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https://math.stackexchange.com/questions/1540225/closed-form-expression-for-sum-k-0nk2-3k-2

https://math.stackexchange.com/questions/3437722/finding-a-closed-form-expression-for-sum-k-0nk23k2-using-generating-f

We know from the lecture that∑
n≥0

(
n+ k − 1

k − 1

)
zn =

1

(1− z)k
(1)

and (
α

n

)
=

α(α− 1) . . . (α− n+ 1)

n!
(2)

and (Cauchy product)

∑
n≥0

anz
n ·
∑
n≥0

bnz
n =

∑
n≥0

(
n∑

k=0

akbn−k

)
zn (3)

and
1 + z + z2 + · · · = 1

1− z
(4)

Let an = (k2 + 3k + 2) and bn = 1. Note that k2 + 3k + 2 = (k + 2)(k + 1).

We apply 3 to get
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∞∑
n=0

(
n∑

k=0

(k + 1)(k + 2)

)
xn =

∑
n≥0

(k + 1)(k + 2)xn ·
∑
n≥0

xn (5)

By 2 we get (k + 2)(k + 1) = 2
(
k+2
2

)
. We can then apply 1 to get

∑
n≥0

(k + 1)(k + 2)xn = 2
∑
n≥0

(
k + 2

2

)
xn =

2

(1− x)3
.

Additionally, we get by 4 that ∑
n≥0

xn =
1

1− z

So both factors from 5 give

2

(1− x)k
· 1

1− x
=

2

(1− x)4

which we can again plug into 1 to get

2

(1− x)4
= 2

∑
n≥0

(
n+ 3

3

)
xn

so an = 2
(
n+3
3

)
which we can now plug into 2 to finally get

n∑
k=0

(k2 + 3k + 2) =
(n+ 3)(n+ 2)(n+ 1)
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Exercise 52
https://math.stackexchange.com/questions/340124/binomial-coefficients-1-2-choose-k

https://en.wikipedia.org/wiki/Factorial#Factorial_of_non-integer_values

https://en.wikipedia.org/wiki/Generating_function#Rational_functions

https://math.stackexchange.com/questions/69270/show-sum-limits-n-0-infty2n-choose-nxn-1-4x-1-2

https://math.stackexchange.com/questions/205898/how-to-show-that-1-over-sqrt1-4x-generates-sum-n-0-infty-binom2n

https://math.stackexchange.com/questions/379249/proving-frac1-sqrt1-4x-sum-n-geq02n-choose-nxn

We know from the lecture that∑
n≥0

(
α

n

)
zn = (1 + z)α. (6)
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Substituting u := −4z we calculate

1√
1− 4z

= (1 + u)−0.5 =
∑
n≥0

(
−0.5

n

)
(−4z)n =

∑
n≥0

(
−0.5

n

)
(−1)n4nzn

It is known that (
x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)

so we get (
−0.5

n

)
=

Γ(0.5)

Γ(n+ 1)Γ(0.5− n)

Coming from the other side we see(
2n

n

)
=

Γ(2n+ 1)

Γ(n+ 1)Γ(2n− n+ 1)

By the recursion formula Γ(s+ 1) = sΓ(s) for complex s we get(
2n

n

)
=

2nΓ(2n)

nΓ(n) · nΓ(n)

and by the duplication formula Γ(2z) = π−0.522z−1Γ(z)Γ(z + 0.5) we get(
2n

n

)
=

2nπ−0.522n−1Γ(n)Γ(n+ 0.5)

nΓ(n) · nΓ(n)
=

4nΓ(n+ 0.5)

Γ(n+ 1)
√
π

Adding the factor (−1)n4n again, we now show the identity

4nΓ(n+ 0.5)

Γ(n+ 1)
√
π

=
Γ(0.5)

Γ(n+ 1)Γ(0.5− n)
(−1)n4n (7)

Some multiplications and divisions lead to

Γ(n+ 0.5)Γ(0.5− n) = Γ(0.5)(−1)n
√
π

We can now apply the reflection rule Γ(z)Γ(1− z) = π/ sin(πz)

π

sin(π(n+ 0.5))
= Γ(0.5)(−1)n

√
π

We observe that for integer values sin(π(n + 0.5)) alternates between -1 and 1, to be
precise sin(π(n + 0.5)) = (−1)n for integers n and as additionally 1/(−1)n = (−1)n

we get
π(−1)n = Γ(0.5)(−1)n

√
π

We can now first divide the equation by (−1)n. We consider the reflection rule
Γ(z)Γ(1− z) = π/ sin(πz) with z = 0.5 to get Γ2(0.5) = π. The identity

π = π
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concludes the proof for equation 7. Therefore we have(
2n

n

)
=

(
−0.5

n

)
(−1)n4n

and finally we get the formula that concludes the proof

1√
1− 4z

=
∑
n≥0

(
2n

n

)
zn
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WolframAlpha

MathStackexchange

Taylor’s theorem: If A(x) is the generating function for a sequence a0, a1, . . . then
an = A(n)(0)/n! where A(n) is the nth derivate of A and 0! = 1.

The Taylor series of function f(x) is defined as

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

The Taylor series of 2+3z2
√
1−5z

with center 0 (=Maclaurin) is

2 + 5z +
87

4
z2 +

685

8
z3 +

23675

64
z4 + . . .

[zn] 2+3z2
√
1−5z

can be read directly from that series, for example

[
z3
] 2 + 3z2√

1− 5z
=

685

8

To get an explicit formula, we split the term into two summands

2 + 3z2√
1− 5z

=
2√

1− 5z
+

3z2√
1− 5z

Correction: Missed the factor 5. Using the lemma
∑

n≥0

(
n+k−1
k−1

)
zn = 1

(1−z)k
from the

lecture we get 1/
√
1− 5z =

∑
n≥0

(
n+0.5−1
0.5−1

)
. Therefore we get

2 + 3z2√
1− 5z

= 2
∑
n≥0

(
n− 0.5

−0.5

)
zn + 3z2

∑
n≥0

(
n− 0.5

−0.5

)
z
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We can now right shift zA(z) =
∑

n≥1 an−1z
n or in other words [zn]A(z) = An →

[zn]zA(z) = An−1 twice which leads to

2 + 3z2√
1− 5z

= 2
∑
n≥0

(
n− 0.5

−0.5

)
zn + 3

∑
n≥0

(
n− 2.5

−0.5

)
zn

and therefore
[zn]

2 + 3z2√
1− 5z

= 2

(
n− 0.5

−0.5

)
+ 3

(
n− 2.5

−0.5

)
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Leaves
Claim: A full t-ary tree with n internal nodes has tn+ 1 nodes total.

Proof. There are two types of nodes: Nodes with and nodes without parents. A tree
has exactly one node with no parent. We can count the nodes with a parent by taking
the number of parents in the tree n and multiplying by the branching factor t. This
concludes the proof.

By our claim, the number of leaves in a full t-ary tree with n internal nodes is (tn +
1)− n = (t− 1)n+ 1

Functional equation
https://math.stackexchange.com/questions/3179040/generalizing-a-formula-for-enumerating-rooted-k-ary-trees-from-doing-so-with-ter

Claim: The number an of t-ary trees with n internal nodes is given by

an =
1

(t− 1)n+ 1

(
tn

n

)
. (8)

Proof. t-ary trees At can be formally described by

At = �+ ◦ × At
t.

where � symbolise external and ◦ internal nodes. Thus, the generating function

A(z) =
∑
n≥0

anz
n

satisfies the relation
A(z) = 1 + zA(z)t.

Note from presentations: We’re actually done here.

Setting Ãt(z) = A(z)− 1 we get

Ã(z) = z(1 + Ã(z))t
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Theorem (Lagrange’s inversion formula): Let φ(x) be a power series with
φ(0) 6= 0 and y(x) the (unique) power series solution of the equation y(x) =
xφ(y(x)). Then y(x) is invertible and the n-th coefficient of g(y(x)) (where
g(x) is an arbitrary power series) is given by

[xn]g(y(x)) =
1

n
[un−1]g′(u)φ(u)n (9)

By using 9 with φ(z) = (1 + z)2, y = Ã (for n ≥ 1)

an = [zn] Ã(z) =
1

n

[
un−1

]
(1 + u)tn

=
1

n

(
tn

n− 1

)
=

1

(t− 1)n+ 1

(
tn

n

)
.

Note that [un−1] just selects the (n − 1)th coefficient of (1 + u)tn. By symmetry the
"starting side" is irrelevant. Start counting at 0. This is equal to

(
tn

n−1

)
. Example for

n = t = 3:
(
3·3
3−1

)
= 36

(1 + u)3·3 = u9 + 9u8 + 36u7 + 84u6 + 126u5 + 126u4 + 84u3 + 36u2 + 9u+ 1

This concludes the proof. Thus, we get the functional equation

A(z) =
∑
n≥0

1

(t− 1)n+ 1

(
tn

n

)
zn

Example: For t = 4 we can calculate a0 = 1, a1 = 1, a2 = 4, a3 = 22 leading to

A(z) = 1z0 + 1z1 + 4z2 + 22z3 . . .

Figure 1: One single external (= no children) node, 0 internal nodes (=1z0)

Figure 2: 1 internal, 4 external (= no children) nodes (=1z1)
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Exercise 55
https://math.stackexchange.com/q/3025656/844881

By the structure of the equation we get

T (z) = z4 + z2 ∗ T (z)2 =⇒ 0 = z2T (z)2 − T (z) + z4

which we can solve using (−b±
√
b2 − 4ac)/(2a) to get

T (z) =
1±

√
1− 4z2z4

2z2
(10)

Note that the + of the ± doesn’t lead to a power series, so we take the -. After
applying the identity

√
1− 4z6 = (1 − 4z6)1/2 we can use the binomial formula 6 to

get √
1− 4z6 =

∑
n≥0

(
1/2

n

)
(−4)nz6n (11)

T (z) =
1

2z2

1−
∑
n≥0

(
0.5

n

)
(−4z6)n


=

1

2z2

(
1−

(
1− 0.5

1!
4z6 +

0.5(0.5− 1)

2!
42z12 − 0.5(0.5− 1)(0.5− 2)

3!
43z18 + . . .

))
=

1

2z2

(
1

2
4z6 +

1

4
· 1

2!
42z12 +

1

3!
· 3
8
43z18 +

1

16
· 5 · 3 · 1

4!
44z24 + . . .

)
= z4 +

1

2
· 2!

1!1!
z10 +

1

3
· 4!

2!2!
z16 +

1

4
· 6!

3!3!
z22 + . . .

=
∑
n≥0

1

1 + n

(
2n

n

)
z6n+4

Now replace n by (n− 4)/6 to get

tn =
6

n+ 2

(
(n− 4)/3

(n− 4)/6

)

This does not give the correct result
... but in the lecture an example was done in a similar fashion, so it might make sense
to do it better than I did.

We saw in the lecture that
(
1/2
n

)
= (−1)n−1 1

2n
1·3·5...(2n−3)

n! , so there are only odd
numbers in the numerator, so we can add the even numbers to get(

1/2

n

)
=

(−1)n−1

2n
1 · 2 · 3 · 4 . . . (2n− 3)(2n− 2)

n! · 2n−11 · 2 . . . (n− 1)
=

(−1)n−1

22n−1

(2n− 2)!

n!(n− 1)!
(12)
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So all in all we get

T (z) =
1−

∑
n≥0

(−1)n−1

22n−1

(2n−2)!
n!(n−1)! (−4)nz6n

2z2

With left shifting we get (as the first coefficient in the taylor series of
√
1− 4z6 is 1)

T (z) =
1

2z2
−

1 +
∑

n≥0
(−1)n

22n
(2n)!

(n+1)!(n)! (−4)n+1z6n+1

2z2

=
1

2z2
− 1

2z2
+

∑
n≥0

(−1)n

22n
(2n)!

(n+1)!(n)! (−4)n+1z6n

2z

Considering that (−1)n · (−4)n/22n = 1 we can simplify this to

T (z) = −2 ·
∑

n≥0
(2n)!

(n+1)!(n)!z
6n

z

Note that in this sum the z with the least exponent is z6 for n = 0. Therefore, we
don’t have to make a complete left shift (including extracting the first coefficient from
the sum) but can divide directly

T (z) = −2 ·
∑
n≥0

(2n)!

(n+ 1)!(n)!
z6n−1

which is

T (z) = −2 ·
∑
n≥0

(
2n

n

)
1

n+ 1
z6n−1

Because of the exponent of z we then replace n with n+1
6

T (z) = −2 ·
∑
n≥0

(n+1
3

n+1
6

)
6

n+ 7

The series expansion of T (z) is

z4 + z10 + 2z16 + 5z22 + 14z28 + 42z34 + 132z40 . . . ...
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Exercise 56
https://www.whitman.edu/mathematics/cgt_online/book/section03.05.html

A bijection is not the preferred approach. It would be better to use sequence construc-
tions.

Plane trees are also called ordered trees.

A Dyck word is a string of i 1’s and i 2’s such that in every prefix, the number of 1’s
is at least as high as the number of 2’s. Let Wn be the set of all Dyck words on i 1’s
and i 2’s. It is known that for the Catalan numbers Cn = |Wn|.

We now show a bijection from ordered trees to Wn.

Given Dyck word w, form an ordered tree as follows:

• Draw the root.

• Read w from left to right.

For 1, add a new rightmost child to the current vertex and move to it. For 2, go
up to the parent of the current vertex.

For any prefix of w with a 1s and b 2s, the depth of the vertex you reach is a− b ≥ 0,
so you do not go above the root. At the end, a = b = m and the depth is a − b = 0
(the root).

Conversely, trace an ordered tree counterclockwise from the root. Label each edge 1
going down its left side, and 2 going up its right.

Thus, Wn is in bijection with ordered trees on m edges (hence m+ 1 vertices), so the
Catalan number Cm counts these too.

As a consequence, the number of plane rooted trees with n = m− 1 nodes is

Cm−1 =
1

m− 1 + 1

(
2(m− 1)

m− 1

)
=

1

m

(
2m− 2

m− 1

)

Exercise 57
Presentations: The fixed edge on the "border" is important to avoid double counting.
Can also be solved by bijection to binary trees. Convex polygons are sufficient.
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The collection T of all triangulations of regular polygons, with size defined as the
number of triangles, is a combinatorial class, whose counting sequence starts as T0 =
1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

Fix n + 2 points arranged in anticlockwise order on a circle and conventionally num-
bered from 0 to n + 1 (for instance the (n + 2)th roots of unity). A triangulation is
defined as a (maximal) decomposition of the convex (n+2)-gon defined by the points
into n triangles (figure in the beginning). The size of the triangulation is the number
of triangles; that is, n. Given a triangulation, we define its root as a triangle chosen in
some conventional and unambiguous manner (e.g., at the start, the triangle that con-
tains the two smallest labels). Then, a triangulation decomposes into its root triangle
and two subtriangulations (that may well be empty) appearing on the left and right
sides of the root triangle; the decomposition is illustrated by the following diagram:

The class T of all triangulations can be specified recursively as

T = {ε}+ (T ×4× T )

provided that we agree to consider a 2-gon (a segment) as giving rise to an empty
triangulation of size 0. (The subtriangulations are topologically and combinatorially
equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently,
the OGF T (z) satisfies the equation T (z) = 1+zT (z)2, so that T (z) = 1

2z (1−
√
1− 4z).

This is the same OGF as the OGF of the Catalan numbers. Therefore, we get that
the triangulations are enumerated by Catalan numbers:

Tn = Cn ≡ 1

n+ 1

(
2n

n

)
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