Exercise 6

Discrete Mathematics

November 19, 2020
https://aofa.cs.princeton.edu/30gf/
https://www.youtube.com/watch?v=-drdeNMoe8w
https://www.math.upenn.edu/~wilf/gfology2.pdf

51

https://math.stackexchange.com/questions/1540225/closed-form-expression-for-sum-k-0nk2-3k-2
https://math.stackexchange.com/questions/3437722/finding-a-closed-form-expression-for-sum-k-
We know from the lecture that

$$
\begin{equation*}
\sum_{n \geq 0}\binom{n+k-1}{k-1} z^{n}=\frac{1}{(1-z)^{k}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!} \tag{2}
\end{equation*}
$$

and (Cauchy product)

$$
\begin{equation*}
\sum_{n \geq 0} a_{n} z^{n} \cdot \sum_{n \geq 0} b_{n} z^{n}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) z^{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+z+z^{2}+\cdots=\frac{1}{1-z} \tag{4}
\end{equation*}
$$

Let $a_{n}=\left(k^{2}+3 k+2\right)$ and $b_{n}=1$. Note that $k^{2}+3 k+2=(k+2)(k+1)$.
We apply 3 to get

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(k+1)(k+2)\right) x^{n}=\sum_{n \geq 0}(k+1)(k+2) x^{n} \cdot \sum_{n \geq 0} x^{n} \tag{5}
\end{equation*}
$$

By 2 we get $(k+2)(k+1)=2\binom{k+2}{2}$. We can then apply 1 to get

$$
\sum_{n \geq 0}(k+1)(k+2) x^{n}=2 \sum_{n \geq 0}\binom{k+2}{2} x^{n}=\frac{2}{(1-x)^{3}} .
$$

Additionally, we get by 4 that

$$
\sum_{n \geq 0} x^{n}=\frac{1}{1-z}
$$

So both factors from 5 give

$$
\frac{2}{(1-x)^{k}} \cdot \frac{1}{1-x}=\frac{2}{(1-x)^{4}}
$$

which we can again plug into 1 to get

$$
\frac{2}{(1-x)^{4}}=2 \sum_{n \geq 0}\binom{n+3}{3} x^{n}
$$

so $a_{n}=2\binom{n+3}{3}$ which we can now plug into 2 to finally get

$$
\sum_{k=0}^{n}\left(k^{2}+3 k+2\right)=\frac{(n+3)(n+2)(n+1)}{3}
$$

Exercise 52

https://math.stackexchange.com/questions/340124/binomial-coefficients-1-2-choose-k
https://en.wikipedia.org/wiki/Factorial\#Factorial_of_non-integer_values
https://en.wikipedia.org/wiki/Generating_function\#Rational_functions
https://math.stackexchange.com/questions/69270/show-sum-limits-n-0-infty2n-choose-nxn-1-4x-1
https://math.stackexchange.com/questions/205898/how-to-show-that-1-over-sqrt1-4x-generates-s
https://math.stackexchange.com/questions/379249/proving-frac1-sqrt1-4x-sum-n-geq02n-choose-n
We know from the lecture that

$$
\begin{equation*}
\sum_{n \geq 0}\binom{\alpha}{n} z^{n}=(1+z)^{\alpha} \tag{6}
\end{equation*}
$$

Substituting $u:=-4 z$ we calculate

$$
\frac{1}{\sqrt{1-4 z}}=(1+u)^{-0.5}=\sum_{n \geq 0}\binom{-0.5}{n}(-4 z)^{n}=\sum_{n \geq 0}\binom{-0.5}{n}(-1)^{n} 4^{n} z^{n}
$$

It is known that

$$
\binom{x}{y}=\frac{\Gamma(x+1)}{\Gamma(y+1) \Gamma(x-y+1)}
$$

so we get

$$
\binom{-0.5}{n}=\frac{\Gamma(0.5)}{\Gamma(n+1) \Gamma(0.5-n)}
$$

Coming from the other side we see

$$
\binom{2 n}{n}=\frac{\Gamma(2 n+1)}{\Gamma(n+1) \Gamma(2 n-n+1)}
$$

By the recursion formula $\Gamma(s+1)=s \Gamma(s)$ for complex s we get

$$
\binom{2 n}{n}=\frac{2 n \Gamma(2 n)}{n \Gamma(n) \cdot n \Gamma(n)}
$$

and by the duplication formula $\Gamma(2 z)=\pi^{-0.5} 2^{2 z-1} \Gamma(z) \Gamma(z+0.5)$ we get

$$
\binom{2 n}{n}=\frac{2 n \pi^{-0.5} 2^{2 n-1} \Gamma(n) \Gamma(n+0.5)}{n \Gamma(n) \cdot n \Gamma(n)}=\frac{4^{n} \Gamma(n+0.5)}{\Gamma(n+1) \sqrt{\pi}}
$$

Adding the factor $(-1)^{n} 4^{n}$ again, we now show the identity

$$
\begin{equation*}
\frac{4^{n} \Gamma(n+0.5)}{\Gamma(n+1) \sqrt{\pi}}=\frac{\Gamma(0.5)}{\Gamma(n+1) \Gamma(0.5-n)}(-1)^{n} 4^{n} \tag{7}
\end{equation*}
$$

Some multiplications and divisions lead to

$$
\Gamma(n+0.5) \Gamma(0.5-n)=\Gamma(0.5)(-1)^{n} \sqrt{\pi}
$$

We can now apply the reflection rule $\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z)$

$$
\frac{\pi}{\sin (\pi(n+0.5))}=\Gamma(0.5)(-1)^{n} \sqrt{\pi}
$$

We observe that for integer values $\sin (\pi(n+0.5))$ alternates between -1 and 1 , to be precise $\sin (\pi(n+0.5))=(-1)^{n}$ for integers n and as additionally $1 /(-1)^{n}=(-1)^{n}$ we get

$$
\pi(-1)^{n}=\Gamma(0.5)(-1)^{n} \sqrt{\pi}
$$

We can now first divide the equation by $(-1)^{n}$. We consider the reflection rule $\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z)$ with $z=0.5$ to get $\Gamma^{2}(0.5)=\pi$. The identity

$$
\pi=\pi
$$

concludes the proof for equation 7 Therefore we have

$$
\binom{2 n}{n}=\binom{-0.5}{n}(-1)^{n} 4^{n}
$$

and finally we get the formula that concludes the proof

$$
\frac{1}{\sqrt{1-4 z}}=\sum_{n \geq 0}\binom{2 n}{n} z^{n}
$$

53

WolframAlpha

MathStackexchange
Taylor's theorem: If $A(x)$ is the generating function for a sequence a_{0}, a_{1}, \ldots then $a_{n}=A^{(n)}(0) / n!$ where $A^{(n)}$ is the nth derivate of A and $0!=1$.

The Taylor series of function $f(x)$ is defined as

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

The Taylor series of $\frac{2+3 z^{2}}{\sqrt{1-5 z}}$ with center 0 (=Maclaurin) is

$$
2+5 z+\frac{87}{4} z^{2}+\frac{685}{8} z^{3}+\frac{23675}{64} z^{4}+\ldots
$$

$\left[z^{n}\right] \frac{2+3 z^{2}}{\sqrt{1-5 z}}$ can be read directly from that series, for example

$$
\left[z^{3}\right] \frac{2+3 z^{2}}{\sqrt{1-5 z}}=\frac{685}{8}
$$

To get an explicit formula, we split the term into two summands

$$
\frac{2+3 z^{2}}{\sqrt{1-5 z}}=\frac{2}{\sqrt{1-5 z}}+\frac{3 z^{2}}{\sqrt{1-5 z}}
$$

Correction: Missed the factor 5. Using the lemma $\sum_{n \geq 0}\binom{n+k-1}{k-1} z^{n}=\frac{1}{(1-z)^{k}}$ from the lecture we get $1 / \sqrt{1-5 z}=\sum_{n \geq 0}\binom{n+0.5-1}{0.5-1}$. Therefore we get

$$
\frac{2+3 z^{2}}{\sqrt{1-5 z}}=2 \sum_{n \geq 0}\binom{n-0.5}{-0.5} z^{n}+3 z^{2} \sum_{n \geq 0}\binom{n-0.5}{-0.5} z
$$

We can now right shift $z A(z)=\sum_{n \geq 1} a_{n-1} z^{n}$ or in other words $\left[z^{n}\right] A(z)=A_{n} \rightarrow$ $\left[z^{n}\right] z A(z)=A_{n-1}$ twice which leads to

$$
\frac{2+3 z^{2}}{\sqrt{1-5 z}}=2 \sum_{n \geq 0}\binom{n-0.5}{-0.5} z^{n}+3 \sum_{n \geq 0}\binom{n-2.5}{-0.5} z^{n}
$$

and therefore

$$
\left[z^{n}\right] \frac{2+3 z^{2}}{\sqrt{1-5 z}}=2\binom{n-0.5}{-0.5}+3\binom{n-2.5}{-0.5}
$$

54

Leaves

Claim: A full t-ary tree with n internal nodes has $t n+1$ nodes total.
Proof. There are two types of nodes: Nodes with and nodes without parents. A tree has exactly one node with no parent. We can count the nodes with a parent by taking the number of parents in the tree n and multiplying by the branching factor t. This concludes the proof.

By our claim, the number of leaves in a full t-ary tree with n internal nodes is $(t n+$ 1) $-n=(t-1) n+1$

Functional equation

https://math.stackexchange.com/questions/3179040/generalizing-a-formula-for-enumerating-root
Claim: The number a_{n} of t-ary trees with n internal nodes is given by

$$
\begin{equation*}
a_{n}=\frac{1}{(t-1) n+1}\binom{t n}{n} . \tag{8}
\end{equation*}
$$

Proof. t-ary trees \mathcal{A}_{t} can be formally described by

$$
\mathcal{A}_{t}=\square+\circ \times \mathcal{A}_{t}^{t} .
$$

wheresymbolise external and \circ internal nodes. Thus, the generating function

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

satisfies the relation

$$
A(z)=1+z A(z)^{t}
$$

Note from presentations: We're actually done here.
Setting $\tilde{A}_{t}(z)=A(z)-1$ we get

$$
\tilde{A}(z)=z(1+\tilde{A}(z))^{t}
$$

Theorem (Lagrange's inversion formula): Let $\phi(x)$ be a power series with $\phi(0) \neq 0$ and $y(x)$ the (unique) power series solution of the equation $y(x)=$ $x \phi(y(x))$. Then $y(x)$ is invertible and the n-th coefficient of $g(y(x))$ (where $g(x)$ is an arbitrary power series) is given by

$$
\begin{equation*}
\left[x^{n}\right] g(y(x))=\frac{1}{n}\left[u^{n-1}\right] g^{\prime}(u) \phi(u)^{n} \tag{9}
\end{equation*}
$$

By using 9 with $\phi(z)=(1+z)^{2}, y=\tilde{A}($ for $n \geq 1)$

$$
\begin{aligned}
a_{n} & =\left[z^{n}\right] \tilde{A}(z)=\frac{1}{n}\left[u^{n-1}\right](1+u)^{t n} \\
& =\frac{1}{n}\binom{t n}{n-1}=\frac{1}{(t-1) n+1}\binom{t n}{n} .
\end{aligned}
$$

Note that $\left[u^{n-1}\right]$ just selects the $(n-1)$ th coefficient of $(1+u)^{t n}$. By symmetry the "starting side" is irrelevant. Start counting at 0 . This is equal to $\binom{t n}{n-1}$. Example for $n=t=3:\binom{3 \cdot 3}{3-1}=36$

$$
(1+u)^{3 \cdot 3}=u^{9}+9 u^{8}+\mathbf{3 6} u^{7}+84 u^{6}+126 u^{5}+126 u^{4}+84 u^{3}+\mathbf{3 6} u^{2}+9 u+1
$$

This concludes the proof. Thus, we get the functional equation

$$
A(z)=\sum_{n \geq 0} \frac{1}{(t-1) n+1}\binom{t n}{n} z^{n}
$$

Example: For $t=4$ we can calculate $a_{0}=1, a_{1}=1, a_{2}=4, a_{3}=22$ leading to

$$
A(z)=1 z^{0}+1 z^{1}+4 z^{2}+22 z^{3} \ldots
$$

Figure 1: One single external ($=$ no children) node, 0 internal nodes $\left(=1 z^{0}\right)$

Figure 2: 1 internal, 4 external ($=$ no children) nodes $\left(=1 z^{1}\right)$

Exercise 55

https://math.stackexchange.com/q/3025656/844881

By the structure of the equation we get

$$
T(z)=z^{4}+z^{2} * T(z)^{2} \Longrightarrow 0=z^{2} T(z)^{2}-T(z)+z^{4}
$$

which we can solve using $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$ to get

$$
\begin{equation*}
T(z)=\frac{1 \pm \sqrt{1-4 z^{2} z^{4}}}{2 z^{2}} \tag{10}
\end{equation*}
$$

Note that the + of the \pm doesn't lead to a power series, so we take the -. After applying the identity $\sqrt{1-4 z^{6}}=\left(1-4 z^{6}\right)^{1 / 2}$ we can use the binomial formula 6 to get

$$
\begin{equation*}
\sqrt{1-4 z^{6}}=\sum_{n \geq 0}\binom{1 / 2}{n}(-4)^{n} z^{6 n} \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
T(z) & =\frac{1}{2 z^{2}}\left(1-\sum_{n \geq 0}\binom{0.5}{n}\left(-4 z^{6}\right)^{n}\right) \\
& =\frac{1}{2 z^{2}}\left(1-\left(1-\frac{0.5}{1!} 4 z^{6}+\frac{0.5(0.5-1)}{2!} 4^{2} z^{12}-\frac{0.5(0.5-1)(0.5-2)}{3!} 4^{3} z^{18}+\ldots\right)\right) \\
& =\frac{1}{2 z^{2}}\left(\frac{1}{2} 4 z^{6}+\frac{1}{4} \cdot \frac{1}{2!} 4^{2} z^{12}+\frac{1}{3!} \cdot \frac{3}{8} 4^{3} z^{18}+\frac{1}{16} \cdot \frac{5 \cdot 3 \cdot 1}{4!} 4^{4} z^{24}+\ldots\right) \\
& =z^{4}+\frac{1}{2} \cdot \frac{2!}{1!11!} z^{10}+\frac{1}{3} \cdot \frac{4!}{2!2!} z^{16}+\frac{1}{4} \cdot \frac{6!}{3!3!} z^{22}+\ldots \\
& =\sum_{n \geq 0} \frac{1}{1+n}\binom{2 n}{n} z^{6 n+4}
\end{aligned}
$$

Now replace n by $(n-4) / 6$ to get

$$
t_{n}=\frac{6}{n+2}\binom{(n-4) / 3}{(n-4) / 6}
$$

This does not give the correct result

... but in the lecture an example was done in a similar fashion, so it might make sense to do it better than I did.
We saw in the lecture that $\binom{1 / 2}{n}=(-1)^{n-1} \frac{1}{2^{n}} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-3)}{n!}$, so there are only odd numbers in the numerator, so we can add the even numbers to get

$$
\begin{equation*}
\binom{1 / 2}{n}=\frac{(-1)^{n-1}}{2^{n}} \frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots(2 n-3)(2 n-2)}{n!\cdot 2^{n-1} 1 \cdot 2 \ldots(n-1)}=\frac{(-1)^{n-1}}{2^{2 n-1}} \frac{(2 n-2)!}{n!(n-1)!} \tag{12}
\end{equation*}
$$

So all in all we get

$$
T(z)=\frac{1-\sum_{n \geq 0} \frac{(-1)^{n-1}}{2^{2 n-1}} \frac{(2 n-2)!}{n!(n-1)!}(-4)^{n} z^{6 n}}{2 z^{2}}
$$

With left shifting we get (as the first coefficient in the taylor series of $\sqrt{1-4 z^{6}}$ is 1)

$$
\begin{aligned}
T(z) & =\frac{1}{2 z^{2}}-\frac{1+\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n}} \frac{(2 n)!}{(n+1)!(n)!}(-4)^{n+1} z^{6 n+1}}{2 z^{2}} \\
& =\frac{1}{2 z^{2}}-\frac{1}{2 z^{2}}+\frac{\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n}} \frac{(2 n)!}{(n+1)!(n)!}(-4)^{n+1} z^{6 n}}{2 z}
\end{aligned}
$$

Considering that $(-1)^{n} \cdot(-4)^{n} / 2^{2 n}=1$ we can simplify this to

$$
T(z)=-2 \cdot \frac{\sum_{n \geq 0} \frac{(2 n)!}{(n+1)!(n)!} z^{6 n}}{z}
$$

Note that in this sum the z with the least exponent is z^{6} for $n=0$. Therefore, we don't have to make a complete left shift (including extracting the first coefficient from the sum) but can divide directly

$$
T(z)=-2 \cdot \sum_{n \geq 0} \frac{(2 n)!}{(n+1)!(n)!} z^{6 n-1}
$$

which is

$$
T(z)=-2 \cdot \sum_{n \geq 0}\binom{2 n}{n} \frac{1}{n+1} z^{6 n-1}
$$

Because of the exponent of z we then replace n with $\frac{n+1}{6}$

$$
T(z)=-2 \cdot \sum_{n \geq 0}\binom{\frac{n+1}{3}}{\frac{n+1}{6}} \frac{6}{n+7}
$$

The series expansion of $T(z)$ is

$$
z^{4}+z^{10}+2 z^{16}+5 z^{22}+14 z^{28}+42 z^{34}+132 z^{40} \ldots \ldots
$$

Exercise 56

https://www.whitman.edu/mathematics/cgt_online/book/section03.05.html
A bijection is not the preferred approach. It would be better to use sequence constructions.

Plane trees are also called ordered trees.
A Dyck word is a string of $i 1$'s and $i 2$'s such that in every prefix, the number of 1 's is at least as high as the number of 2's. Let W_{n} be the set of all Dyck words on i 1's and $i 2$'s. It is known that for the Catalan numbers $C_{n}=\left|W_{n}\right|$.

We now show a bijection from ordered trees to W_{n}.

$$
w=1121221212
$$

Given Dyck word w, form an ordered tree as follows:

- Draw the root.
- Read w from left to right.

For 1, add a new rightmost child to the current vertex and move to it. For 2, go up to the parent of the current vertex.

For any prefix of w with a s and $b 2$ s, the depth of the vertex you reach is $a-b \geq 0$, so you do not go above the root. At the end, $a=b=m$ and the depth is $a-b=0$ (the root).
Conversely, trace an ordered tree counterclockwise from the root. Label each edge 1 going down its left side, and 2 going up its right.

Thus, W_{n} is in bijection with ordered trees on m edges (hence $m+1$ vertices), so the Catalan number C_{m} counts these too.

As a consequence, the number of plane rooted trees with $n=m-1$ nodes is

$$
C_{m-1}=\frac{1}{m-1+1}\binom{2(m-1)}{m-1}=\frac{1}{m}\binom{2 m-2}{m-1}
$$

Exercise 57

Presentations: The fixed edge on the "border" is important to avoid double counting. Can also be solved by bijection to binary trees. Convex polygons are sufficient.

The collection \mathcal{T} of all triangulations of regular polygons, with size defined as the number of triangles, is a combinatorial class, whose counting sequence starts as $T_{0}=$ $1, T_{1}=1, T_{2}=2, T_{3}=5, T_{4}=14, T_{5}=42$.

Fix $n+2$ points arranged in anticlockwise order on a circle and conventionally numbered from 0 to $n+1$ (for instance the $(n+2)$ th roots of unity). A triangulation is defined as a (maximal) decomposition of the convex $(n+2)$-gon defined by the points into n triangles (figure in the beginning). The size of the triangulation is the number of triangles; that is, n. Given a triangulation, we define its root as a triangle chosen in some conventional and unambiguous manner (e.g., at the start, the triangle that contains the two smallest labels). Then, a triangulation decomposes into its root triangle and two subtriangulations (that may well be empty) appearing on the left and right sides of the root triangle; the decomposition is illustrated by the following diagram:

The class \mathcal{T} of all triangulations can be specified recursively as

$$
\mathcal{T}=\{\epsilon\}+(\mathcal{T} \times \Delta \times \mathcal{T})
$$

provided that we agree to consider a 2 -gon (a segment) as giving rise to an empty triangulation of size 0 . (The subtriangulations are topologically and combinatorially equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently, the OGF $T(z)$ satisfies the equation $T(z)=1+z T(z)^{2}$, so that $T(z)=\frac{1}{2 z}(1-\sqrt{1-4 z})$. This is the same OGF as the OGF of the Catalan numbers. Therefore, we get that the triangulations are enumerated by Catalan numbers:

$$
T_{n}=C_{n} \equiv \frac{1}{n+1}\binom{2 n}{n}
$$

