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https://aofa.cs.princeton.edu/30gf/
https://www.youtube.com/watch?v=—drdeNMoe8w

https://www.math.upenn.edu/~wilf/gfology2.pdf
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https://math.stackexchange.com/questions/15640225/closed-form-expression-for-sum-k-0Onk2-3k-2
https://math.stackexchange.com/questions/3437722/finding-a-closed-form-expression-for-sum-k-
We know from the lecture that
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Let a,, = (k? + 3k +2) and b, = 1. Note that k + 3k +2 = (k + 2)(k + 1).
We apply [3] to get
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https://math.stackexchange.com/questions/1540225/closed-form-expression-for-sum-k-0nk2-3k-2
https://math.stackexchange.com/questions/3437722/finding-a-closed-form-expression-for-sum-k-0nk23k2-using-generating-f
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By [2| we get (k+2)(k+1) = 2(1632). We can then apply [1]| to get
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Additionally, we get by [4] that
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https://math.stackexchange.com/questions/340124/binomial-coefficients-1-2-choose-k
https://en.wikipedia.org/wiki/Factorial#Factorial_of_non-integer_values
https://en.wikipedia.org/wiki/Generating_function#Rational_functions
https://math.stackexchange.com/questions/69270/show-sum-1imits-n-0-infty2n-choose-nxn-1-4x-:
https://math.stackexchange.com/questions/205898/how-to-show-that-1-over-sqrtl-4x-generates-s
https://math.stackexchange.com/questions/379249/proving-fracl-sqrtl-4x-sum-n-geq02n-choose-r
We know from the lecture that

3 (Z‘) 2= (14 2)" (6)


https://math.stackexchange.com/questions/340124/binomial-coefficients-1-2-choose-k
https://en.wikipedia.org/wiki/Factorial#Factorial_of_non-integer_values
https://en.wikipedia.org/wiki/Generating_function#Rational_functions
https://math.stackexchange.com/questions/69270/show-sum-limits-n-0-infty2n-choose-nxn-1-4x-1-2
https://math.stackexchange.com/questions/205898/how-to-show-that-1-over-sqrt1-4x-generates-sum-n-0-infty-binom2n
https://math.stackexchange.com/questions/379249/proving-frac1-sqrt1-4x-sum-n-geq02n-choose-nxn

Substituting v := —4z we calculate

ﬁ 1w =Y (—gs) (—zm =3 (—2.5) (—1)m4m 2

n>0 n>0
(m) _ I(z+1)
Yy Ny+1)I'(z—y+1)

<_:5> T T+ 1;)(1(2.(%).5 —n)

Coming from the other side we see
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By the recursion formula I'(s + 1) = sI'(s) for complex s we get
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and by the duplication formula T'(2z) = 70522217 (2)['(z + 0.5) we get

It is known that

so we get
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Adding the factor (—1)"4™ again, we now show the identity
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Some multiplications and divisions lead to
I'(n+0.5)(0.5 —n) =T0.5)(-1)"V7

We can now apply the reflection rule I'(2)['(1 — z) = 7/ sin(wz)
=T(0.5)(—1)"/7

™

sin(m(n 4+ 0.5))
We lobserve that for integer values sin(w(n + 0.5)) alternates between -1 and 1, to be
precise sin(m(n + 0.5)) = (—1)" for integers n and as additionally 1/(—1)" = (-1)"
we get

r(—1)" = D(0.5)(~1)" V7

We can now first divide the equation by (—1)". We consider the reflection rule
['(2)I(1 — z) = 7/ sin(7z) with z = 0.5 to get I'2(0.5) = 7. The identity

m™T=T


https://www.wolframalpha.com/input/?i=sin%28pi%28n%2B0.5%29%29

concludes the proof for equation [} Therefore we have
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and finally we get the formula that concludes the proof
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WolframAlpha
MathStackexchange
Taylor’s theorem: If A(z) is the generating function for a sequence ag,ay,... then

n = A (0)/n! where A™) is the nth derivate of A and 0! = 1.
The Taylor series of function f(z) is defined as
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The Taylor series of \2/% with center 0 (=Maclaurin) is

87 .2 685 4 23675 4,
[2"] \2/% can be read directly from that series, for example
2 + 322 685

3
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To get an explicit formula, we split the term into two summands

2+ 322 2 322
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Correction: Missed the factor 5. Using the lemma -, (”;i;l)z" = ﬁ from the

lecture we get 1/v/1-5z=3%" ("F957Y). Therefore we get
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https://www.wolframalpha.com/input/?i=%282%2B3z%C2%B2%29%2F%28sqrt%281-5z%29%29
https://math.stackexchange.com/questions/1539750/zn-notation/1539760#1539760

We can now right shift zA(z) = > <, an—12" or in other words [2"]A(z) = A, —
[2"])zA(z) = A,,_1 twice which leads to
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and therefore
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Leaves
Claim: A full t-ary tree with n internal nodes has tn + 1 nodes total.

Proof. There are two types of nodes: Nodes with and nodes without parents. A tree
has exactly one node with no parent. We can count the nodes with a parent by taking
the number of parents in the tree n and multiplying by the branching factor ¢. This
concludes the proof.

By our claim, the number of leaves in a full ¢-ary tree with n internal nodes is (tn +
H—n=(@t-1)n+1

Functional equation
https://math.stackexchange.com/questions/3179040/generalizing-a-formula-for-enumerating-root

Claim: The number a,, of t-ary trees with n internal nodes is given by

= e (n) ©

Proof. t-ary trees A; can be formally described by

.At =040 x .Ai
where [J symbolise external and o internal nodes. Thus, the generating function

A(z) = Z anz"
n>0

satisfies the relation

A(z) =1+ zA(2)".
Note from presentations: We’re actually done here.

Setting A;(z) = A(z) — 1 we get


https://math.stackexchange.com/questions/3179040/generalizing-a-formula-for-enumerating-rooted-k-ary-trees-from-doing-so-with-ter

Theorem (Lagrange’s inversion formula): Let ¢(x) be a power series with
¢(0) # 0 and y(x) the (unique) power series solution of the equation y(x) =
z@(y(x)). Then y(z) is invertible and the n-th coefficient of g(y(z)) (where
g(x) is an arbitrary power series) is given by

= L[ 1)g! (w) ()" (9)

[2"]9(y(2)) = —

—

By using@with #(2)=(1+2)%, y=A (forn>1)

an = [2"] A(z) = [u" ] (1 +w)™

(") =T ()

Note that [u"~1] just selects the (n — 1)th coefficient of (1 + u)'™. By symmetry the
"starting side" is irrelevant. Start counting at 0. This is equal to (ntfl). Example for

n=t=3 (J%) =36

S|

(14 u)*3 = + 9u® + 36u” + 84u® + 126u° + 126u* + 84u® + 36u” + Ju + 1

This concludes the proof. Thus, we get the functional equation

0= E et (n)

n>0

Example: For t = 4 we can calculate ag = 1, a1 = 1, as = 4, az = 22 leading to

A(z) = 120 + 121 + 422 + 2223 ..

O

Figure 1: One single external (= no children) node, 0 internal nodes (=129)

Figure 2: 1 internal, 4 external (= no children) nodes (=121)



Exercise 55
https://math.stackexchange.com/q/3025656/844881
By the structure of the equation we get

T(z)=2" +225T(2)? = 0=2T(2)*> - T(2) + 2*
which we can solve using (—b & v/b2 — 4ac)/(2a) to get

1 — 42224
222

Note that the + of the £+ doesn’t lead to a power series, so we take the -. After
applying the identity /1 — 426 = (1 — 42%)'/2 we can use the binomial formula @ to

get N (122)(_4),12% (11)
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Now replace n by (n —4)/6 to get
. 6 ((n—4)/3
" n+2\(n—4)/6

This does not give the correct result

... but in the lecture an example was done in a similar fashion, so it might make sense
to do it better than I did.

We saw in the lecture that (17/L2) = (71)”*1%W, so there are only odd

numbers in the numerator, so we can add the even numbers to get
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https://math.stackexchange.com/q/3025656/844881

So all in all we get
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With left shifting we get (as the first coefficient in the taylor series of v/1 — 426 is 1)
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Considering that (—1)" - (—4)"/22" = 1 we can simplify this to

Y20 "
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Note that in this sum the z with the least exponent is z® for n = 0. Therefore, we
don’t have to make a complete left shift (including extracting the first coefficient from
the sum) but can divide directly

- _9. Z n+1 L6n—1

which is

Because of the exponent of z we then replace n with "T'H
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The series expansion of T'(z) is

244 210 419216 1 5522 4 14228 449234 1132240 ..


https://en.wikiversity.org/wiki/Calculus_of_generating_functions

Exercise 56

https://www.whitman.edu/mathematics/cgt__online/book/section03.05.html

A bijection is not the preferred approach. It would be better to use sequence construc-
tions.

Plane trees are also called ordered trees.

A Dyck word is a string of ¢ 1’s and ¢ 2’s such that in every prefix, the number of 1’s
is at least as high as the number of 2’s. Let W, be the set of all Dyck words on i 1’s
and ¢ 2’s. Tt is known that for the Catalan numbers C,, = |W,|.

We now show a bijection from ordered trees to W,,.

w= 1121221212

Given Dyck word w, form an ordered tree as follows:
o Draw the root.
e Read w from left to right.

For 1, add a new rightmost child to the current vertex and move to it. For 2, go
up to the parent of the current vertex.

For any prefix of w with a 1s and b 2s, the depth of the vertex you reach is a — b > 0,
so you do not go above the root. At the end, a = b = m and the depth isa —b =0
(the root).

Conversely, trace an ordered tree counterclockwise from the root. Label each edge 1
going down its left side, and 2 going up its right.

Thus, W, is in bijection with ordered trees on m edges (hence m + 1 vertices), so the
Catalan number C,,, counts these too.

As a consequence, the number of plane rooted trees with n = m — 1 nodes is
o __ 1 20m—1)\ 1 (2m—2
T T 1+ I\ m=1 ) m\m-1

Exercise 57

Presentations: The fixed edge on the "border" is important to avoid double counting.
Can also be solved by bijection to binary trees. Convex polygons are sufficient.



The collection T of all triangulations of regular polygons, with size defined as the
number of triangles, is a combinatorial class, whose counting sequence starts as Ty =
1,71 =115 =2,T3 =5,T, = 14,Ts = 42.
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Fix n + 2 points arranged in anticlockwise order on a circle and conventionally num-
bered from 0 to n + 1 (for instance the (n + 2)th roots of unity). A triangulation is
defined as a (maximal) decomposition of the convex (n 4 2)-gon defined by the points
into n triangles (figure in the beginning). The size of the triangulation is the number
of triangles; that is, n. Given a triangulation, we define its root as a triangle chosen in
some conventional and unambiguous manner (e.g., at the start, the triangle that con-
tains the two smallest labels). Then, a triangulation decomposes into its root triangle
and two subtriangulations (that may well be empty) appearing on the left and right
sides of the root triangle; the decomposition is illustrated by the following diagram:

The class T of all triangulations can be specified recursively as

T={+(TxAxT)

provided that we agree to consider a 2-gon (a segment) as giving rise to an empty
triangulation of size 0. (The subtriangulations are topologically and combinatorially
equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently,
the OGF T'(z) satisfies the equation T'(z) = 1+27(2)?, so that T'(z) = 5 (1—+/1 — 4z).
This is the same OGF as the OGF of the Catalan numbers. Therefore, we get that
the triangulations are enumerated by Catalan numbers:

Tn—Cn—1(2n>
n+1\n
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