
On eliminating if-conversions
Florian Freitag

e11908096@student.tuwien.ac.at
TU Wien

Abstract
Most computer architectures feature SIMD (Single Instruction Multiple Data)

instruction. Since their introduction, compilers attempted to exploit them through
auto-vectorization to generate faster code. If-conversion is one established technique

they apply to vectorize loops with conditions. In this paper, we explore modern
attempts to eliminate if-conversions to further improve performance.

1 Introduction
SIMD instructions (Single Instruction Mul-
tiple Data) allow to perform the same
arithmetic operation on multiple operands.
Utilizing these instructions improves perfor-
mance [1]. These instructions often operate on
a bit length between 128 and 512 bits.

To reverse an ASCII string, 1.5 move in-
structions are needed per character (three
instructions to swap two characters). With the
128bit pshufb instruction on the intel x86 ar-
chitecture [1], it is possible to reverse 16 bytes
at once in three instructions (the pshufb in-
struction requires a load to and store from a
128bit xmm register), which would otherwise
need 24 instructions. Therefore the instruc-
tions needed per character can be reduced
from 1.5 to 0.1875.

While most architectures have some form of
SIMD instructions, the exact instructions can
differ quite a lot and even on the same ar-
chitecture, not all SIMD instructions might
be supported by all processors. Therefore, im-
plementing a program by hand is not only
error-prone and requires sophisticated knowl-
edge of the architecture but also reduces
portability.

Compilers often employ many optimizations,
either on the flow graphs and data flow graphs
or on the generated instructions directly [2].

One of these optimizations can be to search
for patterns that qualify for SIMD instruc-

tions for the target architecture in a step
called auto-vectorization. Therefore, program-
mers can write their code in a not-vectorized
manner and can rely on the compiler to choose
the best SIMD instruction.

Auto-vectorization promises great perfor-
mance improvements and has therefore been a
research topic since the introduction of SIMD
instructions. The reason for the extensive
research is also that SIMD instructions intro-
duce some restrictions. Since vectorized code
executes multiple iterations at once it is dif-
ficult and often impossible to vectorize loops
where one iteration depends on a side effect
of the previous iteration. Moreover, SIMD in-
structions execute the same operations on all
operands which makes loops with non-linear
control flow difficult to vectorize.

2 If-Conversion
If-conversion is a technique to rewrite control
dependency as data-dependency that was first
developed to allow auto-vectorization to vec-
torize loops with control-flow [3].

Control-dependency means here that a state-
ment will be executed, depending on the
control flow. Whereas data-dependency de-
scribes a statement that depends on other
data, that must be computed first. While
control-dependent code cannot simply get
vectorized, no such problem exists for data de-
pendencies.

1

While this technique was initially developed,
for auto-vectorization, it can also be utilized
simply because of its property reduce branch-
ing code. For example, if-conversion have
gained new importance with the introduction
of branch prediction in CPUs, as branches
that are hard to predict can be entirely elimi-
nated and therefore miss prediction by branch
predictors can be avoided [4]. Some recent
research even used this technique to prevent
the exploitation of side-channel vulnerabilities
(timing attacks) in programs [5].

if (x > 0) {
 y += 3
}

Listing 1:
Branching code

char c = x > 0;
char o = 3 * c;
y += o;

Listing 2:
Unvectorized if-conversion

In Listing 1 we can see a simple control-flow
dependency, where the value of y only gets
modified if x is a non-zero positive integer.

Listing 2 archives the same effect without
branching. In this particular example, we ex-
ploit that conditions in C are mapped to 1 or
0 and that 1 is the neutral element of multi-
plication and zero is the neutral of addition.

In most cases, this transformation on its own
wouldn’t bring any speedups, but mostly re-
duce the codes performance, especially since
modern hardware and their branch prediction
is quite good [4].

However, this transformation allows us to uti-
lize SIMD instructions. To apply this for loop
vectorization we need to replace all operations
from Listing 2 with SIMD versions. The con-
dition result will be replaced by a vector that
holds multiple condition results and is often
referred to as a mask. With that mask, we
can then execute a vectorized version of the
multiplication and addition. Some SIMD in-
structions are designed with that mask and
will conditionally execute depending on a
mask like Intel’s vmaskmov [1].

While if-conversion is a useful tool and can
lead to performance improvements [3], it re-
places jumps with arithmetic operations which
are not free in terms of computation. Even
more performance can be gained by eliminat-
ing the if-conversion entirely.

2.1 Evaluation
Evaluating, the performance impact of, if
conversions are not straight forward as the
authors of the original paper did not do any
evaluation by themself. This was partly be-
cause their compiler wasn’t finished yet and
could only linearize small code blocks [3].

Since many modern compilers do apply if-con-
versions it is fair to assume that they still
impact performance [6]. However, to actually
evaluate their performance further work is re-
quired, in which if-conversions are disabled in
a state of the art compiler, such as LLVM.

3 Static Uniformity
One property some modern attempts exploit
is uniformity [7, 6]. We differentiate between
static and dynamic uniformity, the latter will
be discussed in the next chapter. A branch is
considered static uniform if it can be proven at
compile-time that all iterations will take the
same branch.

int sum(int* data, int n, bool pos) {
 int res = 0;
 for (int i=0; i < n; i++) {
 int element = data[i];
 if (pos) {
 abs(&element)
 }
 res += element;
 }
 return res;
}

Listing 3: Static uniform

Listing 3 shows a loop where depending on the
function’s arguments all iterations will either
call the abs function or jump over its invoca-
tion.

2

Linearizing, this loop with if-conversion would
enable the compiler to vectorize the loop but
would also introduce an unintended overhead,
as the condition will be true for all iterations
but will anyway calculated every iteration.

Some recent research was aimed at reducing
such counterproductive conversions by only
partially linearizing the CFG (control flow
graph) [7].

3.1 Evaluation
In their implementation, the authors can
outperform the if-conversion implemented in
LLVM and can archive an average speedup of
146% over clang -O3 [7].

4 Dynamic Uniformity
Often, we might not be able to prove unifor-
mity during compilation but still encounter
uniformity during runtime.

// Pretend data is read at runtime
int[] data = [0, 0, 0, 0, 1, 1]

for (int i = 0; i < 6; i++) {
 if (data[i]) {
 x[i] += 3
 }
}

Listing 4: Dynamic uniformity

In Listing 4 we cannot prove uniformity stati-
cally, but if we vectorize the loop by executing
two iterations at once, we would find that ei-
ther we would take the same branch for all
pairs.

Researchers at IBM and the University of
Toronto found a novel, called VecRC approach
to, eliminate in these dynamic in some uni-
form environments [6]. They archive this by
inserting additional checks at runtime and can
therefore avoid if conversion on uniform itera-
tions and only need to do that transformation
on divergent branches.

for (int i = 0; i < 6; i+=2) {
 vec m = data[i]
 if (all(m)) {
 // Condition body
 simd_add(x[i], 3)
 } else if (none(m)) {
 // Do nothing
 // (because no else)
 } else {
 // If conversion
 vec o = simd_mul(m, 3)
 simd_add(x[i], o)
 }
}

Listing 5: Vectorized dynamic uniformity

Listing 5 shows a vectorized version of List-
ing 4 with the uniformity optimizations from
VecRC. The example itself is pseudocode but
reflects the algorithm described in the paper.

First, the algorithm checks if all conditions
of the current iteration are true, if that is
the case, a vectorized version of the condition
body can be executed without any if-conver-
sion. Next, a condition checks if all conditions
are false, in this example nothing has to be
done, but if the condition had an else it could
execute a vectorized version of the else block.
Finally, if the branches are divergent, a classic
if-conversion is executed.

Obviously, these additional run-time checks,
while less expensive than if -conversion, are
also not free in terms of computation. In the
worst case of divergent branches we still exe-
cute an if-conversion but have introduced two
additional checks, which will deteriorate in-
stead of improving performance. Therefore the
authors of the papers introduced a cost model,
which is used to decide if the additional run-
time checks should be inserted.

3

The introduced cost model evaluates the
penalty of inserting these checks on divergent
branches and weights it against the gains in
uniform ones. To accurately predict this cost,
their implementation in LLVM makes use of
LLVM’s internal branch predictor.

For simplicity, Listing 5 shows a vectoriza-
tion of only two elements per iteration. This
metric is called the vector-factor and is cho-
sen in optimally to minimize the cost. On
the one hand, higher vector-factors can use
fewer SIMD instructions for each calculation
and therefore decreases the number of itera-
tions. On the other hand, more conditions
must be uniform, decreasing the probability of
uniformity, and increasing the probability of
divergent branches, the worst case scenario.

for (int i = 0; i < n; i!++) {
 if (cond[i]) {
 j++;
 }
 dst[j] = a[i] + b[i];
}

Listing 6: Loop carried data-dependency

The algorithm described in the VecRC paper
can also vectorize some loops that were pre-
viously impossible to vectorize [6]. Listing 6
shows the loop carried data-dependency j,
which prevents state-of-the-art vecotorizers to
vectorize the loop. This is because the vector-
ized version would execute multiple iterations
at once but the iterations are not independent
from each other. With the newly introduced
checks for dynamic uniformity, however, it is is
possible to vectorize the loop if the condition
is uniform, because if it is we can either always
or never increment j in the vectorized version.

4.1 Evaluation

Figure 1: VecRC results on Intel Skylake

VecRC could archive a speedup over LLVM
in most benchmarks, and on average had a
performance improvement of 118% over clang
-O3.

5 Related Work
If conversions are a technique to linearize con-
trol flow, which was invented to and is still
used by compilers to auto-vectorize control
flow [3].

The technique had quite a few renaissances
since its introduction four decades ago, with
the introduction of branch predicting mi-
crochips[4] and the wide availability and
utilization of GPUs [8].

Only, partially linearizing the control flow
can improve performance in cases where uni-
formity can be statically proven by avoiding
unnecessary if-conversion [7].

Exploiting dynamic uniformity at runtime can
further improve performance, but poses more
challenges as it introduces runtime penalties
that can outweigh the benefit [6].

Branching code executes different instructions
based on the chosen branch. In some cases,
an attacker can measure the execution time
of a program, and depending on the time
spent, they can predict which branch was cho-
sen. This might reveal sensitive information.
By linearizing these branches, we can force the
CPU to always execute the same instructions
and prevent these attacks [5].

4

One of the most relevant books in the world
of compiler engineering is Compilers: Princi-
ples Techniques and Tools, often just referred
as the Dragon Book because of the red dragon
on the cover. It explains the backgrounds of a
complete compiler from lexing to instruction-
level optimization like auto-vectorization [2].

6 Conclusion
In this paper, we compared the initial paper
introducing if-conversions to some modern at-
tempts that further attempt to optimize code
by better utilizing SIMD instructions.

Especially to VecRC, a novel solution that
exploits dynamic uniformity in data during
runtime, and can archive performance im-
provements of 1.18x over speedups clang -O3
by avoiding if-conversions [6].

Another similar solution is exploiting static
uniformity, which archived a higher speedup
because no runtime checks are required. Fur-
thermore, the authors of VecRC argue that
static and dynamic uniformity exploitation
does not obstruct each other and it should
be possible to implement both to complement
each other.

References
[1] A. Fog, 2022. [Online]. Avail-

able: https://www.agner.org/optimize/
instruction_tables.pdf

[2] A. V. Aho, M. S. Lam, R. Sethi, and J.
D. Ullman, Compilers: Principles, Tech-
niques, and Tools (2nd Edition), USA:
Addison-Wesley Longman Publishing Co.,
Inc., 2006.

[3] J. R. Allen, K. Kennedy, C. Porter-
field, and J. Warren, “Conversion of
control dependence to data dependence,”
in Proc. 10th ACM SIGACT-SIG-
PLAN Symp. Princ. Program. Languages
in Popl '83, Austin, Texas, 1983,
p. 177, doi: 10.1145/567067.567085.
[Online]. Available: https://
doi.org/10.1145/567067.567085

[4] E. Quinones, J.-M. Parcerisa, and A.
Gonzailez, “Improving branch prediction
and predicated execution in out-of-or-
der processors,” in 2007 IEEE 13th Int.
Symp. High Perform. Comput. Architec-
ture, vol. 0, 2007, pp. 75–84, doi: 10.1109/
HPCA.2007.346186.

[5] L. Soares, M. Canesche, and F. M.
Q. Pereira, “Side-channel elimination via
partial control-flow linearization,” ACM
Trans. Program. Lang. Syst., May 2023,
doi: 10.1145/3594736. [Online]. Available:
https://doi.org/10.1145/3594736

[6] B. Liu, A. Laird, W. H. Tsang, B.
Mahjour, and M. M. Dehnavi, “Com-
bining run-time checks and compile-time
analysis to improve control flow auto-
vectorization,” in Proc. Int. Conf.
Parallel Architectures Compilation Techn.
in Pact '22, Chicago, Illinois, 2023,
p. 439, doi: 10.1145/3559009.3569663.
[Online]. Available: https://
doi.org/10.1145/3559009.3569663

[7] S. Moll, and S. Hack, “Partial
control-flow linearization,” in Proc.
39th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation in Pldi
2018, Philadelphia, PA, USA, 2018,
p. 543, doi: 10.1145/3192366.3192413.
[Online]. Available: https://
doi.org/10.1145/3192366.3192413

[8] G. Anantpur Jayvant
and R., “Taming control divergence in
gpus through control flow linearization,”
in Compiler Construction, Berlin, Heidel-
berg, 2014, pp. 133–153.

5

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1145/567067.567085
https://doi.org/10.1145/567067.567085
https://doi.org/10.1145/3594736
https://doi.org/10.1145/3559009.3569663
https://doi.org/10.1145/3559009.3569663
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3192366.3192413

	Abstract
	Introduction
	If-Conversion
	Evaluation

	Static Uniformity
	Evaluation

	Dynamic Uniformity
	Evaluation

	Related Work
	Conclusion
	References

