.at, NS)

 (dns1.networkutopia.at, 212.212.212.1, A)

▪ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com

• type MX record for networkutopia.com

Application Layer: 2-85Computer Systems

Content

• Introduction to the Internet

• What is the Internet and a protocol?

• Network edge: hosts, access network

• Network core: packet/circuit switching, internet structure

• Protocol layers, service models

• Application Layer
• Process Communication (Sockets)

• HTTP

• DNS

86Computer Systems

Networks – Transport Layer

Computer Systems

Gernot Steindl

03.06.2024

Sources

Computer Systems 2

• Literature: „Computer Networking – A Top-Down Approach“, written by James F. Kurose and Keith W. Ross
• https://www.pearson.de/computer-networking-global-edition
• https://gaia.cs.umass.edu/kurose_ross/index.php (Includes resources for students!)
• They also provide slideshows – the basis for ours! You can investigate extended version at their website.

• Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma21140332460003336

https://www.pearson.de/computer-networking-global-edition
https://gaia.cs.umass.edu/kurose_ross/index.php
https://catalogplus.tuwien.at/permalink/f/8j3js/UTW_alma21140332460003336

Introduction

• In this lecture we want to …
• understand principles behind transport layer services

• Multiplexing, demultiplexing

• Reliable Data Transfer

• Flow control

• Congestion Control

• learn about the Internet transport layer protocols
• UDP: connectionless transport

• TCP: connection-oriented reliable transport

• TCP congestion control

Computer Systems 3

Transport layer: roadmap

Transport
Layer: 3-4

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Transport layer: roadmap

Transport
Layer: 3-5

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Transport Services and Protocols

• Provide logical communication between
application processes running on different
hosts

• transport protocols actions in end
systems:
• sender: breaks application messages into

segments, passes to network layer

• receiver: reassembles segments into
messages, passes to application layer

• Two transport protocols are available to
Internet applications
• UDP and TCP

Computer Systems 6

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data Link

physical

application

transport

network

data Link

physical

Transport vs. Network Layer Services and Protocols

Analogy in a household:

12 kids in Ann’s house are sending letters to
12 kids in Bill’s house:

• Hosts = houses

• Processes = kids

• App messages = letters in envelopes

• Transport protocol = Ann and Bill who
demultiplex to in-house siblings

• Network-layer protocol = postal service

Computer Systems 7

Transport vs. Network Layer Services and Protocols

Analogy in a household:

12 kids in Ann’s house are sending letters to
12 kids in Bill’s house:

• Hosts = houses

• Processes = kids

• App messages = letters in envelopes

• Transport protocol = Ann and Bill who
demultiplex to in-house siblings

• Network-layer protocol = postal service

Computer Systems 8

• Transport Layer:
• Communication between processes

• Can provide some additional services to the
application layer

• Relies on network layer services

• Network Layer:
• Communication between hosts

Transport Layer Actions

Computer Systems 9

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Sender:
app. msg• Is passed an application-

layer message
• Determines segment

header fields values
• Creates segment

• Passes segment to IP

transport
ThTh app. msg

Transport Layer Actions

Computer Systems 10

physical

link

network (IP)

application

physical

link

network (IP)

application

transporttransport

Receiver:

app. msg • Extracts application-layer
message

• Checks header values

• Receives segment from IP

Th app. msg

• Demultiplexes message
up to application via
socket

Two Principal Internet Transport Protocols

• TCP: Transmission Control Protocol
• Reliable, in-order delivery

• Congestion control

• Flow control

• Connection setup

• UDP: User Datagram Protocol
• Unreliable, unordered delivery

• No-frills extension of “best-effort” IP

Computer Systems 11

Services not available in both protocols:
• Delay guarantees

• Bandwidth guarantees

Transport layer: roadmap

Transport
Layer: 3-12

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Transport vs. network layer services and protocols

▪network layer:
communication between
hosts

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-13

▪transport layer:
communication between
processes

• relies on, enhances, network
layer services

Computer Systems

Multiplexing and Demultiplexing

Computer Systems 14

process

socket

use header info to deliver
received segments to correct
socket

Demultiplexing as receiver

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Multiplexing as sender

Multiplexing and Demultiplexing

Computer Systems 15

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

Client

HTTP msg

HTTP msgHt

HTTP msgHtHn

HTTP msgHtHn

HTTP msgHtHn

Multiplexing and Demultiplexing

Computer Systems 16

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

Client

HTTP msgHt

HTTP msg

HTTP msg

HTTP server How did the transport layer know to deliver
the message to the Firefox browser process
rather than, e.g., the Skype process?

Demultiplexing

transport

application

Multiplexing

transport

application

Multiplexing and Demultiplexing

Computer Systems 17

How Demultiplexing Works

• Host receives IP datagrams
• Each datagram has source IP address,

destination IP address

• Each datagram carries one transport-layer
segment

• Each segment has source, destination port
number

• Host uses IP addresses & port numbers
to direct segment to appropriate socket
• Which information is used depends on the

protocol

Computer Systems 18

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Connectionless Demultiplexing

• When creating socket, must specify host-
local port number:
• DatagramSocket s =

 new DatagramSocket(12534);

• When a sender creates a datagram to
send into its UDP socket, it must specify:
• Destination IP address

• Destination port #

• When receiving host receives UDP
segment:
• Checks destination port number in segment

• Directs UDP segment to socket with that port
number

• IP/UDP datagrams with the same
destination port number, but different
source IP addresses and/or source port
numbers will be directed to same socket
at receiving host

Computer Systems 19

Connectionless Demultiplexing: An Example

Computer Systems 20

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

mySocket =

socket(AF_INET,SOCK_STREAM)

mySocket.bind(myaddr,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

A

B

C

D

mySocket =

socket(AF_INET,SOCK_STREAM)

mySocket.bind(myaddr,5775);

mySocket =

socket(AF_INET,SOCK_DGRAM)

mySocket.bind(myaddr,6428);

Connection-Oriented Demultiplexing

• TCP socket identified by 4-tuple:
• Source IP address

• Source port number

• Destination IP address

• Destination port number

• Demultiplexer: receiver uses all four values to direct segment to appropriate socket

• Server may support many simultaneous TCP sockets:
• Each socket identified by its own 4-tuple

• Each socket associated with a different connecting client

Computer Systems 21

Connection-Oriented Demultiplexing: An Example

Three segments, all destined to IP address: B, dest port: 80 are demultiplexed to different sockets

Computer Systems 22

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Summary

• Multiplexing, demultiplexing: based on segment, datagram header field values

• UDP: Demultiplexing using destination port number (only)

• TCP: Demultiplexing using 4-tuple: source and destination IP addresses, and port
numbers

• Multiplexing/demultiplexing happen at all layers

Computer Systems 23

Transport Layer: Roadmap

Transport
Layer: 3-24

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

UDP: User Datagram Protocol

• “Bare bone” Internet transport protocol

• “Best effort” service, segments may be:
• Lost

• Delivered out-of-order to the app

• Connectionless
• No handshaking between UDP sender,

receiver

• Each UDP segment handled independently of
others

Why is there a UPD?
• No connection establishment (which can add

RTT delay)

• Simple: no connection state at sender,
receiver

• Small header size

• No congestion control
• UDP can blast away as fast as desired!

• Can function in the face of congestion

Computer Systems 25

UDP: User Datagram Protocol

• UDP use:
• Streaming multimedia apps (loss tolerant, rate sensitive)

• DNS

• SNMP

• HTTP/3

• If reliable transfer needed over UDP (e.g., HTTP/3):
• Add needed reliability at application layer

• Add congestion control at application layer

Computer Systems 26

https://datatracker.ietf.org/doc/html/rfc768

https://datatracker.ietf.org/doc/html/rfc768

UDP: Transport Layer Actions

Computer Systems 27

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

Computer Systems 28

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP sender actions:
SNMP msg• Is passed an application-

layer message
• Determines UDP segment

header fields values
• Creates UDP segment

• Passes segment to IP

UDPhUDPh SNMP msg

UDP: Transport Layer Actions

Computer Systems 29

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP receiver actions:

SNMP msg
• Extracts application-layer

message

• Checks UDP checksum
header value

• Receives segment from IP

UDPh SNMP msg
• Demultiplexes message

up to application via
socket

UDP Segment Header

Computer Systems 30

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

UDP Checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

Computer Systems 31

Transmitted: 5 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Received: 4 6 11

UDP Checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

Sender
• Treat content of segment (including UDP header fields and IP addresses) as sequence of 16-bit integers

• Checksum: addition (one’s complement sum) of segment content

• Checksum value put into UDP checksum field

Receiver
• Compute checksum of received segment

• Check if computed checksum equals checksum field value:
• Not equal - error detected

• Equal - no error detected. But maybe errors occurred? More later ….

Computer Systems 32

Internet Checksum: An Example

Computer Systems 33

Example: Add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Internet Checksum: Weak Protection!

Computer Systems 34

Example: Add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Summary: UDP

• “No frills” protocol:
• Segments may be lost

• Segments may be delivered out of order

• Best effort service: “send and hope for the best”

• UDP has its plusses:
• No setup/handshaking needed (no RTT incurred)

• Can function when network service is compromised

• Helps with reliability (checksum)

• Build additional functionality on top of UDP in application layer (e.g., HTTP/3)

Computer Systems 35

Transport Layer: Roadmap

Transport
Layer: 3-36

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Principles of reliable data transfer

Transport
Layer: 3-37

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Computer Systems

Principles of reliable data transfer

Transport
Layer: 3-38

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Computer Systems

Principles of reliable data transfer

Transport
Layer: 3-39

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Computer Systems

Principles of reliable data transfer

Transport
Layer: 3-40

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
▪ unless communicated via a

message

Computer Systems

Reliable data transfer protocol (rdt): interfaces

Transport
Layer: 3-41

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Computer Systems

Reliable data transfer: getting started

Transport
Layer: 3-42

We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver

Computer Systems

rdt1.0: reliable transfer over a reliable channel

Transport
Layer: 3-43

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for

call from

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for

call from

above

Computer Systems

rdt2.0: channel with bit errors

Transport
Layer: 3-44

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Computer Systems

rdt2.0: channel with bit errors

Transport
Layer: 3-45

▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

Computer Systems

rdt2.0: FSM specifications

Transport
Layer: 3-46

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Computer Systems

rdt2.0: FSM specification

Transport
Layer: 3-47

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

Computer Systems

rdt2.0: operation with no errors

Transport
Layer: 3-48

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

Computer Systems

rdt2.0: corrupted packet scenario

Transport
Layer: 3-49

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Computer Systems

rdt2.0 has a fatal flaw!

Transport
Layer: 3-50

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate

handling duplicates:
▪ sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

Computer Systems

rdt2.1: sender, handling garbled ACK/NAKs

Transport
Layer: 3-51

Wait for

call 0 from

above

Wait for

ACK or

NAK 0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt)

&& (corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt)

&& (corrupt(rcvpkt) ||

isNAK(rcvpkt))

Wait for

 call 1 from

above

Wait for

ACK or

NAK 1

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)



rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)



Computer Systems

rdt2.1: receiver, handling garbled ACK/NAKs

Transport
Layer: 3-52

Wait for

0 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

Computer Systems

rdt2.1: discussion

Transport
Layer: 3-53

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.
Why?

▪must check if received ACK/NAK
corrupted

▪ twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:

▪must check if received packet
is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

▪ note: receiver can not know if
its last ACK/NAK received OK
at sender

Computer Systems

rdt2.2: a NAK-free protocol

Transport
Layer: 3-54

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Computer Systems

rdt2.2: sender, receiver fragments

Transport
Layer: 3-55

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment



Computer Systems

rdt3.0: channels with errors and loss

Transport
Layer: 3-56

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Computer Systems

rdt3.0: channels with errors and loss

Transport
Layer: 3-57

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

Computer Systems

rdt3.0 sender

Transport
Layer: 3-58

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

Wait for

call 0 from

above

Wait

for

ACK1

Computer Systems

rdt3.0 sender

Transport
Layer: 3-59

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for

call 0 from

above

Wait

for

ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)



udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))



Computer Systems

rdt3.0 in action

Transport
Layer: 3-60

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Computer Systems

rdt3.0 in action

Transport
Layer: 3-61

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Computer Systems

Performance of rdt3.0 (stop-and-wait)

Transport
Layer: 3-62

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

Computer Systems

rdt3.0: stop-and-wait operation

Transport
Layer: 3-63

first packet bit transmitted, t = 0

sender receiver

RTT

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Computer Systems

rdt3.0: stop-and-wait operation

Transport
Layer: 3-64

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

Computer Systems

rdt3.0: pipelined protocols operation

Transport
Layer: 3-65

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

Computer Systems

Pipelining: increased utilization

Transport
Layer: 3-66

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Computer Systems

Go-Back-N: sender

Transport
Layer: 3-67

▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
Computer Systems

Go-Back-N: receiver

Transport
Layer: 3-68

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Computer Systems

Go-Back-N in action

Transport
Layer: 3-69

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Computer Systems

Selective repeat: the approach

Transport
Layer: 3-70

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Computer Systems

Selective repeat: sender, receiver windows

Transport
Layer: 3-71

Computer Systems

Selective repeat: sender and receiver

Transport
Layer: 3-72

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Computer Systems

Selective Repeat in action

Transport
Layer: 3-73

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3

record ack3 arrived

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Computer Systems

Transport Layer: Roadmap

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

• Principles of congestion control

• TCP congestion control

Transport Layer: 3-76Computer Systems

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-77Computer Systems

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-78Computer Systems

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up
to implementor

Transport Layer: 3-79Computer Systems

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-80Computer Systems

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-81Computer Systems

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
Transport Layer: 3-82Computer Systems

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-83Computer Systems

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-84Computer Systems

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-86Computer Systems

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-87Computer Systems

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-88Computer Systems

Transport Layer: Roadmap

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

• Principles of congestion control

• TCP congestion control

Transport Layer: 3-89Computer Systems

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-90Computer Systems

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-91Computer Systems

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-92Computer Systems

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-93Computer Systems

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-94Computer Systems

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format
Transport Layer: 3-95Computer Systems

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer: 3-96Computer Systems

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-97Computer Systems

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

ACK(x+1)

No problem!

Transport Layer: 3-98Computer Systems

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

Transport Layer: 3-99Computer Systems

2-way handshake scenarios

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

Computer Systems 100

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-101Computer Systems

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport Layer: 3-102Computer Systems

Transport Layer: Roadmap

Transport
Layer: 3-103

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

Transport
Layer: 3-104

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

Computer Systems

Causes/costs of congestion: scenario 1

Transport
Layer: 3-105

Simplest scenario:

maximum per-connection
throughput: R/2

Host A

Host B

throughput: out

large delays as arrival rate
in approaches capacity

Q: What happens as
arrival rate in
approaches R/2?

original data: in

R
▪ two flows

▪ one router, infinite buffers

▪ input, output link capacity: R infinite shared

output link buffers

R
▪ no retransmissions needed

R/2

d
e

la
y

in

R/2

R/2


o

u
t

in

th
ro

u
gh

p
u

t:

Computer Systems

Causes/costs of congestion: scenario 2

Transport
Layer: 3-106

▪ one router, finite buffers

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

▪ sender retransmits lost, timed-out packet
• application-layer input = application-layer output: in = out

• transport-layer input includes retransmissions : ’in in

out

RR

Computer Systems

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

Causes/costs of congestion: scenario 2

Transport
Layer: 3-107

copy

free buffer space!

Idealization: perfect knowledge
▪ sender sends only when router buffers available

out

RR

R/2
in

R/2


o

u
t

th
ro

u
gh

p
u

t:

Computer Systems

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

RR

Causes/costs of congestion: scenario 2

Transport
Layer: 3-108

copy

no buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due to
full buffers

▪ sender knows when packet has been dropped:
only resends if packet known to be lost

Computer Systems

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

RR

Causes/costs of congestion: scenario 2

Transport
Layer: 3-109

free buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due to
full buffers

▪ sender knows when packet has been dropped:
only resends if packet known to be lost

when sending at
R/2, some packets
are needed
retransmissions

in

R/2


o

u
t

th
ro

u
gh

p
u

t:

R/2

“wasted” capacity due
to retransmissions

Computer Systems

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

RR

Causes/costs of congestion: scenario 2

Transport
Layer: 3-110

copytimeout

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due to

full buffers – requiring retransmissions

▪ but sender times can time out prematurely,
sending two copies, both of which are delivered

free buffer space!

when sending at

R/2, some packets

are retransmissions,

including needed

and un-needed

duplicates, that are

delivered!

“wasted” capacity due
to un-needed
retransmissions

in

R/2


o

u
t

th
ro

u
gh

p
u

t:

R/2

Computer Systems

Causes/costs of congestion: scenario 2

Transport
Layer: 3-111

“costs” of congestion:
▪ more work (retransmission) for given receiver throughput

▪ unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due to

full buffers – requiring retransmissions

▪ but sender times can time out prematurely,
sending two copies, both of which are delivered when sending at

R/2, some packets

are retransmissions,

including needed

and un-needed

duplicates, that are

delivered!

“wasted” capacity due
to un-needed
retransmissions

in

R/2


o

u
t

th
ro

u
gh

p
u

t:

R/2

Computer Systems

Causes/costs of congestion: scenario 3

Transport
Layer: 3-112

▪ four senders

▪ multi-hop paths

▪ timeout/retransmit

Q: what happens as in and in
’ increase ?

A: as red in
’ increases, all arriving blue pkts at upper

queue are dropped, blue throughput  0

finite shared
output link buffers

Host A

out

Host B

Host C

Host D

in : original data

'in: original data, plus
retransmitted data

Computer Systems

Causes/costs of congestion: scenario 3

Transport
Layer: 3-113

another “cost” of congestion:
▪ when packet dropped, any upstream transmission capacity and

buffering used for that packet was wasted!

R/2

R/2


o

u
t

in
’

Computer Systems

Causes/costs of congestion: insights

Transport
Layer: 3-114

▪ upstream transmission capacity / buffering
wasted for packets lost downstream

R/2

R/2

l
o

u
t

lin
’

▪ delay increases as capacity approached

R/2

d
e

la
y

lin

▪ un-needed duplicates further decreases
effective throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ loss/retransmission decreases effective
throughput

lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

R/2

▪ throughput can never exceed capacity

R/2
lin

R/2

l
o

u
t

th
ro

u
gh

p
u

t:

Computer Systems

Approaches towards congestion control

Transport
Layer: 3-115

End-end congestion control:

• no explicit feedback from
network

• congestion inferred from
observed loss, delay

datadata
ACKs

ACKs

▪ approach taken by TCP

Computer Systems

Approaches towards congestion control

Transport
Layer: 3-116

• TCP ECN, ATM, DECbit protocols

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion
control:

▪ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Computer Systems

Transport Layer: Roadmap

Transport
Layer: 3-117

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport: TCP

• Principles of congestion control

• TCP congestion control

• Evolution of transport-layer
functionality

Computer Systems

TCP congestion control: AIMD

Transport
Layer: 3-118

▪ approach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

Computer Systems

TCP AIMD: more

Transport
Layer: 3-119

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

▪ AIMD – a distributed, asynchronous algorithm – has been
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

Computer Systems

TCP congestion control: details

Transport
Layer: 3-120

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:

▪ roughly: send cwnd bytes,
wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

Computer Systems

TCP slow start

Transport
Layer: 3-121

▪ when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is
slow, but ramps up
exponentially fast

Computer Systems

TCP: from slow start to congestion avoidance

Transport
Layer: 3-122

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh is set to
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Computer Systems

TCP CUBIC

Transport
Layer: 3-123

▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

▪ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much
• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then

approach Wmax more slowly

Computer Systems

Summary: TCP congestion control

Transport
Layer: 3-124

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment



cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK

.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK



cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Computer Systems

Summary

Transport
Layer: 3-125

• Transport-layer services

• Multiplexing and demultiplexing

• Connectionless transport: UDP

• Principles of reliable data transfer

• Connection-oriented transport:
TCP

• Principles of congestion control

• TCP congestion control

Computer Systems

Computer Systems
Networking: Network Layer

Amirali AMIRI
10.06.2024

Network Layer: 4-1

§ Literature: “Computer Networking: A Top-Down Approach” Written
by James F. Kurose and Keith W. Ross
• https://gaia.cs.umass.edu/kurose_ross/index.php (includes resources for

students).
• They also provide slideshows – the basis for ours! You can investigate the

extended version at their website.
• Also available at the TU library!

Sources

Network Layer: 4-2

https://gaia.cs.umass.edu/kurose_ross/index.php

Network layer: Roadmap

§ Network layer: overview
• data plane
• control plane

§ Control Plane
• introduction
• routing algorithm: link state
• SDN, ICMP

Network Layer: 4-3

§ What’s inside a router
• input ports, switching,
• output ports, scheduling

§ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Network-layer services and protocols

§ transport segment from sending
to receiving host
• sender: encapsulates segments into

datagrams, passes to link layer
• receiver: delivers segments to

transport layer protocol
§ network layer protocols in every

Internet device: hosts, routers
§ routers:
• examines header fields in all IP

datagrams passing through it
• moves datagrams from input ports to

output ports to transfer datagrams
along end-end path

mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network
link

physical

application
transport
network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 4-4

Two key network-layer functions

network-layer functions:
§ forwarding: move packets from

a router’s input link to
appropriate router output link

analogy: taking a trip
§ forwarding: process of getting

through single interchange

forwarding

routing

§ routing: process of planning trip
from source to destination§ routing: determine route taken

by packets from source to
destination
• routing algorithms

Network Layer: 4-5

Network layer: data plane, control plane
Data plane:
§ local, per-router function
§ determines how datagram

arriving on router input port
is forwarded to router
output port

Control plane
§ network-wide logic
§ determines how datagram is

routed among routers along end-
end path from source host to
destination host

1

23

0111

values in arriving
packet header

§ two control-plane approaches:
• traditional routing algorithms:

implemented in routers
• software-defined networking (SDN):

implemented in (remote) servers

Network Layer: 4-6

Network layer: Roadmap

§ Network layer: overview
• data plane
• control plane

§ Control Plane
• introduction
• routing algorithm: link state
• SDN, ICMP

Network Layer: 4-7

§ What’s inside a router
• input ports, switching,
• output ports, scheduling

§ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Router architecture overview
high-level view of generic router architecture:

routing
processor

router input ports router output ports

forwarding data plane
(hardware) operates

in nanosecond
timeframe

routing, management
control plane (software)
operates in millisecond

time frame

Network Layer: 4-8

Switch
Core

Input port functions

line
termination

lookup,
forwarding

queueing

Switching:
§ using header field values, lookup output port, etc.
§ destination-based forwarding: forward based only on

destination IP address (traditional)
§ other methods exist, e.g., generalized forwarding, but we do

not discuss in this lecture.

physical layer:
bit-level reception

Switch
Core

link
layer

protocol
(receive)

link layer:
e.g., Ethernet

Network Layer: 4-9

Q: but what happens if ranges don’t divide up so nicely?

Destination-based forwarding

Network Layer: 4-10

Q: but what happens if ranges don’t divide up so nicely?

Destination-based forwarding

3

Network Layer: 4-11

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010
examples:

which interface?

which interface?

11001000 00010111 00010110 10100001

Network Layer: 4-12

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010
examples:

which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-13

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010
examples:

which interface?

which interface?

11001000 00010111 00010110 10100001
match!

Network Layer: 4-14

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010
examples:

which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-15

§ transfer packet from input link to appropriate output link

Switching Rate

N input ports N output ports

. . .

. . .

§ switching rate: rate at which packets can be transferred from
inputs to outputs
• often measured as multiple of input/output line rate
• N inputs: switching rate N times line rate desirable

R

R

R

R

(rate: NR,
ideally)

Network Layer: 4-16

Output port queuing

§ Buffering required when datagrams
arrive from switch core faster than
link transmission rate.

§ Scheduling discipline chooses
among queued datagrams for
transmission

Datagrams can be lost
due to congestion, lack of
buffers

Priority scheduling – who
gets best performance

This is a really important slide

line
termination

link
layer

protocol
(send)

switch
core rate
(rate: NR)

datagram
buffer

queueing R

Network Layer: 4-17

Output port queuing

at t, packets more
from input to output

one packet time later

§ buffering when arrival rate via switch exceeds output line speed
§ queueing (delay) and loss due to output port buffer overflow!

Network Layer: 4-18

Switch
Core

Switch
Core

packet scheduling: deciding
which packet to send next on
link
• first come, first served
• priority
• round robin

Packet Scheduling: FCFS

FCFS: packets transmitted in
order of arrival to output
port
§ also known as: First-in-first-

out (FIFO)
§ Real-world examples?

queue
(waiting area)

packet
arrivals

packet
departures

link
 (server)

Abstraction: queue

R

Network Layer: 4-19

Priority scheduling:
§ arriving traffic classified,

queued by class
• any header fields can be

used for classification

Scheduling policies: priority

high priority queue

low priority queue

arrivals

classify departureslink

1 3 2 4 5

arrivals

departures

packet
in

service

§ send packet from highest
priority queue that has
buffered packets
• FCFS within priority class

1 3 4
2

5

1 3 2 4 5

Network Layer: 4-20

Round Robin (RR) scheduling:
§arriving traffic classified,

queued by class
• any header fields can be

used for classification

Scheduling policies: round robin

classify
arrivals

departureslink

R§server cyclically, repeatedly
scans class queues,
sending one complete
packet from each class (if
available) in turn

Network Layer: 4-21

Network layer: Roadmap

§ Network layer: overview
• data plane
• control plane

§ Control Plane
• introduction
• routing algorithm: link state
• SDN, ICMP

Network Layer: 4-22

§ What’s inside a router
• input ports, switching,
• output ports, scheduling

§ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Network Layer: Internet

host, router network layer functions:

IP protocol
• datagram format
• addressing
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network
layer

forwarding
table

Control-Plane
Approaches:
• Link State
• SDN

Network Layer: 4-23

IP Datagram format

ver length

32 bits

payload data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier
header

 checksum
time to

live

source IP address

head.
len

type of
service

flgs fragment
 offset

upper
 layer

destination IP address

options (if any)

IP protocol version number
header length (in chunks of 32 bits)

upper layer protocol (e.g., TCP or UDP)

total datagram
length (in bytes)

“type” of service:
§ diffserv (0:5)
§ ECN (6:7)

fragmentation/
reassembly

TTL: remaining max hops
(decremented at each router)

§ 20 bytes of TCP
§ Min 20 bytes of IP
§ = 40 bytes + app

layer overhead for
TCP+IP

overhead e.g., timestamp, record
route taken

32-bit source IP address

32-bit destination IP address

header checksum

Network Layer: 4-24

16 bits

§ IP address: 32-bit identifier
associated with each host or
router interface

§ interface: connection between
host/router and physical link
• router’s typically have multiple

interfaces
• host typically has one or two

interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-25

§ IP address: 32-bit identifier
associated with each host or
router interface

§ interface: connection between
host/router and physical link
• router’s typically have multiple

interfaces
• host typically has one or two

interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-26

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Q: how are interfaces
actually connected?

A: wired
Ethernet interfaces
connected by
Ethernet switches

A: wireless WiFi interfaces
connected by WiFi base station

For now: don’t need to worry
about how one interface is
connected to another (with no
intervening router)

A: we’ll learn about that
in the next session.

Network Layer: 4-27

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

§What’s a subnet?
• device interfaces that can

physically reach each other
without passing through an
intervening router

network consisting of 3 subnets

§ IP addresses have structure:
• subnet part: devices in same subnet

have common high order bits
• host part: remaining low order bits

Network Layer: 4-28

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

subnet host

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced “cider”)
• subnet portion of address of arbitrary length
• address format: a.b.c.d/x, where x is # bits in subnet portion
• All-zeros and the all-ones host values are reserved for the

subnet address and its broadcast address.

Network Layer: 4-29

223.1.1.0 = 11011111 00000001 00000001 00000000

223 1 01

subnet host
223.1.1.255 = 11011111 00000001 00000001 11111111

223 1 2551

subnet host

subnet 223.1.1.0 /24 Broadcast Address

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Recipe for defining subnets:
§detach each interface from its

host or router, creating
“islands” of isolated networks

§each isolated network is
called a subnet

subnet mask: /24
(high-order 24 bits: subnet part of IP address)

subnet
223.1.3.0/24

subnet 223.1.1.0/24
subnet 223.1.2.0/24

Network Layer: 4-30

223.1.1.0 = 11011111 00000001 00000001 00000000

223 1 01

subnet host

subnet 223.1.1.0 /24

Subnets

§ where are the
subnets?

§ what are the
/24 subnet
addresses?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.1

223.1.7.2
223.1.8.1223.1.8.2

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1.0/24

subnet 223.1.7/24

subnet 223.1.3/24
subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24

Network Layer: 4-31

subnet 223.1.1 /24

IP addresses: how does a host get one?

§ hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
§ DHCP: Dynamic Host Configuration Protocol “plug-and-play”

goal: A host obtains IP address dynamically from the network server
when it “joins” a network
§ can renew its lease on address in use
§ allows reuse of addresses (only hold address while connected/on)
§ support for mobile users who join/leave network

Network Layer: 4-32

DHCP: Dynamic Host Configuration Protocol

DHCP overview:
§ host broadcasts DHCP discover msg [optional]
§ DHCP server responds with DHCP offer msg [optional]
§ host requests IP address: DHCP request msg
§ DHCP server sends address: DHCP ack msg

Network Layer: 4-33

223.1.1.255 = 11011111 00000001 00000001 11111111

223 1 2551

subnet host

Broadcast Address

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

DHCP server

223.1.2.5

arriving DHCP client needs
address in this network

Typically, DHCP server will be co-
located in router, serving all subnets
to which router is attached

Network Layer: 4-34

DHCP client-server scenario
DHCP server: 223.1.2.5 Arriving clientDHCP discover

src : 0.0.0.0, 68
dest.: 255.255.255.255,67

yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67

dest: 255.255.255.255, 68
yiaddr: 223.1.2.4

transaction ID: 654
lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68
dest:: 255.255.255.255, 67

yiaddr: 223.1.2.4
transaction ID: 655
lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67

dest: 255.255.255.255, 68
yiaddr: 223.1.2.4

transaction ID: 655
lifetime: 3600 secs

Broadcast: is there a
DHCP server out there?

Broadcast: I’m a DHCP
server! Here’s an IP
address you can use

Broadcast: OK. I would
like to use this IP address!

Broadcast: OK. You’ve
got that IP address!

The two steps above can
be skipped “if a client
remembers and wishes to
reuse a previously
allocated network address”
[RFC 2131]

Network Layer: 4-35

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network (e.g., home
network) 10.0.0/24

138.76.29.7

rest of
Internet

NAT: network address translation

datagrams with source or destination in
this network have 10.0.0/24 address for
source, destination (as usual)

all datagrams leaving local network have
same source NAT IP address: 138.76.29.7,

but different source port numbers

NAT: all devices in local network share just one IPv4 address as
far as outside world is concerned

Network Layer: 4-36

§ all devices in local network have 32-bit addresses in a “private” IP
address space that can only be used in local network:
§ 10/8
§ 172.16/12
§ 192.168/16

§ advantages:
§ just one IP address needed from provider for all devices
§ can change addresses of host in local network without notifying

outside world
§ security: devices inside local net not directly addressable, visible

by outside world
§ …

NAT: network address translation

Network Layer: 4-37

implementation: NAT router must (transparently):
§ outgoing datagrams: replace (source IP address, port #) of every

outgoing datagram to (NAT IP address, new port #)

§ remember (in NAT translation table) every (source IP address, port #)
to (NAT IP address, new port #) translation pair

§ incoming datagrams: replace (NAT IP address, new port #) in
destination fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table

NAT: network address translation

Network Layer: 4-38

NAT: network address translation

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends
datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router changes
datagram source address
from 10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: reply arrives, destination
address: 138.76.29.7, 5001

10.0.0.1

10.0.0.2

10.0.0.3

Network Layer: 4-39

§ initial motivation: 32-bit IPv4 address space would be
completely allocated

§ additional motivation:
• speed processing/forwarding: 40-byte fixed length header
• enable different network-layer treatment of “flows”

IPv6: motivation

Network Layer: 4-40

IPv6 datagram format

payload (data)

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit
flow labelpriver

32 bits
priority: identify

priority among
datagrams in flow

flow label: identify
datagrams in same
"flow.” (concept of
“flow” not well-defined).

128-bit
IPv6 addresses

What’s missing (compared with IPv4):
§ no checksum (to speed processing at routers)
§ no fragmentation/reassembly
§ no options (available as upper-layer, next-header protocol at router)

Network Layer: 4-41

§ Google1: ~ 40% of clients access services via IPv6 (2023)

§ NIST: 1/3 of all US government domains are IPv6 capable

IPv6: adoption

Network Layer: 4-42

Network layer: Roadmap

§ Network layer: overview
• data plane
• control plane

§ Control Plane
• introduction
• routing algorithm: link state
• SDN, ICMP

Network Layer: 4-43

§ What’s inside a router
• input ports, switching,
• output ports, scheduling

§ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Two approaches to structuring network control plane:
§ per-router control (traditional)
§ logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-44

§ forwarding: move packets from router’s
input to appropriate router output data plane

control plane§ routing: determine route taken by
packets from source to destination

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Network Layer: 5-45

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers
§ path: sequence of routers packets

traverse from given initial source host
to final destination host

§ “good”: least “cost”, “fastest”, “least
congested”

§ routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network
link

physical

application
transport
network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 5-46

Graph abstraction: link costs

Network Layer: 5-47

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Dijkstra’s link-state routing algorithm

Network Layer: 5-48

§ centralized: network topology, link
costs known to all nodes
• accomplished via “link state

broadcast”
• all nodes have same info

§ computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

§ iterative: after k iterations, know
least cost path to k destinations

§ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

§ D(v): current estimate of cost
of least-cost-path from source
to destination v

§ p(v): predecessor node along
path from source to v

§ N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm

Network Layer: 5-49

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */
3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */
5 then D(v) = cu,v /* but may not be minimum cost! */
6 else D(v) = ∞
7
8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known
least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
 For all a: if a adjacent to u then D(a) = cu,a

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2
D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4
D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3
D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

Dijkstra’s algorithm: an example

Network Layer: 5-61

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Software-Defined Networking (SDN)
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Network Layer: 5-62

Per-router
control plane

SDN control
plane

§ SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol

computed

§ one could imagine SDN-computed congestion control:
• controller sets sender rates based on router-reported (to

controller) congestion levels

SDN and the future of traditional network
protocols

Network Layer: 5-64

How will implementation of
network functionality (SDN
versus protocols) evolve?

ICMP: internet control message protocol

Network Layer: 4-65

§ used by hosts and routers to
communicate network-level
information
• error reporting: unreachable host,

network, port, protocol
• echo request/reply (used by ping)

§ network-layer “above” IP:
• ICMP messages carried in IP

datagrams

§ ICMP message: type, code plus
first 8 bytes of IP datagram causing
error

Type Code description
0 0 echo reply (ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 2 dest protocol unreachable
3 3 dest port unreachable
3 6 dest network unknown
3 7 dest host unknown
4 0 source quench (congestion
 control - not used)
8 0 echo request (ping)
9 0 route advertisement
10 0 router discovery
11 0 TTL expired
12 0 bad IP header

Network layer: Summary

§Overview of principles
behind the data plane:
• forwarding versus routing
• how a router works
• Addressing
• DHCP, NAT, IPv6

§Overview of principles
behind the control plane:
• routing algorithm: link state
• software-defined networking
• ICMP

Network Layer: 4-66

Computer Systems
Networking: Link Layer

Amirali AMIRI
13.06.2024

Network Layer: 4-1

§ Literature: “Computer Networking: A Top-Down Approach” Written
by James F. Kurose and Keith W. Ross
• https://gaia.cs.umass.edu/kurose_ross/index.php (includes resources for

students).
• They also provide slideshows – the basis for ours! You can investigate the

extended version at their website.
• Also available at the TU library!

Sources

Network Layer: 4-2

https://gaia.cs.umass.edu/kurose_ross/index.php

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• Switches

§ Summary

Link Layer: 6-3

Link layer: introduction
terminology:
§ hosts, routers: nodes
§ communication channels that

connect adjacent nodes along
communication path: links
• wired , wireless
• LANs

§ layer-2 packet: frame,
encapsulates datagram

mobile network

enterprise
 network

national or global ISP

datacenter
network

link layer has responsibility of
transferring datagram from one node
to physically adjacent node over a link

Link Layer 4

Link layer: context
§ datagram transferred by

different link protocols over
different links:
• e.g., WiFi on first link,

Ethernet on next link
§ each link protocol provides

different services
• e.g., may or may not provide

reliable data transfer over link

Link Layer 5

Transportation analogy
transportation analogy:
§ trip from Princeton to Lausanne
• limo: Princeton to JFK
• plane: JFK to Geneva
• train: Geneva to Lausanne

§ tourist = datagram
§ transport segment =

communication link
§ transportation mode = link-

layer protocol
§ travel agent = routing algorithm

Princeton
JFK

Geneva Lausanne
Link Layer 6

Link layer: services
§ framing, link access:
• encapsulate datagram into frame, adding

header, trailer
• channel access if shared medium
• “MAC” addresses in frame headers identify

source, destination (different from IP
address!)

§ reliable delivery between adjacent nodes
• we already know how to do this!
• seldom used on low bit-error links
• wireless links: high error rates

…

…
Cable access

cellular

WiFi

Ethernet LANs

Link Layer 7

Link layer: services
§ flow control:
• pacing between adjacent sending and

receiving nodes

§ error detection:
• errors caused by signal attenuation, noise.
• receiver detects errors, signals

retransmission, or drops frame

§ error correction:
• receiver identifies and corrects bit error(s)

without retransmission

§ half-duplex and full-duplex:
• with half duplex, nodes at both ends of link

can transmit, but not at same time

…

…
Cable access

cellular

WiFi

Ethernet LANs

Link Layer 8

Host link-layer implementation

§ in each-and-every host
§ link layer implemented on-chip or

in network interface card (NIC)
• implements link, physical layer

§ attaches into host’s system buses
§ combination of hardware,

software, firmware

controller

physical

cpu memory

host bus
(e.g., PCI)

network interface

application
transport
network
link

link
physical

Link Layer 9

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• switches

§ Summary

Link Layer: 6-10

Error detection
EDC: error detection and correction bits (e.g., redundancy)
D: data protected by error checking, may include header fields

Error detection not 100%
reliable!
§ protocol may miss

some errors, but rarely
§ larger EDC field yields

better detection and
correction

datagram

D EDC

d data bits

bit-error prone link

D’ EDC’

all
bits in D’

OK
?

N
detected
error

otherwise

datagram

Link Layer 11

Parity checking
single bit parity:
§ detect single bit errors

0111000110101011 1

parity bit

d data bits

Can detect and correct errors
(without retransmission!)
§ two-dimensional parity: detect

and correct single bit errors

d1,1
d2,1

di,1

. . .

d1,j+1
d2,j+1

di,j+1

. . .

. . .

d1,j
d2,j

di,j

. . .

di+1,1 di+1,j+1di+1,j

. . .

. . .

. . .

. . .
row parity

column
 parity

0 0 1 0 1
0 1 1 1 0

1 0 1 0 1
1 1 1 1 0

1
0
1
0

no errors:
parity
error

parity
error

0 1 1 1 0 1

1 0 1 0 1 1
1 0 1 1 0 0

0 0 1 0 1 0

detected
and

correctable
single-bit

error:

Even/odd parity: set parity bit so
there is an even/odd number of 1’s

At receiver:
§ compute parity of d received

bits
§ compare with received parity bit

– if different than error detected

Cyclic Redundancy Check (CRC)
§more powerful error-detection coding
§D: data bits (given, think of these as a binary number)

§G: bit pattern (generator), of r+1 bits (given, specified in CRC standard)

sender: compute r CRC bits, R, such that <D,R> exactly divisible by G (mod 2)

• receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
• can detect all burst errors less than r+1 bits
• widely used in practice (Ethernet, 802.11 WiFi)

<D,R> = D 2r XOR R * formula for these bits

r CRC bits
d data bits

D R bits to send

Link Layer 13

Cyclic Redundancy Check (CRC): example
Sender wants to compute R

such that:
D . 2r XOR R = nG

D.2r
G

R = remainder []

... or equivalently (XOR R both sides):
D . 2r = nG XOR R

... which says:
 if we divide D . 2r by G, we

want remainder R to satisfy:

1 0 0 1

G
1 0 1 1 1 0

algorithm for
computing R

Link Layer 14

Cyclic Redundancy Check (CRC): example
Sender wants to compute R

such that:
D . 2r XOR R = nG

D.2r
G

R = remainder []

... or equivalently (XOR R both sides):
D . 2r = nG XOR R

... which says:
 if we divide D . 2r by G, we

want remainder R to satisfy:

D

1 0 0 1

G
0 0 01 0 1 1 1 0

2r (here, r=3)*

algorithm for
computing R

Link Layer 15

Cyclic Redundancy Check (CRC): example
Sender wants to compute R

such that:
D . 2r XOR R = nG

D.2r
G

R = remainder []

... or equivalently (XOR R both sides):
D . 2r = nG XOR R

... which says:
 if we divide D . 2r by G, we

want remainder R to satisfy:

1 0 0 1
1 0 1
0 0 0 D

1 0 0 1

G
0 0 01 0 1 1 1 0

2r (here, r=3)*

1 0

algorithm for
computing R

Link Layer 16

Cyclic Redundancy Check (CRC): example
Sender wants to compute R

such that:
D . 2r XOR R = nG

D.2r
G

R = remainder []

... or equivalently (XOR R both sides):
D . 2r = nG XOR R

... which says:
 if we divide D . 2r by G, we

want remainder R to satisfy:

1 0 0 1

1 0 1 0

1 0 1
0 0 0

1 0 0 1

D

1 0 0 1

G
0 0 01 0 1 1 1 0

2r (here, r=3)*

1 0 1

algorithm for
computing R

Link Layer 17

Cyclic Redundancy Check (CRC): example
Sender wants to compute R

such that:
D . 2r XOR R = nG

D.2r
G

R = remainder []

... or equivalently (XOR R both sides):
D . 2r = nG XOR R

... which says:
 if we divide D . 2r by G, we

want remainder R to satisfy:

1 0 0 1

1 0 1 0

1 0 1
0 0 0

1 0 0 1

1 0 0 1

1 0 0 1

0 0 0
1 1 0

1 1 0 0

1 0 1 0

0 1 1

0 1 1

D

R

1 0 0 1

G
0 0 01 0 1 1 1 0

2r (here, r=3)*

1 0 1

algorithm for
computing R

Link Layer 18

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• switches

§ Summary

Link Layer: 6-19

Multiple access links, protocols
two types of “links”:
§ point-to-point

• point-to-point link between Ethernet switch, host
• PPP for dial-up access

§ broadcast (shared wire or medium)
• old-school Ethernet
• 802.11 wireless LAN, 4G/4G. satellite

shared radio: satellite humans at a cocktail party
(shared air, acoustical)

shared radio: WiFishared wire (e.g.,
cabled Ethernet) shared radio: 4G/5G

Link Layer 20

Multiple access protocols
§ single shared broadcast channel
§ two or more simultaneous transmissions by nodes: interference
• collision if node receives two or more signals at the same time

§ distributed algorithm that determines how nodes share channel,
i.e., determine when node can transmit

§ communication about channel sharing must use channel itself!
• no out-of-band channel for coordination

multiple access protocol

Link Layer 21

An ideal multiple access protocol

given: multiple access channel (MAC) of rate R bps
desiderata:

1. when one node wants to transmit, it can send at rate R.
2. when M nodes want to transmit, each can send at average

rate R/M
3. fully decentralized:
• no special node to coordinate transmissions
• no synchronization of clocks, slots

4. simple

Link Layer 22

MAC protocols: taxonomy
three broad classes:
§ channel partitioning
• divide channel into smaller “pieces”

(time slots, frequency, etc.)
• allocate piece to node for exclusive

use
§ random access
• channel not divided, allow collisions
• “recover” from collisions

§ “taking turns”
• nodes take turns, but nodes with

more to send can take longer turns
Link Layer 23

Channel partitioning MAC protocols: TDMA
TDMA: time division multiple access
§ access to channel in “rounds”
§ each station gets fixed length slot (length = packet transmission

time) in each round
§ unused slots go idle
§ example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

1 3 4 1 3 4

6-slot
frame

6-slot
frame

Link Layer 24

Channel partitioning MAC protocols: FDMA
FDMA: frequency division multiple access
§ channel spectrum divided into frequency bands
§ each station assigned fixed frequency band
§ unused transmission time in frequency bands go idle
§ example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

fre
qu

en
cy

 b
an

ds

time

FDM cable

Link Layer 25

Random access protocols
§ when node has packet to send
• transmit at full channel data rate R
• no a priori coordination among nodes

§ two or more transmitting nodes:
“collision”

§ random access protocol specifies:
• how to detect collisions
• how to recover from collisions (e.g., via delayed retransmissions)

§ examples of random-access MAC protocols:
• slotted ALOHA
• CSMA, CSMA/CD

Link Layer 26

Slotted ALOHA

assumptions:
§ all frames same size
§ time divided into equal size

slots (time to transmit 1 frame)
§ nodes start to transmit only

slot beginning
§ nodes are synchronized
§ if 2 or more nodes transmit in

slot, all nodes detect collision

operation:
§ when node obtains fresh

frame, transmits in next slot
• if no collision: node can send

new frame in next slot
• if collision: node retransmits

frame in each subsequent
slot with probability p until
success

randomization – why?

t0 t0+1

Link Layer 27

Slotted ALOHA

Pros:
§ single active node can

continuously transmit at full rate
of channel

§ highly decentralized: only slots in
nodes need to be in sync

§ simple

Cons:
§ collisions, wasting slots
§ idle slots
§ nodes may be able to detect collision in

less than time to transmit packet
§ clock synchronization

1 1 1 1

2

3

2 2

3 3

node 1

node 2

node 3

C C CS S SE E E

C: collision
S: success
E: empty

Link Layer 28

CSMA (carrier sense multiple access)
simple CSMA: listen before transmit:
• if channel sensed idle: transmit entire frame
• if channel sensed busy: defer transmission

§ human analogy: donʼt interrupt others!

CSMA/CD: CSMA with collision detection
• collisions detected within short time
• colliding transmissions aborted, reducing channel wastage
• collision detection easy in wired, difficult with wireless

§ human analogy: the polite conversationalist

Link Layer 29

Ethernet CSMA/CD algorithm

1. Ethernet receives datagram from network layer, creates frame
2. If Ethernet senses channel:

if idle: start frame transmission.
if busy: wait until channel idle, then transmit

3. If entire frame transmitted without collision - done!
4. If another transmission detected while sending: abort, send jam signal
5. After aborting, enter binary (exponential) backoff:

• after mth collision, chooses K at random from {0,1,2, …, 2m-1}.
Ethernet waits K·512 bit times, returns to Step 2

• more collisions: longer backoff interval
Link Layer 30

“Taking turns” MAC protocols
channel partitioning MAC protocols:
§ share channel efficiently and fairly at high load
§ inefficient at low load: delay in channel access, 1/N

bandwidth allocated even if only 1 active node!

random access MAC protocols
§ efficient at low load: single node can fully utilize channel
§ high load: collision overhead

“taking turns” protocols
§ look for best of both worlds!

Link Layer 31

“Taking turns” MAC protocols
polling:
§ centralized controller “invites”

other nodes to transmit in turn
§ concerns:
• polling overhead
• latency
• single point of failure (master)

• Bluetooth uses polling

centralized
controller

client devices

poll

data

data

Link Layer 32

“Taking turns” MAC protocols

token passing:
§ control token message

explicitly passed from one node
to next, sequentially
§ transmit while holding token

§ concerns:
• token overhead
• latency
• single point of failure

(token)

T

data

(nothing
to send)

T

Link Layer 33

Summary of MAC protocols

Link Layer: 6-34

§ channel partitioning, by time, frequency, etc.
• Time Division, Frequency Division

§ random access (dynamic),
• Slotted ALOHA
• CSMA carrier sensing: easy in some technologies (wire), hard in

others (wireless)
• CSMA/CD

§ taking turns
• polling from central site, token passing

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• switches

§ Summary

Link Layer: 6-35

MAC addresses

Link Layer: 6-36

§ 32-bit IP address:
• network-layer address for interface
• used for layer 3 (network layer) forwarding
• e.g.: 128.119.40.136

§ MAC (or LAN or physical or Ethernet) address:
• function: used “locally” to get frame from one interface to another

physically-connected interface (same subnet, in IP-addressing sense)
• 48-bit MAC address (for most LANs) burned in NIC ROM, also

sometimes software settable

hexadecimal (base 16) notation
(each “numeral” represents 4 bits)

• e.g.: 1A-2F-BB-76-09-AD

MAC addresses

Link Layer: 6-37

each interface on LAN
§ has unique 48-bit MAC address
§ has a locally unique 32-bit IP address (as we’ve seen)

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN
(wired or wireless)

137.196.7/24

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23

MAC addresses

Link Layer: 6-38

§ MAC address allocation administered by IEEE
§ manufacturer buys portion of MAC address space (to

assure uniqueness)
§ analogy:
• MAC address: like Social Security Number
• IP address: like postal address

§ MAC flat address: portability
• can move interface from one LAN to another
• recall IP address not portable: depends on IP subnet to which

node is attached

ARP: address resolution protocol

Link Layer: 6-39

ARP table: each IP node (host,
router) on LAN has table

Question: how to determine interface’s MAC address, knowing its IP
address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23

ARP

ARP

ARP
ARP

• IP/MAC address mappings for
some LAN nodes:

 < IP address; MAC address; TTL>

• TTL (Time To Live): time after
which address mapping will be
forgotten (typically 20 min)

ARP protocol in action

Link Layer: 6-40

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53
137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• Bʼs MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A broadcasts ARP query, containing B's IP addr
• destination MAC address = FF-FF-FF-FF-FF-FF
• all nodes on LAN receive ARP query

1
Source MAC: 71-65-F7-2B-08-53
Source IP: 137.196.7.23
Target IP address: 137.196.7.14
…

1

Ethernet frame (sent to FF-FF-FF-FF-FF-FF)

ARP protocol in action

Link Layer: 6-41

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53
137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• Bʼs MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

B replies to A with ARP response,
giving its MAC address

2

Target IP address: 137.196.7.14
Target MAC address:
 58-23-D7-FA-20-B0
…

2

ARP message into Ethernet frame
(sent to 71-65-F7-2B-08-53)

ARP protocol in action

Link Layer: 6-42

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53
137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• Bʼs MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A receives B’s reply, adds B entry
into its local ARP table

3

137.196.
 7.14

58-23-D7-FA-20-B0 500

Routing to another subnet: addressing

Link Layer: 6-43

walkthrough: sending a datagram from A to B via R
§ focus on addressing – at IP (datagram) and MAC layer (frame) levels

R
A B

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55 222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

§ assume that:
• A knows B’s IP address
• A knows IP address of first hop router, R (how?)
• A knows R’s MAC address (how?)

Routing to another subnet: addressing

Link Layer: 6-44

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

IP src: 111.111.111.111
 IP dest: 222.222.222.222

§ A creates IP datagram with IP source A, destination B
§ A creates link-layer frame containing A-to-B IP datagram
• R's MAC address is frame’s destination

MAC src: 74-29-9C-E8-FF-55
 MAC dest: E6-E9-00-17-BB-4B

Routing to another subnet: addressing

Link Layer: 6-45

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

§ frame sent from A to R

IP
Eth
Phy

§ frame received at R, datagram removed, passed up to IP

IP src: 111.111.111.111
 IP dest: 222.222.222.222

Routing to another subnet: addressing

Link Layer: 6-46

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP src: 111.111.111.111
 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B
 MAC dest: 49-BD-D2-C7-56-2A

§ R determines outgoing interface, passes datagram with IP source A, destination B
to link layer

§ R creates link-layer frame containing A-to-B IP datagram. Frame destination address:
B's MAC address

IP
Eth
Phy

Routing to another subnet: addressing

Link Layer: 6-47

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

IP
Eth
Phy

IP src: 111.111.111.111
 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B
 MAC dest: 49-BD-D2-C7-56-2A§ transmits link-layer frame

§ R determines outgoing interface, passes datagram with IP source A, destination B
to link layer

§ R creates link-layer frame containing A-to-B IP datagram. Frame destination address:
B's MAC address

Routing to another subnet: addressing

Link Layer: 6-48

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

IP
Eth
Phy

§ B receives frame, extracts IP datagram destination B
§ B passes datagram up protocol stack to IP

IP src: 111.111.111.111
 IP dest: 222.222.222.222

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• switches

§ Summary

Link Layer: 6-49

Ethernet

Link Layer: 6-50

“dominant” wired LAN technology:
§ first widely used LAN technology
§ simpler, cheap
§ kept up with speed race: 10 Mbps – 400 Gbps
§ single chip, multiple speeds (e.g., Broadcom BCM5761)

Metcalfe’s Ethernet
sketch

https://www.uspto.gov/learning-and-resources/journeys-innovation/audio-stories/defying-doubters

Bob Metcalfe: Ethernet co-inventor,
2022 ACM Turing Award recipient

Ethernet: physical topology

Link Layer: 6-51

§ bus: popular through mid 90s
• all nodes in same collision domain (can collide with each other)

bus: coaxial cable switched

§ switched: prevails today
• active link-layer 2 switch in center
• each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with

each other)

Ethernet frame structure

Link Layer: 6-52

sending interface encapsulates IP datagram (or other network layer
protocol packet) in Ethernet frame

dest.
address

source
address data (payload) CRCpreamble

type

preamble:
§ used to synchronize receiver, sender clock rates
§ 7 bytes of 10101010 followed by one byte of 10101011

Ethernet frame structure

Link Layer: 6-53

dest.
address

source
address data (payload) CRCpreamble

type

§ addresses: 6-Byte source, destination MAC addresses
• if adapter receives frame with matching destination address, or with broadcast

address (e.g., ARP packet), it passes data in frame to network layer protocol
• otherwise, adapter discards frame

§ type: indicates higher-layer protocol
• mostly IP but others possible, e.g., Novell IPX, AppleTalk
• used to demultiplex up at receiver

§ CRC: cyclic-redundancy check at receiver
• error detected: frame is dropped

Ethernet: unreliable, connectionless

Link Layer: 6-54

§connectionless: no handshaking between sending and
receiving NICs

§unreliable: receiving NIC doesn’t send ACKs or NAKs to
sending NIC
• data in dropped frames recovered only if initial sender uses

higher layer rdt (e.g., TCP), otherwise dropped data lost
§Ethernet’s MAC protocol: unslotted CSMA/CD with binary

backoff

802.3 Ethernet standards: link & physical layers

Link Layer: 6-55

• different physical layer media: fiber, cable

application
transport
network

link
physical

MAC protocol
and frame format

100BASE-TX

100BASE-T4

100BASE-FX100BASE-T2

100BASE-SX 100BASE-BX

fiber physical layercopper (twister pair) physical layer

§ many different Ethernet standards
• common MAC protocol and frame format
• different speeds: 2 Mbps, ... 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps, 80 Gbps

Link layer and LANs: roadmap

§ introduction
§ error detection, correction
§ multiple access protocols
§ LANs
• addressing, ARP
• Ethernet
• switches

§ Summary

Link Layer: 6-56

Ethernet switch

Link Layer: 6-57

§ Switch is a link-layer device: takes an active role
• store, forward Ethernet (or other type of) frames
• examine incoming frame’s MAC address, selectively forward frame

to one-or-more outgoing links when frame is to be forwarded on
segment, uses CSMA/CD to access segment

§ transparent: hosts unaware of presence of switches

§ plug-and-play, self-learning
• switches do not need to be configured

Switch: multiple simultaneous transmissions

Link Layer: 6-58

switch with six
interfaces (1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

3
45

6

§ hosts have dedicated, direct
connection to switch

§ switches buffer packets
§ Ethernet protocol used on each

incoming link, so:
• no collisions; full duplex
• each link is its own collision

domain
§ switching: A-to-A’ and B-to-B’ can transmit

simultaneously, without collisions

Switch: multiple simultaneous transmissions

Link Layer: 6-59

switch with six
interfaces (1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

3
45

6

§ hosts have dedicated, direct
connection to switch

§ switches buffer packets
§ Ethernet protocol used on each

incoming link, so:
• no collisions; full duplex
• each link is its own collision

domain
§ switching: A-to-A’ and B-to-B’ can transmit

simultaneously, without collisions
• but A-to-A’ and C to A’ can not happen

simultaneously

Switch forwarding table

Link Layer: 6-60

A

A’

B

B’ C

C’

1 2

3
45

6

Q: how does switch know A’ reachable via
interface 4, B’ reachable via interface 5?
A: each switch has a switch table, each
entry:
§ (MAC address of host, interface to reach

host, time stamp)
§ looks like a routing table!

Q: how are entries created and
maintained in a switch table?

Switch: self-learning

Link Layer: 6-61

A

A’

B

B’ C

C’

1 2

3
45

6

§switch learns which hosts
can be reached through
which interfaces

A A’

Source: A
Dest: A’

MAC addr interface TTL
Switch table

(initially empty)
A 1 60

• when frame received, switch
“learns” location of sender:
incoming LAN segment
• records sender/location pair

in switch table

Switch: frame filtering/forwarding

Link Layer: 6-62

when frame received at switch:
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination

 then {
 if destination on segment from which frame arrived

 then drop frame
 else forward frame on interface indicated by entry
 }
 else flood /* forward on all interfaces except arriving interface */

A

A’

B

B’ C

C’

1 2

3
45

6

Self-learning, forwarding: example

Link Layer: 6-63

A A’

Source: A
Dest: A’

MAC addr interface TTL
switch table

(initially empty)
A 1 60

A A’A A’A A’A A’A A’

A’ A

A’ 4 60

§ frame destination, A’,
location unknown: flood

§ destination A location
known: selectively send

on just one link

Interconnecting switches

Link Layer: 6-64

self-learning switches can be connected together:

Q: sending from A to G - how does S1 know to forward frame destined to
G via S4 and S3?

A

B

S1

C D

E

F
S2

S4

S3

H

I

G

Interconnecting switches

Link Layer: 6-65

self-learning switches can be connected together:

Q: sending from A to G - how does S1 know to forward frame destined to
G via S4 and S3?

§ A: self learning! (works exactly the same as in single-switch case!)

A

B

S1

C D

E

F
S2

S4

S3

H

I

G

Switches vs. routers

Link Layer: 6-66

application
transport
network

link
physical

network
link

physical

link
physical

switch

datagram

application
transport
network

link
physical

frame

frame

frame
datagram

both are store-and-forward:
§ routers: network-layer devices (examine

network-layer headers)
§ switches: link-layer devices (examine

link-layer headers)

both have forwarding tables:
§ routers: compute tables using routing

algorithms, IP addresses
§ switches: learn forwarding table using

flooding, learning, MAC addresses

Summary

Link Layer: 6-67

§ principles behind data link layer services:
• error detection, correction
• sharing a broadcast channel: multiple access
• link layer addressing

§ instantiation, implementation of various link layer technologies
• Ethernet
• switched LANS

§ Self-learning Switches

	19_Networking_Intro_AppLayer
	Standardabschnitt
	Folie 1
	Folie 2: Sources
	Folie 3: Content

	Intro
	Folie 4
	Folie 5: Introduction: roadmap
	Folie 6: The Internet: a “nuts and bolts” view
	Folie 7: The Internet: a “nuts and bolts” view
	Folie 8: The Internet: a “services” view
	Folie 9: What’s a protocol?
	Folie 10: What’s a protocol?
	Folie 11: Introduction : roadmap
	Folie 12: A closer look at Internet structure
	Folie 13: A closer look at Internet structure
	Folie 14: A closer look at Internet structure

	packet vs circuit switching
	Folie 15: Introduction : roadmap
	Folie 16: The network core
	Folie 17: Two key network-core functions
	Folie 18: Packet-switching: store-and-forward
	Folie 19: Packet-switching: queueing
	Folie 20: Packet-switching: queueing
	Folie 21: Alternative to packet switching: circuit switching
	Folie 22: Circuit switching: FDM and TDM
	Folie 23: Packet switching versus circuit switching
	Folie 24: Packet switching versus circuit switching
	Folie 25: Introduction: roadmap
	Folie 26: Layered Internet Protocol Stack
	Folie 29: Why Layering?
	Folie 30: Layered Internet Protocol Stack
	Folie 31: ISO/OSI Reference Model
	Folie 32: Services, Layering, and Encapsulation
	Folie 33: Services, Layering, and Encapsulation
	Folie 34: Services, Layering, and Encapsulation
	Folie 35: Services, Layering, and Encapsulation
	Folie 36: Services, Layering, and Encapsulation
	Folie 37: Services, Layering, and Encapsulation

	Application Layer
	Folie 38
	Folie 39: Some Network Apps
	Folie 40: Creating a Network App
	Folie 41: Client-Server Paradigm
	Folie 42: Peer-Peer Architecture (not further discussed in this lecture)
	Folie 43: Process Communication
	Folie 44: Sockets
	Folie 45: Addressing Processes
	Folie 46: An Application-Layer Protocol Defines
	Folie 47: What Transport Service does an App Need?
	Folie 48: Transport Service Requirements: Common Apps
	Folie 49: Internet Transport Protocols Services
	Folie 50: Internet Applications, and Transport Protocols

	Web
	Folie 51
	Folie 52: The Web
	Folie 53: HTTP Overview
	Folie 54: HTTP Overview
	Folie 55: HTTP Example
	Folie 56: HTTP Example
	Folie 57: HTTP Example
	Folie 58: HTTP Example
	Folie 59: HTTP Example
	Folie 60: HTTP Example
	Folie 61: HTTP Example – Some Additional Notes (not relevant for the exam)
	Folie 62: Non-persistent HTTP – Response Time
	Folie 63: Non-persistent HTTP – Response Time
	Folie 64: HTTP Request Message
	Folie 65: HTTP Request Message – General Format
	Folie 66: Other HTTP Request Methods
	Folie 67: HTTP Response Message
	Folie 68: HTTP Response Status Codes
	Folie 69: HTTP Versions
	Folie 70: HTTP/2: mitigating HOL blocking
	Folie 71: HTTP/2: mitigating HOL blocking

	DNS
	Folie 72
	Folie 73: Domain Name System (DNS)
	Folie 74: DNS: Services and Structure
	Folie 75: Thinking About the DNS
	Folie 76: DNS: A Distributed, Hierarchical Database
	Folie 77: DNS Root Name Servers
	Folie 78: Top-Level Domain and Authoritative Servers
	Folie 79: Local DNS Name Servers
	Folie 80: DNS Name Resolution: Iterated Query
	Folie 81: Caching DNS Information
	Folie 82: DNS Records
	Folie 83: DNS protocol messages
	Folie 84: DNS protocol messages
	Folie 85: Getting your info into the DNS
	Folie 86: Content

	20_Networking_TransportLayer
	Standardabschnitt
	Folie 1
	Folie 2: Sources
	Folie 3: Introduction

	Transport Layer Service
	Folie 4: Transport layer: roadmap
	Folie 5: Transport layer: roadmap
	Folie 6: Transport Services and Protocols
	Folie 7: Transport vs. Network Layer Services and Protocols
	Folie 8: Transport vs. Network Layer Services and Protocols
	Folie 9: Transport Layer Actions
	Folie 10: Transport Layer Actions
	Folie 11: Two Principal Internet Transport Protocols

	Multiplexing
	Folie 12: Transport layer: roadmap
	Folie 13: Transport vs. network layer services and protocols
	Folie 14: Multiplexing and Demultiplexing
	Folie 15: Multiplexing and Demultiplexing
	Folie 16: Multiplexing and Demultiplexing
	Folie 17: Multiplexing and Demultiplexing
	Folie 18: How Demultiplexing Works
	Folie 19: Connectionless Demultiplexing
	Folie 20: Connectionless Demultiplexing: An Example
	Folie 21: Connection-Oriented Demultiplexing
	Folie 22: Connection-Oriented Demultiplexing: An Example
	Folie 23: Summary

	Connectionless: UDP
	Folie 24: Transport Layer: Roadmap
	Folie 25: UDP: User Datagram Protocol
	Folie 26: UDP: User Datagram Protocol
	Folie 27: UDP: Transport Layer Actions
	Folie 28: UDP: Transport Layer Actions
	Folie 29: UDP: Transport Layer Actions
	Folie 30: UDP Segment Header
	Folie 31: UDP Checksum
	Folie 32: UDP Checksum
	Folie 33: Internet Checksum: An Example
	Folie 34: Internet Checksum: Weak Protection!
	Folie 35: Summary: UDP

	Principles od relaiable transfer
	Folie 36: Transport Layer: Roadmap
	Folie 37: Principles of reliable data transfer
	Folie 38: Principles of reliable data transfer
	Folie 39: Principles of reliable data transfer
	Folie 40: Principles of reliable data transfer
	Folie 41: Reliable data transfer protocol (rdt): interfaces
	Folie 42: Reliable data transfer: getting started
	Folie 43: rdt1.0: reliable transfer over a reliable channel
	Folie 44: rdt2.0: channel with bit errors
	Folie 45: rdt2.0: channel with bit errors
	Folie 46: rdt2.0: FSM specifications
	Folie 47: rdt2.0: FSM specification
	Folie 48: rdt2.0: operation with no errors
	Folie 49: rdt2.0: corrupted packet scenario
	Folie 50: rdt2.0 has a fatal flaw!
	Folie 51: rdt2.1: sender, handling garbled ACK/NAKs
	Folie 52: rdt2.1: receiver, handling garbled ACK/NAKs
	Folie 53: rdt2.1: discussion
	Folie 54: rdt2.2: a NAK-free protocol
	Folie 55: rdt2.2: sender, receiver fragments
	Folie 56: rdt3.0: channels with errors and loss
	Folie 57: rdt3.0: channels with errors and loss
	Folie 58: rdt3.0 sender
	Folie 59: rdt3.0 sender
	Folie 60: rdt3.0 in action
	Folie 61: rdt3.0 in action
	Folie 62: Performance of rdt3.0 (stop-and-wait)
	Folie 63: rdt3.0: stop-and-wait operation
	Folie 64: rdt3.0: stop-and-wait operation
	Folie 65: rdt3.0: pipelined protocols operation
	Folie 66: Pipelining: increased utilization
	Folie 67: Go-Back-N: sender
	Folie 68: Go-Back-N: receiver
	Folie 69: Go-Back-N in action
	Folie 70: Selective repeat: the approach
	Folie 71: Selective repeat: sender, receiver windows
	Folie 72: Selective repeat: sender and receiver
	Folie 73: Selective Repeat in action

	Conection-oriented: TCP
	Folie 76: Transport Layer: Roadmap
	Folie 77: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Folie 78: TCP segment structure
	Folie 79: TCP sequence numbers, ACKs
	Folie 80: TCP sequence numbers, ACKs
	Folie 81: TCP round trip time, timeout
	Folie 82: TCP round trip time, timeout
	Folie 83: TCP round trip time, timeout
	Folie 84: TCP Sender (simplified)
	Folie 86: TCP: retransmission scenarios
	Folie 87: TCP: retransmission scenarios
	Folie 88: TCP fast retransmit

	Connection-oriented: TCP
	Folie 89: Transport Layer: Roadmap
	Folie 90: TCP flow control
	Folie 91: TCP flow control
	Folie 92: TCP flow control
	Folie 93: TCP flow control
	Folie 94: TCP flow control
	Folie 95: TCP flow control
	Folie 96: TCP connection management
	Folie 97: Agreeing to establish a connection
	Folie 98: 2-way handshake scenarios
	Folie 99: 2-way handshake scenarios
	Folie 100: 2-way handshake scenarios
	Folie 101: TCP 3-way handshake
	Folie 102: Closing a TCP connection

	Principles of Congestin Control
	Folie 103: Transport Layer: Roadmap
	Folie 104: Principles of congestion control
	Folie 105: Causes/costs of congestion: scenario 1
	Folie 106: Causes/costs of congestion: scenario 2
	Folie 107: Causes/costs of congestion: scenario 2
	Folie 108: Causes/costs of congestion: scenario 2
	Folie 109: Causes/costs of congestion: scenario 2
	Folie 110: Causes/costs of congestion: scenario 2
	Folie 111: Causes/costs of congestion: scenario 2
	Folie 112: Causes/costs of congestion: scenario 3
	Folie 113: Causes/costs of congestion: scenario 3
	Folie 114: Causes/costs of congestion: insights
	Folie 115: Approaches towards congestion control
	Folie 116: Approaches towards congestion control

	TCP Congestion Control
	Folie 117: Transport Layer: Roadmap
	Folie 118: TCP congestion control: AIMD
	Folie 119: TCP AIMD: more
	Folie 120: TCP congestion control: details
	Folie 121: TCP slow start
	Folie 122: TCP: from slow start to congestion avoidance
	Folie 123: TCP CUBIC
	Folie 124: Summary: TCP congestion control
	Folie 125: Summary

	21_Networking_NetworkLayer
	22_Networking_LinkLayer

